重難點(diǎn)解析滬科版9年級(jí)下冊(cè)期末試題【基礎(chǔ)題】附答案詳解_第1頁(yè)
重難點(diǎn)解析滬科版9年級(jí)下冊(cè)期末試題【基礎(chǔ)題】附答案詳解_第2頁(yè)
重難點(diǎn)解析滬科版9年級(jí)下冊(cè)期末試題【基礎(chǔ)題】附答案詳解_第3頁(yè)
重難點(diǎn)解析滬科版9年級(jí)下冊(cè)期末試題【基礎(chǔ)題】附答案詳解_第4頁(yè)
重難點(diǎn)解析滬科版9年級(jí)下冊(cè)期末試題【基礎(chǔ)題】附答案詳解_第5頁(yè)
已閱讀5頁(yè),還剩33頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

滬科版9年級(jí)下冊(cè)期末試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿(mǎn)分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、下面是由一些完全相同的小立方塊搭成的幾何體從三個(gè)方向看到的形狀圖.搭成這個(gè)幾何體所用的小立方塊的個(gè)數(shù)是()A.個(gè) B.個(gè) C.個(gè) D.個(gè)2、如圖,AB,CD是⊙O的弦,且,若,則的度數(shù)為()A.30° B.40° C.45° D.60°3、如圖,在△ABC中,∠CAB=64°,將△ABC在平面內(nèi)繞點(diǎn)A旋轉(zhuǎn)到△AB′C′的位置,使CC′AB,則旋轉(zhuǎn)角的度數(shù)為()A.64° B.52° C.42° D.36°4、在一個(gè)不透明的口袋中裝有3張完全相同的卡片,卡片上面分別寫(xiě)有數(shù)字,0,2,從中隨機(jī)抽出兩張不同卡片,則下列判斷正確的是()A.?dāng)?shù)字之和是0的概率為0 B.?dāng)?shù)字之和是正數(shù)的概率為C.卡片上面的數(shù)字之和是負(fù)數(shù)的概率為 D.?dāng)?shù)字之和分別是負(fù)數(shù)、0、正數(shù)的概率相同5、如圖,中,,O是AB邊上一點(diǎn),與AC、BC都相切,若,,則的半徑為()A.1 B.2 C. D.6、下列汽車(chē)標(biāo)志中既是軸對(duì)稱(chēng)圖形又是中心對(duì)稱(chēng)圖形的是()A. B. C. D.7、等邊三角形、等腰三角形、矩形、菱形中既是軸對(duì)稱(chēng)圖形,又是中心對(duì)稱(chēng)圖形的個(gè)數(shù)是()A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)8、如圖,A,B,C是正方形網(wǎng)格中的三個(gè)格點(diǎn),則是()A.優(yōu)弧 B.劣弧 C.半圓 D.無(wú)法判斷第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,⊙O的半徑為2,∠D=110°,則的長(zhǎng)為_(kāi)_.2、在同一平面上,外有一點(diǎn)P到圓上的最大距離是8cm,最小距離為2cm,則的半徑為_(kāi)_____cm.3、如圖AB為⊙O的直徑,點(diǎn)P為AB延長(zhǎng)線(xiàn)上的點(diǎn),過(guò)點(diǎn)P作⊙O的切線(xiàn)PE,切點(diǎn)為M,過(guò)A、B兩點(diǎn)分別作PE垂線(xiàn)AC、BD,垂足分別為C、D,連接AM,則下列結(jié)論正確的是______(寫(xiě)所有正確論的號(hào))①AM平分∠CAB;②;③若AB=4,∠APE=30°,則的長(zhǎng)為;④若AC=3BD,則有tan∠MAP=.4、如圖,已知⊙O的半徑為2,弦AB的長(zhǎng)度為2,點(diǎn)C是⊙O上一動