重慶市實驗中學(xué)7年級數(shù)學(xué)下冊第四章三角形單元測評試卷(解析版)_第1頁
重慶市實驗中學(xué)7年級數(shù)學(xué)下冊第四章三角形單元測評試卷(解析版)_第2頁
重慶市實驗中學(xué)7年級數(shù)學(xué)下冊第四章三角形單元測評試卷(解析版)_第3頁
重慶市實驗中學(xué)7年級數(shù)學(xué)下冊第四章三角形單元測評試卷(解析版)_第4頁
重慶市實驗中學(xué)7年級數(shù)學(xué)下冊第四章三角形單元測評試卷(解析版)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

重慶市實驗中學(xué)7年級數(shù)學(xué)下冊第四章三角形單元測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、以下列各組長度的線段為邊,能構(gòu)成三角形的是()A.1cm,1cm,8cm B.3cm,3cm,6cmC.3cm,4cm,5cm D.3cm,2cm,1cm2、如圖,在中,,,AD平分交BC于點D,在AB上截取,則的度數(shù)為()A.30° B.20° C.10° D.15°3、根據(jù)下列已知條件,不能畫出唯一的是()A.,, B.,,C.,, D.,,4、下列長度的三條線段能組成三角形的是()A.348 B.4410 C.5610 D.56115、下列所給的各組線段,能組成三角形的是:()A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,136、根據(jù)下列已知條件,能畫出唯一的的是()A., B.,,C.,, D.,,7、BP是∠ABC的平分線,CP是∠ACB的鄰補(bǔ)角的平分線,∠ABP=20°,∠ACP=50°,則∠P=()A.30° B.40° C.50° D.60°8、下列條件中,能判定△ABC≌△DEF的是()A.∠A=∠D,∠B=∠E,AC=DF B.∠A=∠E,AB=EF,∠B=∠DC.∠A=∠D,∠B=∠E,∠C=∠F D.AB=DE,BC=EF,∠A=∠E9、如圖,在△ABC中,AB=AC,點D是BC的中點,那么圖中的全等三角形的對數(shù)是()A.0 B.1 C.2 D.310、下列長度的各組線段中,能組成三角形的是()A.1,2,3 B.2,3,5 C.3,4,8 D.3,4,5第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,AC平分∠DAB,要使△ABC≌△ADC,需要增加的一個條件是____.2、如圖,線段AC與BD相交于點O,∠A=∠D=90°,要證明△ABC≌△DCB,還需添加的一個條件是____________.(只需填一個條件即可)3、如圖,與的頂點A、B、D在同一直線上,,,,延長分別交、于點F、G.若,,則______.4、如圖,為等腰的高,其中分別為線段上的動點,且,當(dāng)取最小值時,的度數(shù)為_____.5、如圖,在中,已知點,,分別為,,的中點,且,則陰影部分的面積______.6、如圖,AE是△ABC的中線,BF是△ABE的中線,若△ABC的面積是20cm2,則S△ABF=_____cm2.7、如圖,直線ED把分成一個和四邊形BDEC,的周長一定大于四邊形BDEC的周長,依據(jù)的原理是____________________________________.8、已知:如圖,AB=DB.只需添加一個條件即可證明.這個條件可以是______.(寫出一個即可).9、如圖,△ABE≌△ACD,∠A=60°,∠B=20°,則∠DOE的度數(shù)為_____°.10、如圖,在△ABC中,AD是BC邊上的中線,BE是△ABD中AD邊上的中線,若△ABC的面積是80,則△ABE的面積是________.