版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
重慶市巴南中學(xué)7年級數(shù)學(xué)下冊第四章三角形章節(jié)練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,E是正方形ABCD的邊DC上一點,過點A作FA=AE交CB的延長線于點F,若AB=4,則四邊形AFCE的面積是()A.4 B.8 C.16 D.無法計算2、如圖,已知為的外角,,,那么的度數(shù)是()A.30° B.40° C.50° D.60°3、如圖,點,,,在一條直線上,,,,,,則()A.4 B.5 C.6 D.74、下列長度的三條線段,能組成三角形的是()A.3,4,8 B.5,6,11 C.1,3,5 D.5,6,105、如圖,圖形中的的值是()A.50 B.60 C.70 D.806、如圖,一扇窗戶打開后,用窗鉤AB可將其固定()A.三角形的穩(wěn)定性B.兩點之間線段最短C.四邊形的不穩(wěn)定性D.三角形兩邊之和大于第三邊7、如圖,已知AB=AD,CB=CD,可得△ABC≌△ADC,則判斷的依據(jù)是()A.SSS B.SAS C.ASA D.HL8、一個三角形的兩邊長分別是3和5,則它的第三邊可能為()A.2 B.4 C.8 D.119、如圖,E為線段BC上一點,∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,則BE的長度為()A.12 B.10 C.8 D.610、如果一個三角形的兩邊長分別為5cm和8cm,則第三邊長可能是()A.2cm B.3cm C.12cm D.13cm第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,已知,請?zhí)砑右粋€條件,使得,則添加的條件可以為___(只填寫一個即可).2、如圖,在中,,點D,E在邊BC上,,若,,則CE的長為______.3、已知a,b,c是的三邊長,滿足,c為奇數(shù),則______.4、如圖,在中,,一條線段,P,Q兩點分別在線段和的垂線上移動,若以A、B、C為頂點的三角形與以A、P、Q為頂點的三角形全等,則的長為_________.5、如圖,Rt△ABC中,∠ACB=90°,AB=5,BC=3,將斜邊AB繞點A順時針旋轉(zhuǎn)90°至AB′,連接B'C,則△AB′C的面積為_____.6、如圖,正三角形△ABC和△CDE,A,C,E在同一直線上,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ.①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.成立的結(jié)論有_____.(填序號)7、如圖,點E,F(xiàn)分別為線段BC,DB上的動點,BE=DF.要使AE+AF最小值,若用作圖方式確定E,F(xiàn),則步驟是_____.8、在平面直角坐標(biāo)系中,點B(0,4),點A為x軸上一動點,連接AB.以AB為邊作等腰Rt△ABE,(B、A、E按逆時針方向排列,且∠BAE為直角),連接OE.當(dāng)OE最小時,點E的縱坐標(biāo)為______.9、如圖,點B、E、C、F在一條直線上,AB=DE,BE=CF,請?zhí)砑右粋€條件______,使△ABC≌△DEF.10、如圖,已知∠A=60°,∠B=20°,∠C=30°,則∠BDC的度數(shù)為_____.三、解答題(6小題,每小題10分,共計60分)1、如圖,點A,B,C,D在同一條直線上,CEDF,EC=BD,AC=FD.求證:AE=FB.2、如圖,在中,AD是BC邊上的高,CE平分,若,,求的度數(shù).3、已知:如圖,AD,BE相交于點O,AB⊥BE,DE⊥AD,垂足分別為B,D,OA=OE.求證:△ABO≌△EDO.4、已知:如圖,CD=BE,CD∥BE,AD∥CE.求證:△ACD≌△CBE.5、如圖,已知,,求證:.6、已知:如圖,線段BE、DC交于點O,點D在線段AB上,點E在線段AC上,AB=AC,AD=AE.求證:∠B=∠C.-參考答案-一、單選題1、C【分析】先證明可得從而可得答案.【詳解】解:正方形ABCD,AB=4,故選C【點睛】本題考查的是小學(xué)涉及的正方形的性質(zhì),直角三角形全等的判定與性質(zhì),證明是解本題的關(guān)鍵.2、B【分析】根據(jù)三角形的外角性質(zhì)解答即可.