(dòng)點(diǎn)若△ABC為等腰三角形,則BC2為_(kāi)______.5、如圖,是由繞點(diǎn)O順時(shí)針旋轉(zhuǎn)30°后得到的圖形,若點(diǎn)D恰好落在AB上,且的度數(shù)為100°,則的度數(shù)是______.6、點(diǎn)P為邊長(zhǎng)為2的正方形ABCD內(nèi)一點(diǎn),是等邊三角形,點(diǎn)M為BC中點(diǎn),N是線(xiàn)段BP上一動(dòng)點(diǎn),將線(xiàn)段MN繞點(diǎn)M順時(shí)針旋轉(zhuǎn)60°得到線(xiàn)段MQ,連接AQ、PQ,則的最小值為_(kāi)_____.7、第24屆世界冬季奧林匹克運(yùn)動(dòng)會(huì),于2022年2月4日在中國(guó)北京市和河北省張家口市聯(lián)合舉行,其會(huì)徽為“冬夢(mèng)”,這是中國(guó)歷史上首次舉辦冬季奧運(yùn)會(huì).如圖,是一幅印有北京冬奧會(huì)會(huì)徽且長(zhǎng)為3m,寬為2m的長(zhǎng)方形宣傳畫(huà),為測(cè)量宣傳畫(huà)上會(huì)徽?qǐng)D案的面積,現(xiàn)將宣傳畫(huà)平鋪,向長(zhǎng)方形宣傳畫(huà)內(nèi)隨機(jī)投擲骰子(假設(shè)骰子落在長(zhǎng)方形內(nèi)的每一點(diǎn)都是等可能的),經(jīng)過(guò)大量重復(fù)投擲試驗(yàn),發(fā)現(xiàn)骰子落在會(huì)徽?qǐng)D案上的頻率穩(wěn)定在0.15左右,由此可估計(jì)宣傳畫(huà)上北京冬奧會(huì)會(huì)徽?qǐng)D案的面積約為_(kāi)_____.三、解答題(7小題,每小題0分,共計(jì)0分)1、如圖,是的弦,是上的一點(diǎn),且,于點(diǎn),交于點(diǎn).若的半徑為6,求弦的長(zhǎng).2、在△ABC與△DEF中,∠BAC=∠EDF=90°,且AB=AC,DE=DF.(1)如圖1,若點(diǎn)D與A重合,AC與EF交于P,且∠CAE=30°,CE,求EP的長(zhǎng);(2)如圖2,若點(diǎn)D與C重合,EF與BC交于點(diǎn)M,且BM=CM,連接AE,且∠CAE=∠MCE,求證:AE+MF=CE;(3)如圖3,若點(diǎn)D與A重合,連接BE,且∠ABE∠ABC,連接BF,CE,當(dāng)BF+CE最小時(shí),直接出的值.3、如圖,在6×6的方格紙中,每個(gè)小正方形的頂點(diǎn)稱(chēng)為格點(diǎn),每個(gè)小正方形的邊長(zhǎng)均為1,A,B兩點(diǎn)均在格點(diǎn)上.請(qǐng)按要求在圖①,圖②,圖③中畫(huà)圖:(1)在圖①中,畫(huà)等腰△ABC,使AB為腰,點(diǎn)C在格點(diǎn)上.(2)在圖②中,畫(huà)面積為8的四邊形ABCD,使其為中心對(duì)稱(chēng)圖形,但不是軸對(duì)稱(chēng)圖形,C,D兩點(diǎn)均在格點(diǎn)上.(3)在圖③中,畫(huà)△ABC,使∠ACB=90°,面積為5,點(diǎn)C在格點(diǎn)上.4、如圖1,圖2,圖3的網(wǎng)格均由邊長(zhǎng)為1的小正方形組成,圖1是三國(guó)時(shí)期吳國(guó)的數(shù)學(xué)家趙爽所繪制的“弦圖”,它由四個(gè)形狀、大小完全相同的直角三角形組成,趙爽利用這個(gè)“弦圖”對(duì)勾股定理作出了證明,是中國(guó)古代數(shù)學(xué)的一項(xiàng)重要成就,請(qǐng)根據(jù)下列要求解答問(wèn)題.(1)圖1中的“弦圖”的四個(gè)直角三角形組成的圖形是對(duì)稱(chēng)圖形(填“軸”或“中心”).