三、解答題(6小題,每小題10分,共計60分)1、已知,∠A=∠D,BC平分∠ABD,求證:AC=DC.2、已知,如圖,三角形ABC是等腰直角三角形,∠ACB=90°,F(xiàn)是AB的中點,直線l經(jīng)過點C,分別過點A、B作l的垂線,即AD⊥CE,BE⊥CE,(1)如圖1,當(dāng)CE位于點F的右側(cè)時,求證:△ADC≌△CEB;(2)如圖2,當(dāng)CE位于點F的左側(cè)時,求證:ED=BE﹣AD;(3)如圖3,當(dāng)CE在△ABC的外部時,試猜想ED、AD、BE之間的數(shù)量關(guān)系,并證明你的猜想.3、如圖,AB⊥CB,DC⊥CB,E、F在BC上,∠A=∠D,BE=CF,求證:AF=DE.4、如圖,CE⊥AB于點E,BF⊥AC于點F,BD=CD.(1)求證:△BDE≌△CDF;(2)求證:AE=AF.5、平行線是平面幾何中最基本、也是非常重要的圖形.在解決某些幾何問題時,若能根據(jù)問題的需要,添加適當(dāng)?shù)钠叫芯€,往往能使證明順暢、簡潔.請根據(jù)上述思想解決問題:(1)如圖(1),ABCD,試判斷∠B,∠D與∠E的關(guān)系;(2)如圖(2),已知ABCD,在∠ACD的角平分線上取兩個點M、N,使得∠AMN=∠ANM,求證:∠CAM=∠BAN.6、在四邊形ABCD中,,點E在直線AB上,且.(1)如圖1,若,,,求AB的長;(2)如圖2,若DE交BC于點F,,求證:.-參考答案-一、單選題1、C【分析】根據(jù)三角形的三邊關(guān)系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進(jìn)行分析.【詳解】解:A、1+1=2<8,不能組成三角形,故此選項不合題意;B、3+3=6,不能組成三角形,故此選項不符合題意;C、3+4=7>5,能組成三角形,故此選項符合題意;D、1+2=3,不能組成三角形,故此選項不合題意;故選:C.【點睛】本題考查了構(gòu)成三角形的條件,掌握“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”是解題的關(guān)鍵.2、B【分析】利用已知條件證明△ADE≌△ADC(SAS),得到∠DEA=∠C,根據(jù)外角的性質(zhì)可求的度數(shù).【詳解】解:∵AD是∠BAC的平分線,∴∠EAD=∠CAD在△ADE和△ADC中,,∴△ADE≌△ADC(SAS),∴∠DEA=∠C,∵,∠DEA=∠B+,∴;故選:B【點睛】本題考查了全等三角形的性質(zhì)與判定,解決本題的關(guān)鍵是證明△ADE≌△ADC.3、B【分析】根據(jù)三角形存在的條件去判斷.【詳解】∵,,,滿足ASA的要求,∴可以畫出唯一的三角形,A不符合題意;∵,,,∠A不是AB,BC的夾角,∴可以畫出多個三角形,B符合題意;∵,,,滿足SAS的要求,∴可以畫出唯一的三角形,C不符合題意;∵,,,AB最大,∴可以畫出唯一的三角形,D不符合題意;故選B.【點睛】本題考查了三角形的存在性,熟練掌握三角形全等的判定方法是解題的關(guān)鍵.4、C【分析】根據(jù)三角形的任意兩邊之和大于第三邊對各選項分析判斷求解即可.【詳解】解:A.∵3+4<8,∴不能組成三角形,故本選項不符合題意;B.∵4+4<10,∴不能組成三角形,故本選項不符合題意;C.∵5+6>10,∴能組成三角形,故本選項符合題意;D.∵5+6=11,∴不能組成三角形,故本選項不符合題意;故選:C.【點睛】本題考查了三角形的三邊關(guān)系,熟記三角形的任意兩邊之和大于第三邊是解決問題的關(guān)鍵.5、D【分析】根據(jù)三角形三邊關(guān)系定理,判斷選擇即可.【詳解】∵2+11=13,∴A不符合題意;∵5+7=12,∴B不符合題意;∵5+5=10<11,∴C不符合題意;∵5+12=17>13,∴D符合題意;故選D.