【詳解】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD?∠B=60°?20°=40°,故選:B.【點睛】此題考查三角形的外角性質(zhì),關(guān)鍵是根據(jù)三角形外角性質(zhì)解答.3、A【分析】由題意易得,然后可證,則有,進(jìn)而問題可求解.【詳解】解:∵,∴,∵,,∴,∴,∵,∴;故選A.【點睛】本題主要考查全等三角形的性質(zhì)與判定,熟練掌握全等三角形的性質(zhì)與判定是解題的關(guān)鍵.4、D【分析】根據(jù)圍成三角形的條件逐個分析求解即可.【詳解】解:A、∵,∴3,4,8不能圍成三角形,不符合題意;B、∵,∴5,6,11不能圍成三角形,不符合題意;C、∵,∴1,3,5不能圍成三角形,不符合題意;D、∵,∴5,6,10能圍成三角形,符合題意,故選:D.【點睛】此題考查了圍成三角形的條件,解題的關(guān)鍵是熟練掌握圍成三角形的條件.圍成三角形的條件:兩邊之和大于第三邊,兩邊只差小于第三邊.5、B【分析】根據(jù)三角形外角的性質(zhì):三角形一個外角的度數(shù)等于與其不相鄰的兩個內(nèi)角的度數(shù)和進(jìn)行求解即可.【詳解】解:由題意得:∴,∴,故選B.【點睛】本題主要考查了三角形外角的性質(zhì),解一元一次方程,熟知三角形外角的性質(zhì)是解題的關(guān)鍵.6、A【分析】由三角形的穩(wěn)定性即可得出答案.【詳解】一扇窗戶打開后,用窗鉤AB可將其固定,故選:A.【點睛】本題考查了三角形的穩(wěn)定性,加上窗鉤AB構(gòu)成了△AOB,而三角形具有穩(wěn)定性是解題的關(guān)鍵.7、A【分析】由利用邊邊邊公理證明即可.【詳解】解:故選A【點睛】本題考查的是全等三角形的判定,掌握“利用邊邊邊公理證明三角形全等”是解本題的關(guān)鍵.8、B【分析】根據(jù)三角形的三邊關(guān)系定理:三角形兩邊之和大于第三邊,三角形的兩邊之差小于第三邊,設(shè)第三邊為,可得,再解即可.【詳解】設(shè)第三邊為,由題意得:,.故選:B.【點睛】此題主要考查了三角形的三邊關(guān)系:掌握第三邊大于已知的兩邊的差,而小于兩邊的和是解題的關(guān)鍵.9、A【分析】利用角相等和邊相等證明,利用全等三角形的性質(zhì)以及邊的關(guān)系,即可求出BE的長度.【詳解】解:由題意可知:∠ABE=∠AED=∠ECD=90°,,,,在和中,,,,故選:A.【點睛】本題主要是考查了全等三角形的判定和性質(zhì),熟練通過已知條件證明三角形全等,利用全等性質(zhì)及邊的關(guān)系,來求解未知邊的長度,這是解決本題的主要思路.10、C【分析】根據(jù)兩邊之和大于第三邊,兩邊之差小于第三邊可求得結(jié)果【詳解】解:設(shè)第三邊長為c,由題可知,即,所以第三邊可能的結(jié)果為12cm故選C【點睛】本題主要考查了三角形的性質(zhì)中三角形的三邊關(guān)系知識點二、填空題1、或【分析】根據(jù)全等三角形的判定方法即可解決問題.【詳解】解:由題意,,根據(jù),可以添加,使得,根據(jù),可以添加,使得.故答案為:或【點睛】本題主要考查了全等三角形的判定,熟練掌握全等三角形的判定方法——邊角邊、角邊角、角角邊、邊邊邊是解題的關(guān)鍵.2、5【分析】由題意易得,然后可證,則有,進(jìn)而問題可求解.【詳解】解:∵,∴,∵,∴(ASA),∴,∵,,∴,∴;故答案為5.【點睛】本題主要考查全等三角形的性質(zhì)與判定,熟練掌握全等三角形的性質(zhì)與判定是解題的關(guān)鍵.3、7【分析】絕對值與平方的取值均0,可知,,可得a、b的值,根據(jù)三角形三邊關(guān)系求出c的取值范圍,進(jìn)而得到c的值.【詳解】解:,由三角形三邊關(guān)系可得為奇數(shù)故答案為:7.【點睛】本題考查了絕對值、平方的非負(fù)性,三角形的三邊關(guān)系等知識點.解題的關(guān)鍵是確定所求邊長的取值范圍.4、6cm或12cm【分析】先根據(jù)題意得到∠BCA=∠PAQ=90°,則以A、B、C為頂點的三角形與以A、P、Q為頂點的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ兩種情況,由此利用全等三角形的性質(zhì)求解即可.