(2)請(qǐng)將“弦圖”中的四個(gè)直角三角形通過(guò)你所學(xué)過(guò)的圖形變換,在圖2,3的方格紙中設(shè)計(jì)另外兩個(gè)不同的圖案,畫(huà)圖要求:①每個(gè)直角三角形的頂點(diǎn)均在方格紙的格點(diǎn)上,且四個(gè)三角形互不重疊,不必涂陰影;②圖2中所設(shè)計(jì)的圖案(不含方格紙)必須是軸對(duì)稱(chēng)圖形而不是中心對(duì)稱(chēng)圖形;圖3中所設(shè)計(jì)的圖案(不含方格紙)必須既是軸對(duì)稱(chēng)圖形,又是中心對(duì)稱(chēng)圖形.5、如圖,已知AB是⊙O的直徑,,連接OC,弦,直線(xiàn)CD交BA的延長(zhǎng)線(xiàn)于點(diǎn).(1)求證:直線(xiàn)CD是⊙O的切線(xiàn);(2)若,,求OC的長(zhǎng).6、如圖,在⊙O中,弦AC與弦BD交于點(diǎn)P,AC=BD.(1)求證AP=BP;(2)連接AB,若AB=8,BP=5,DP=3,求⊙O的半徑.7、一個(gè)不透明的口袋中有4個(gè)完全相同的小球,把它們分別標(biāo)號(hào)為1,2,3,4隨機(jī)摸取一個(gè)小球后,不放回,再隨機(jī)摸出一個(gè)小球,分別求下列事件的概率:(1)兩次取出的小球標(biāo)號(hào)和為奇數(shù);(2)兩次取出的小球標(biāo)號(hào)和為偶數(shù).-參考答案-一、單選題1、D【分析】從俯視圖中可以看出最底層小正方體的個(gè)數(shù)及形狀,從主視圖和左視圖可以看出每一層小正方體的層數(shù)和個(gè)數(shù),從而算出總的個(gè)數(shù).【詳解】解:綜合主視圖,俯視圖,左視圖,底層有5個(gè)正方體,第二層有1個(gè)正方體,所以搭成這個(gè)幾何體所用的小立方塊的個(gè)數(shù)是6,故選D.【點(diǎn)睛】考查學(xué)生對(duì)三視圖掌握程度和靈活運(yùn)用能力,同時(shí)也體現(xiàn)了對(duì)空間想象能力方面的考查.如果掌握口訣“俯視圖打地基,正視圖瘋狂蓋,左視圖拆違章”就更容易得到答案.2、B【分析】由同弧所對(duì)的圓周角是圓心角的一半可得,利用平行線(xiàn)的性質(zhì):兩直線(xiàn)平行,內(nèi)錯(cuò)角相等即可得.【詳解】解:∵,∴,∵,∴,故選:B.【點(diǎn)睛】題目主要考查圓周角定理,平行線(xiàn)的性質(zhì)等,理解題意,找出相關(guān)的角度是解題關(guān)鍵.3、B【分析】先根據(jù)平行線(xiàn)的性質(zhì)得∠ACC′=∠CAB=64°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠CAC′等于旋轉(zhuǎn)角,AC=AC′,則利用等腰三角形的性質(zhì)得∠ACC′=∠AC′C=64°,然后根據(jù)三角形內(nèi)角和定理可計(jì)算出∠CAC′的度數(shù),從而得到旋轉(zhuǎn)角的度數(shù).【詳解】解:∵CC′∥AB,∴∠ACC′=∠CAB=64°∵△ABC在平面內(nèi)繞點(diǎn)A旋轉(zhuǎn)到△AB′C′的位置,∴∠CAC′等于旋轉(zhuǎn)角,AC=AC′,∴∠ACC′=∠AC′C=64°,∴∠CAC′=180°-∠ACC′-∠AC′C=180°-2×64°=52°,∴旋轉(zhuǎn)角為52°.故選:B.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線(xiàn)段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.4、A【分析】列樹(shù)狀圖,得到共有6種等可能的情況,和為正數(shù)的有4種情況,和為負(fù)數(shù)的有2種情況,依次判斷即可.【詳解】解:列樹(shù)狀圖如下:共有6種等可能的情況,和為正數(shù)的有4種情況,和為負(fù)數(shù)的有2種情況,A.