【點睛】本題考查了構(gòu)成三角形的條件,熟練掌握三角形三邊關(guān)系是解題的關(guān)鍵.6、C【分析】利用全等三角形的判定方法以及三角形三邊關(guān)系分別判斷得出即可.【詳解】解:A.∠C=90°,AB=6,不符合全等三角形的判定方法,即不能畫出唯一三角形,故本選項不符合題意;B.,,,不符合全等三角形的判定定理,不能畫出唯一的三角形,故本選項不符合題意;C.,,,符合全等三角形的判定定理ASA,能畫出唯一的三角形,故本選項符合題意;D.3+4<8,不符合三角形的三邊關(guān)系定理,不能畫出三角形,故本選項不符合題意;故選:C.【點睛】此題主要考查了全等三角形的判定以及三角形三邊關(guān)系,正確把握全等三角形的判定方法是解題關(guān)鍵.7、A【分析】根據(jù)角平分線的定義以及一個三角形的外角等于與它不相鄰的兩個內(nèi)角和,可求出∠P的度數(shù).【詳解】∵BP是△ABC中∠ABC的平分線,CP是∠ACB的外角的平分線,∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM?∠CBP=50°?20°=30°,故選:A.【點睛】本題考查三角形外角性質(zhì)以及角平分線的定義,解題時注意:一個三角形的外角等于與它不相鄰的兩個內(nèi)角的和.8、A【分析】根據(jù)全等三角形的判定方法,對各選項分別判斷即可得解.【詳解】解:A、∠A=∠D,∠B=∠E,AC=DF,根據(jù)AAS可以判定,故此選項符合題意;B、∠A=∠E,AB=EF,∠B=∠D,AB與EF不是對應(yīng)邊,不能判定,故此選項不符合題意;C、∠A=∠D,∠B=∠E,∠C=∠F,沒有邊對應(yīng)相等,不可以判定,故此選項不符合題意;D、AB=DE,BC=EF,∠A=∠E,有兩邊對應(yīng)相等,一對角不是對應(yīng)角,不可以判定,故此選項不符合題意;故選A.【點睛】本題考查了全等三角形的判定方法,一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.9、D【分析】先利用SSS證明△ABD≌△ACD,再利用SAS證明△ABE≌△ACE,最后利用SSS證明△BDE≌△CDE即可.【詳解】∵AB=AC,點D是BC的中點,∴AB=AC,BD=CD,AD=AD,∴△ABD≌△ACD,∴∠BAE=∠CAE,∵AB=AC,AE=AE,∴△ABE≌△ACE,∴BE=CE,∵BD=CD,DE=DE,∴△BDE≌△CDE,故選D.【點睛】本題考查了三角形全等的判定和性質(zhì),結(jié)合圖形特點,選擇合適的判定方法是解題的關(guān)鍵.10、D【分析】根據(jù)兩邊之和大于第三邊,兩邊之差小于第三邊判斷即可.【詳解】∵1+2=3,∴A不能構(gòu)成三角形;∵3+2=5,∴B不能構(gòu)成三角形;∵3+4<8,∴C不能構(gòu)成三角形;∵∵3+4>5,∴D能構(gòu)成三角形;故選D.【點睛】本題考查了三角形的三邊關(guān)系定理,熟練掌握性質(zhì)定理是解題的關(guān)鍵.二、填空題1、AB=AD(答案不唯一)【分析】根據(jù)SAS即可證明△ABC≌△ADC.【詳解】添加AB=AD,∵AC平分∠DAB,∴∠BAC=∠DAC又AC=AC∴△ABC≌△ADC(SAS)故答案為:AB=AD(答案不唯一).【點睛】此題主要考查全等三角形的判定,解題的關(guān)鍵是熟知全等三角形的判定定理.2、答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB【分析】根據(jù)全等三角形的判定條件求解即可.【詳解】解:∵∠A=∠D=90°,BC=CB,∴只需要添加:AC=DB或AB=DC,即可利用HL證明△ABC≌△DCB;添加∠ABC=∠DCB可以利用AAS證明△ABC≌△DCB,故答案為:答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB.【點睛】本題主要考查了全等三角形的判定,熟知全等三角形的判定條件是解題的關(guān)鍵.3、【分析】先證明△ABC≌△EDB,可得∠E=,然后利用三角形外角的性質(zhì)求解.【詳解】解:∵,∴∠ABC=∠D,在△ABC和△EDB中,∴△ABC≌△EDB,∴∠E=,∴,,∴∠EGF=30°+50°=80°,∴80°+30°=110°,故答案為:110°.【點睛】本題考查了平行線的性質(zhì),全等三角形的判定與性質(zhì),以及三角形外角的性質(zhì),熟練掌握三角形的外角等于不相鄰的兩個內(nèi)角和是解答本題的關(guān)鍵.4、【分析】作,且,連接交于M,連接,證明,得到,,當(dāng)F為與的交點時,即可求出最小值;【詳解】解:如圖1,作,且,連接交于M,連接,是等腰三角形,,,,,,,,在與中,,,∴當(dāng)F為與的交點時,如圖2,的值最小,此時,,故答案為:.【點睛】本題主要考查了全等三角形的判定與性質(zhì),準(zhǔn)確計算是解題的關(guān)鍵.5、【分析】根據(jù)三角形中線性質(zhì),平分三角形面積,先利用AD為△ABC中線可得S△ABD=S△ACD,根據(jù)E為AD中點,,根據(jù)BF為△BEC中線,即可.【詳解】解:∵AD為△ABC中線∴S△ABD=S△ACD,又∵E為AD中點,故,∴,∵BF為△BEC中線,∴cm2.故答案為:1cm2.【點撥】本題考查了三角形中線的性質(zhì),牢固掌握并會運用是解題關(guān)鍵.6、5【分析】利用三角形的中線把三角形分成面積相等的兩個三角形進(jìn)行解答.【詳解】解:∵AE是△ABC的中線,BF是△ABE的中線,∴S△ABF=S△ABC=×20=5cm2.故答案為:5.【點睛】本題考查了三角形的面積,能夠利用三角形的中線把三角形分成面積相等的兩個三角形的性質(zhì)求解是解題的關(guān)鍵.7、三角形兩邊之和大于第三邊【分析】表示出和四邊形BDEC的周長,再結(jié)合中的三邊關(guān)系比較即可.【詳解】解:的周長=四邊形BDEC的周長=∵在中∴即的周長一定大于四邊形BDEC的周長,∴依據(jù)是:三角形兩邊之和大于第三邊;故答案為三角形兩邊之和大于第三邊【點睛】本題考查了三角形三邊關(guān)系定理,關(guān)鍵是熟悉三角形兩邊之和大于第三邊的知識點.8、AC=DC【分析】由題意可得,BC為公共邊,AB=DB,即添加一組邊對應(yīng)相等,可證△ABC與△DBC全等.【詳解】解:∵AB=DB,BC=BC,添加AC=DC,∴在△ABC與△DBC中,,∴△ABC≌△DBC(SSS),故答案為:AC=DC.【點睛】本題考查了全等三角形的判定,靈活運用全等三角形的判定是本題的關(guān)鍵.9、100【分析】直接利用三角形的外角的性質(zhì)得出∠CEO=80°,再利用全等三角形的性質(zhì)得出答案.【詳解】解:∵∠A=60°,∠B=20°,∴∠CEO=80°,∵△ABE≌△ACD,∴∠B=∠C=20°,∴∠DOE=∠C+∠CEO=100°.故答案為:100.【點睛】此題主要考查了全等三角形的性質(zhì)以及三角形的外角的性質(zhì),求出∠CEO=80°是解題關(guān)鍵.10、20【分析】根據(jù)三角形的中線把三角形分成面積相等的兩部分,求出面積比,即可解答.【詳解】解:∵AD是BC上的中線,∴S△ABD=S△ACD=S△ABC,∵BE是△ABD中AD邊上的中線,∴S△ABE=S△BED=S△ABD,∴S△ABE=S△ABC,∵△ABC的面積是80,∴S△ABE=×80=20.故答案為:20.【點睛】本題主要考查了三角形面積的求法,掌握三角形的中線將三角形分成面積相等的兩部分,是解答本題的關(guān)鍵.三、解答題1、見解析【分析】證明△BAC≌△BDC即可得出結(jié)論.