【詳解】解:∵AX是AC的垂線,∴∠BCA=∠PAQ=90°,∴以A、B、C為頂點的三角形與以A、P、Q為頂點的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ兩種情況,當(dāng)△ACB≌△QAP,∴;當(dāng)△ACB≌△PAQ,∴,故答案為:6cm或12cm.【點睛】本題主要考查了全等三角形的性質(zhì),熟知全等三角形的性質(zhì)是解題的關(guān)鍵.5、【分析】根據(jù)題意過點B'作B'H⊥AC于H,由全等三角形的判定得出△ACB≌△B'HA(AAS),得AC=B'H=4,則有S△AB'C=AC?B′H即可求得答案.【詳解】解:過點B'作B'H⊥AC于H,∴∠AHB'=90°,∠BAB'=90°,∴∠HAB'+∠HB'A=90°,∠BAC+∠CAB'=90°,∴∠HB'A=∠CAB,在△ACB和△B'HA中,,∴△ACB≌△B'HA(AAS),∴AC=B'H,∵∠ACB=90°,AB=5,BC=3,∴AC===4,∴AC=B'H=4,∴S△AB'C=AC?B′H=×4×4=8.故答案為:8.【點睛】本題主要考查三角形全等的判定與性質(zhì)和旋轉(zhuǎn)的性質(zhì)以及勾股定理,根據(jù)題意利用全等三角形的判定證明△ACB≌△B'HA是解決問題的關(guān)鍵.6、①②③⑤【分析】①由于△ABC和△CDE是等邊三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,從而證出△ACD≌△BCE,可推知AD=BE;③由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ(ASA),所以AP=BQ;故③正確;②根據(jù)③△CQB≌△CPA(ASA),再根據(jù)∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=∠DCE,根據(jù)內(nèi)錯角相等,兩直線平行,可知②正確;④根據(jù)∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④錯誤;⑤利用等邊三角形的性質(zhì),BC∥DE,再根據(jù)平行線的性質(zhì)得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正確.【詳解】解:①∵等邊△ABC和等邊△DCE,∴BC=AC,DE=DC=CE,∠DEC=∠BCA=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;故①正確;③∵△ACD≌△BCE(已證),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已證),∴∠BCQ=180°﹣60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP與△BCQ中,,∴△ACP≌△BCQ(ASA),∴AP=BQ;故③正確;②∵△ACP≌△BCQ,∴PC=QC,∴△PCQ是等邊三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE;故②正確;④∵AD=BE,AP=BQ,∴AD﹣AP=BE﹣BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,∴DE≠Q(mào)E,∴DP≠DE;故④錯誤;⑤∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等邊△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°.故⑤正確;綜上所述,正確的結(jié)論有:①②③⑤.故答案為:①②③⑤.【點睛】本題綜合考查等邊三角形判定與性質(zhì)、全等三角形的判定與性質(zhì)、平行線的判定與性質(zhì)等知識點的運用.要求學(xué)生具備運用這些定理進(jìn)行推理的能力.7、①連接,作;②以點為圓心、長為半徑畫弧,交于點;③連接交于點;④以點為圓心、長為半徑畫弧,交于點【分析】按照①連接,作;②以點為圓心、長為半徑畫弧,交于點;③連接交于點;④以點為圓心、長為半徑畫弧,交于點的步驟作圖即可得.【詳解】解:步驟是①連接,作;②以點為圓心、長為半徑畫弧,交于點;③連接交于點;④以點為圓心、長為半徑畫弧,交于點;如圖,點即為所求.故答案為:①連接,作;②以點為圓心、長為半徑畫弧,交于點;③連接交于點;④以點為圓心、長為半徑畫弧,交于點.