數(shù)字之和是0的概率為0,故該項(xiàng)符合題意;B.數(shù)字之和是正數(shù)的概率為,故該項(xiàng)不符合題意;C.卡片上面的數(shù)字之和是負(fù)數(shù)的概率為,故該項(xiàng)不符合題意;D.數(shù)字之和分別是負(fù)數(shù)、0、正數(shù)的概率不相同,故該項(xiàng)不符合題意;故選:A.【點(diǎn)睛】此題考查了列樹(shù)狀圖求事件的概率,概率的計(jì)算公式,正確列出樹(shù)狀圖解答是解題的關(guān)鍵.5、D【分析】作OD⊥AC于D,OE⊥BC于E,如圖,設(shè)⊙O的半徑為r,根據(jù)切線(xiàn)的性質(zhì)得OD=OE=r,易得四邊形ODCE為正方形,則CD=OD=r,再證明△ADO∽△ACB,然后利用相似比得到,再根據(jù)比例的性質(zhì)求出r即可.【詳解】解:作OD⊥AC于D,OE⊥BC于E,如圖,設(shè)⊙O的半徑為r,∵⊙O與AC、BC都相切,∴OD=OE=r,而∠C=90°,∴四邊形ODCE為正方形,∴CD=OD=r,∵OD∥BC,∴△ADO∽△ACB,∴∵AF=AC-r,BC=3,AC=4,代入可得,∴r=.故選:D.【點(diǎn)睛】本題考查了切線(xiàn)的性質(zhì):圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑.運(yùn)用切線(xiàn)的性質(zhì)來(lái)進(jìn)行計(jì)算或論證,常通過(guò)作輔助線(xiàn)連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問(wèn)題.也考查了相似三角形的判定與性質(zhì).6、C【分析】根據(jù)軸對(duì)稱(chēng)圖形與中心對(duì)稱(chēng)圖形的概念求解.【詳解】解:A、是軸對(duì)稱(chēng)圖形,不是中心對(duì)稱(chēng)圖形,故此選項(xiàng)不符合題意;B、是軸對(duì)稱(chēng)圖形,不是中心對(duì)稱(chēng)圖形,故此選項(xiàng)不符合題意;C、是軸對(duì)稱(chēng)圖形,是中心對(duì)稱(chēng)圖形,故此選項(xiàng)符合題意;D、不是軸對(duì)稱(chēng)圖形,是中心對(duì)稱(chēng)圖形,故此選項(xiàng)不符合題意;故選:C.【點(diǎn)睛】此題主要考查了中心對(duì)稱(chēng)圖形與軸對(duì)稱(chēng)圖形的概念.軸對(duì)稱(chēng)圖形的關(guān)鍵是尋找對(duì)稱(chēng)軸,圖形兩部分折疊后可重合,中心對(duì)稱(chēng)圖形是要尋找對(duì)稱(chēng)中心,旋轉(zhuǎn)180度后兩部分重合.7、A【分析】根據(jù)軸對(duì)稱(chēng)圖形與中心對(duì)稱(chēng)圖形的概念進(jìn)行判斷.【詳解】解:矩形,菱形既是軸對(duì)稱(chēng)圖形,也是中心對(duì)稱(chēng)圖形,符合題意;等邊三角形、等腰三角形是軸對(duì)稱(chēng)圖形,不是中心對(duì)稱(chēng)圖形,不符合題意;共2個(gè)既是軸對(duì)稱(chēng)圖形又是中心對(duì)稱(chēng)圖形.故選:A.【點(diǎn)睛】此題主要考查了中心對(duì)稱(chēng)圖形與軸對(duì)稱(chēng)圖形的概念.(1)如果一個(gè)圖形沿著一條直線(xiàn)對(duì)折后兩部分完全重合,這樣的圖形叫做軸對(duì)稱(chēng)圖形,這條直線(xiàn)叫做對(duì)稱(chēng)軸.