【詳解】解:∵BC平分∠ABD,∴∠ABC=∠DBC,在△BAC和△BDC中,∴△BAC≌△BDC,∴AC=DC.【點睛】本題考查角平分線的意義及全等三角形的判定與性質(zhì),解題關(guān)鍵是掌握角平分線的性質(zhì)及全等三角形的判定與性質(zhì).2、(1)見解析;(2)見解析;(3)ED=AD+BE.證明見解析【分析】(1)利用同角的余角相等得出∠CAD=∠BCE,進(jìn)而根據(jù)AAS證明△ADC≌△CEB;(2)根據(jù)AAS證明△ADC≌△CEB后,得其對應(yīng)邊相等,進(jìn)而得到ED=BE-AD;(3)根據(jù)AAS證明△ADC≌△CEB后,得DC=BE,AD=CE,又有ED=CE+DC,進(jìn)而得到ED=AD+BE.【詳解】(1)證明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°.∵∠ACD+∠ECB=90°,∠CAD+∠ACD=90°,∴∠CAD=∠BCE(同角的余角相等).在△ADC與△CEB中,∴△ADC≌△CEB(AAS);(2)證明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°.∵∠ACD+∠ECB=90°,∠CAD+∠ACD=90°,∴∠CAD=∠BCE(同角的余角相等).在△ADC與△CEB中,∴△ADC≌△CEB(AAS).∴DC=BE,AD=CE.又∵ED=CD-CE,∴ED=BE-AD;(3)ED=AD+BE.證明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°.∵∠ACD+∠ECB=90°,∠CAD+∠ACD=90°,∴∠CAD=∠BCE(同角的余角相等).在△ADC與△CEB中,∴△ADC≌△CEB(AAS).∴DC=BE,AD=CE.又∵ED=CE+DC,∴ED=AD+BE.【點睛】本題考查了全等三角形的判定和性質(zhì);利用全等三角形的對應(yīng)邊相等進(jìn)行等量交換,證明線段之間的數(shù)量關(guān)系,這是一種很重要的方法,注意掌握.3、見解析【分析】由題意可得∠B=∠C=90°,BF=CE,由“AAS”可證△ABF≌△DCE,可得AF=DE.【詳解】證明:∵AB⊥CB,DC⊥CB,∴∠B=∠C=90°,∵BE=CF,∴BF=CE,且∠A=∠D,∠B=∠C=90°,∴△ABF≌△DCE(AAS),∴AF=DE,【點睛】本題考查了全等三角形的判定和性質(zhì),熟練運用全等三角形的判定是本題的關(guān)鍵.4、(1)見解析;(2)見解析【分析】(1)根據(jù)CE⊥AB,BF⊥AC就可以得出∠BED=∠CFD=90°,就可以由AAS得出結(jié)論;(2)由(1)得DE=DF,就可以得出BF=CE,由AAS就可以得出△AFB≌△AEC就可以得出結(jié)論.【詳解】證明:(1)∵CE⊥AB,BF⊥AC,∴∠BED=∠CFD=90°,在△BED和△CFD中,,∴△BED≌△CFD(AAS);(2)∵△BED≌△CFD,∴DE=DF,∴BD+DF=CD+DE,∴BF=CE,在△ABF和△ACE中,,∴△ABF≌△ACE(AAS),∴AE=AF.【點睛】本題考查了垂直的性質(zhì)的運用,全等三角形的判定與性質(zhì)的運用,等式的性質(zhì)的運用,解答時證明三角形全等是關(guān)鍵.5、(1)∠BED=∠B+∠D;(2)證明見詳解.【分析】(1)作EF∥AB,證明AB∥EF∥CD,得到∠B=∠BEF,∠D=∠DEF,即可證明∠BED=∠B+∠D;(2)根據(jù)(1)結(jié)論得到∠N=∠BAN+∠DCN,進(jìn)而得到∠AMN=∠BAN+∠DCN,根據(jù)三角形外角定理得到∠AMN=∠ACM+∠CAM,∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論