【點睛】本題考查了作一個角等于已知角、兩點之間線段最短、作線段、全等三角形的判定與性質(zhì)等知識點,熟練掌握尺規(guī)作圖的方法是解題關(guān)鍵.8、-2【分析】過E作EF⊥x軸于F,由三垂直模型,得EF=OA,AF=OB,設(shè)A(a,0),可求得E(a+4,a),點E在直線y=x-4上,當(dāng)OE⊥CD時,OE最小,據(jù)此求出坐標(biāo)即可.【詳解】解:如圖,過E作EF⊥x軸于F,∵∠AOB=∠EFA=∠BAE=90°,∴∠ABO+∠OAB=90°,∠EAF+∠OAB=90°,∴∠ABO=∠EAF,∵AB=AE,∴△ABO≌△EAF,∴EF=OA,AF=OB=4,取點C(4,0),點D(0,-4),∴∠OCD=45°,∵CF=4-OF,OA=4-OF,∴CF=OA=EF,∴∠ECF=45°,∴點E在直線CD上,當(dāng)OE⊥CD時,OE最小,此時△EFO和△ECO為等腰Rt△,∴OF=EF=2,此時點E的坐標(biāo)為:(2,-2).故答案為:-2【點睛】本題考查了全等三角形的判定與性質(zhì),解題關(guān)鍵是確定點E運動的軌跡,確定點E的位置.9、(答案不唯一)【分析】添加條件AC=DF,即可利用SSS證明△ABC≌△DEF.【詳解】解:添加條件AC=DF,∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),故答案為:AC=DF(答案不唯一).【點睛】本題主要考查了全等三角形的判定,解題的關(guān)鍵在于能夠熟練掌握全等三角形的判定條件.10、110°【分析】延長BD交AC于點E,根據(jù)三角形的外角性質(zhì)計算,得到答案.【詳解】延長BD交AC于點E,∵∠DEC是△ABE的外角,∠A=60°,∠B=20°,∴∠DEC=∠A+∠B=80°,則∠BDC=∠DEC+∠C=110°,故答案為:110°.【點睛】本題考查了三角形外角的性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,作輔助線DE是解題的關(guān)鍵.三、解答題1、證明見解析【分析】由證明再結(jié)合已知條件證明從而可得答案.【詳解】證明:,EC=BD,AC=FD,【點睛】本題考查的是全等三角形的判定與性質(zhì),掌握“利用證明三角形全等”是解本題的關(guān)鍵.2、85°【分析】由高的定義可得出∠ADB=∠ADC=90,在△ACD中利用三角形內(nèi)角和定理可求出∠ACB的度數(shù),結(jié)合CE平分∠ACB可求出∠ECB的度數(shù).由三角形外角的性質(zhì)可求出∠AEC的度數(shù),【詳解】解:∵AD是BC邊上的高,∴∠ADB=∠ADC=90.在△ACD中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 供貨協(xié)議屬合同
- 零售業(yè)財務(wù)評估師全攻略及常見問題解析
- 作業(yè)許可管理員面試題集
- 聯(lián)想集團(tuán)研發(fā)工程師面試題及答案詳解
- 健康管理師面試題及答案解析
- 城市管理督查專員的面試題及答案解析
- 2025年健身產(chǎn)業(yè)綜合體建設(shè)項目可行性研究報告
- 2025年智慧城市數(shù)據(jù)管理系統(tǒng)集成可行性研究報告
- 2025年大健康產(chǎn)業(yè)發(fā)展論壇可行性研究報告
- 2025年農(nóng)作物精準(zhǔn)灌溉技術(shù)推廣項目可行性研究報告
- 業(yè)主授權(quán)租戶安裝充電樁委托書
- 化工建設(shè)綜合項目審批作業(yè)流程圖
- 親子鑒定的報告單圖片
- 遼寧軌道交通職業(yè)學(xué)院單招《職業(yè)技能測試》參考試題庫(含答案)
- 馬工程《經(jīng)濟(jì)法學(xué)》教學(xué)
- 新概念二單詞表新版,Excel 版
- 2023年陜西西安經(jīng)濟(jì)技術(shù)開發(fā)區(qū)招聘120人(共500題含答案解析)筆試必備資料歷年高頻考點試題摘選
- 第八講 發(fā)展全過程人民民主PPT習(xí)概論2023優(yōu)化版教學(xué)課件
- 篇12pmc窗口功能指令舉例講解
- GB/T 7332-2011電子設(shè)備用固定電容器第2部分:分規(guī)范金屬化聚乙烯對苯二甲酸酯膜介質(zhì)直流固定電容器
- GB/T 38658-20203.6 kV~40.5 kV交流金屬封閉開關(guān)設(shè)備和控制設(shè)備型式試驗有效性的延伸導(dǎo)則
評論
0/150
提交評論