(2)如果一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180°后能夠與自身重合,那么這個(gè)圖形就叫做中心對(duì)稱(chēng)圖形,這個(gè)點(diǎn)叫做對(duì)稱(chēng)中心.8、B【分析】根據(jù)三點(diǎn)確定一個(gè)圓,圓心的確定方法:任意兩點(diǎn)中垂線(xiàn)的交點(diǎn)為圓心即可判斷.【詳解】解;如圖,分別連接AB、AC、BC,取任意兩條線(xiàn)段的中垂線(xiàn)相交,交點(diǎn)就是圓心.故選:B.【點(diǎn)睛】本題考查已知圓上三點(diǎn)求圓心,取任意兩條線(xiàn)段中垂線(xiàn)交點(diǎn)確定圓心是解題關(guān)鍵.二、填空題1、##【分析】連接OA、OC,先求出∠ABC的度數(shù),然后得到∠AOC,再由弧長(zhǎng)公式即可求出答案.【詳解】解:連接OA、OC,如圖,∵四邊形ABCD是⊙O的內(nèi)接四邊形,∠D=110°,∴,∴,∴;故答案為:.【點(diǎn)睛】本題考查了弧長(zhǎng)的計(jì)算以及圓周角定理,解答本題的關(guān)鍵是掌握弧長(zhǎng)公式.2、5或3【分析】分點(diǎn)P在圓內(nèi)或圓外進(jìn)行討論.【詳解】解:①當(dāng)點(diǎn)P在圓內(nèi)時(shí),⊙O的直徑長(zhǎng)為8+2=10(cm),半徑為5cm;②當(dāng)點(diǎn)P在圓外時(shí),⊙O的直徑長(zhǎng)為8-2=6(cm),半徑為3cm;綜上所述:⊙O的半徑長(zhǎng)為5cm或3cm.故答案為:5或3.【點(diǎn)睛】本題考查了點(diǎn)與圓的位置關(guān)系:點(diǎn)的位置可以確定該點(diǎn)到圓心距離與半徑的關(guān)系,反過(guò)來(lái)已知點(diǎn)到圓心距離與半徑的關(guān)系可以確定該點(diǎn)與圓的位置關(guān)系.3、①②④【分析】連接OM,由切線(xiàn)的性質(zhì)可得,繼而得,再根據(jù)平行線(xiàn)的性質(zhì)以及等邊對(duì)等角即可求得,由此可判斷①;通過(guò)證明,根據(jù)相似三角形的對(duì)應(yīng)邊成比例可判斷②;求出,利用弧長(zhǎng)公式求得的長(zhǎng)可判斷③;由,,,可得,繼而可得,,進(jìn)而有,在中,利用勾股定理求出PD的長(zhǎng),可得,由此可判斷④.【詳解】解:連接OM,∵PE為的切線(xiàn),∴,∵,∴,∴,∵,,∴,即AM平分,故①正確;∵AB為的直徑,∴,∵,,∴,∴,∴,故②正確;∵,∴,∵,∴,∴的長(zhǎng)為,故③錯(cuò)誤;∵,,,∴,∴,∴,∴,又∵,,,∴,又∵,∴,設(shè),則,∴,在中,,∴,∴,由①可得,,故④正確,故答案為:①②④.【點(diǎn)睛】本題考查了切線(xiàn)的性質(zhì),平行線(xiàn)分線(xiàn)段成比例定理,相似三角形的判定與性質(zhì),勾股定理等,正確添加輔助線(xiàn),熟練掌握和靈活運(yùn)用相關(guān)知識(shí)是解題的關(guān)鍵.4、4或12或【分析】分三種情況討論:當(dāng)AB=BC時(shí)、當(dāng)AB=AC時(shí)、當(dāng)AC=BC時(shí),根據(jù)垂徑定理和勾股定理即可求解.【詳解】解:如圖1,當(dāng)AB=BC時(shí),BC=2,故BC2=4;如圖2,當(dāng)AB=AC=2時(shí),過(guò)A作AD⊥BC于D,連接OC,∴BD=CD,設(shè)OD=x,則在Rt△ACD中,AC2=CD2+AD2,在Rt△OCD中,OC2=CD2+OD2,∴CD2=AC2-AD2=OC2-OD2即22-(2-x)2=22-x2解得x=1∴CD=∴BC=2∴BC2=12;如圖3,當(dāng)AC=BC時(shí),則C在AB的垂直平分線(xiàn)上,∴CD經(jīng)過(guò)圓心O,AD=BD==1,∵OA=2,∴OD=,∴CD=CO+OD=2+,CD=C'O-OD=2-,∴BC2=CD2+BD2=(2+)2+12=,BC2=CD2+BD2=(2-)2+12=,綜上,BC2為4或12或故答案為:4或12或.【點(diǎn)睛】本題考查了垂徑定理,等腰三角形的性質(zhì),勾股定理的應(yīng)用,熟練掌握性質(zhì)定理是解題的關(guān)鍵.5、35°【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠AOD=∠BOC=30°,AO=DO,再求出∠BOD,∠ADO,然后利用三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和列式計(jì)算即可得解.【詳解】解:∵△COD是△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)30°后得到的圖形,∴∠AOD=∠BOC=30°,AO=DO,∵∠AOC=100°,∴∠BOD=100°?30°×2=40°,∠ADO=∠A=(180°?∠AOD)=(180°?30°)=75°,由三角形的外角性質(zhì)得,∠B=∠ADO?∠BOD=75°?40°=35°.故答案為:35°.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),熟記各性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.6、【分析】如圖,取的中點(diǎn),連接,,,證明,進(jìn)而證明在上運(yùn)動(dòng),且垂直平分,根據(jù),求得最值,根據(jù)正方形的性質(zhì)和勾股定理求得的長(zhǎng)即可求得的最小值.【詳解】解:如圖,取的中點(diǎn),連接,,,將線(xiàn)段MN繞點(diǎn)M順時(shí)針旋轉(zhuǎn)60°得到線(xiàn)段MQ,,是等邊三角形,,是的中點(diǎn),是的中點(diǎn)是等邊三角形,即在和中,又是的中點(diǎn)點(diǎn)在上是的中點(diǎn),是等邊三角,又垂直平分即的最小值為四邊形是正方形,且的最小值為故答案為:【點(diǎn)睛】本題考查了正方形的性質(zhì)等邊三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,垂直平分線(xiàn)的性質(zhì)與判定,根據(jù)以上知識(shí)轉(zhuǎn)化線(xiàn)段是解題的關(guān)鍵.7、0.9【分析】根據(jù)題意可得長(zhǎng)方形的面積,然后依據(jù)骰子落在會(huì)徽?qǐng)D案上的頻率穩(wěn)定在0.15左右,總面積乘以頻率即為會(huì)徽?qǐng)D案的面積.【詳解】解:由題意可得:長(zhǎng)方形的面積為,∵骰子落在會(huì)徽?qǐng)D案上的頻率穩(wěn)定在0.15左右,∴會(huì)徽?qǐng)D案的面積為:,故答案為:.【點(diǎn)睛】題目主要考查根據(jù)頻率計(jì)算滿(mǎn)足條件的情況,理解題意,熟練掌握頻率的計(jì)算方法是解題關(guān)鍵.三、解答題1、【分析】連接OB,由圓周角定理得出∠AOB=2∠ACB=120°,再由垂徑定理得出∠AOE=∠AOB=60°、AB=2AE,在Rt△AOE中,由OA=2OE求解可得答案.【詳解】如圖,連接OB,則∠AOB=2∠ACB=120°,∵OD⊥AB,∴∠AOE=∠AOB=60°,∵AO=6,∴在Rt△AOE中,,∴AB=2AE,故答案為:.【點(diǎn)睛】本題主要考查圓周角定理,解題的關(guān)鍵是掌握?qǐng)A周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條?。?、(1);(2)證明見(jiàn)詳解;(3).【分析】(1)過(guò)點(diǎn)P作PG⊥EC于G,根據(jù)等腰直角三角形得出∠B=∠C=45°,根據(jù)PG⊥EC,可取∠GPC=90°-∠C=45°,可得PG=GC,根據(jù)三角形外角性質(zhì)∠EPC=75°,可求∠EPG=30°,根據(jù)30°直角三角形性質(zhì)得出EP=2EG,根據(jù)勾股定理根據(jù)EC=EG+GC=EG+,可求EG=即可;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,根據(jù)∠MAH=45°=∠HEC,可得點(diǎn)A、M、C、E四點(diǎn)共圓,得出∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,可得△AEJ為等腰直角三角形,根據(jù)根據(jù)勾股定理AJ=,得出∠CAE=∠MCE,可證∠JAC=∠JCA,可得AJ=JC=,先證△CHM∽△ECM,再證△AEM≌△HEC(AAS),得出EM=EC,再證△AME≌△MCF(AAS),得出AE=MF即可;(3)分兩種情況,當(dāng)BE在∠ABC的平分線(xiàn)上時(shí),與BE在△ABC外部時(shí),當(dāng)BE在∠ABC的平分線(xiàn)上時(shí),作∠ABC的平分線(xiàn)交AC于O,將△AEC逆時(shí)針旋轉(zhuǎn)90°得到△AFC′,過(guò)點(diǎn)O作OP⊥BC于P,則點(diǎn)E在BO上,有∠ABE=∠ABC,先證B、A、C′三點(diǎn)共線(xiàn),根據(jù)兩點(diǎn)之交線(xiàn)段最短可得BF+CE=BF+C′F≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,此時(shí)點(diǎn)E在AC上與點(diǎn)O重合,然后利用勾股定理EC=,BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF在Rt△ABE中,根據(jù)勾股定理,當(dāng)BE在△ABC外部時(shí),∠EBA=,將△EAC逆時(shí)針旋轉(zhuǎn)90°得到△FAC′,先證B、A、C′三點(diǎn)共線(xiàn),根據(jù)兩點(diǎn)之間線(xiàn)段最短可得BF+CE=BF+FC′≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,再證EF=BF,然后根據(jù)勾股定理BF=CE=AE+AC=AF+AB=在Rt△EAB中,根據(jù)勾股定理即可.【詳解】解:(1)過(guò)點(diǎn)P作PG⊥EC于G,∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵PG⊥EC,∴∠GPC=90°-∠C=45°,∴PG=GC,∵∠EAC=30°,∠EDF=90°,DE=DF,∴∠DEF=∠F=45°,∴∠EPC=∠AEF+∠EAC=30°+45°=75°,∴∠EPG=∠EPC-∠GPC=75°-45°=30°,∴EP=2EG,在Rt△EPG中,根據(jù)勾股定理∴GC=PG=∴EC=EG+GC=EG+,∴EG=,∴EP=2EG=;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,∵BM=CM,AB=AC,∠BAC=90°,∴AM⊥BC,AM=BM=CM,∴∠MAH=45°=∠HEC,∴點(diǎn)A、M、C、E四點(diǎn)共圓,∴∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,∴∠AEJ=∠AEM+∠HEC=45°+45°=90°,∵AE=JE,∴∠EAJ=∠EJA=45°,在Rt△AEJ中,根據(jù)勾股定理AJ=,∵∠CAE=∠MCE,∴∠JAC+45°=∠JCA+45°,∴∠JAC=∠JCA,∴AJ=JC=,∵∠HCM=∠CEM=45°,∠HMC=∠CME,∴△CHM∽△ECM,∴∠MHC=∠MCE,∵∠EHA=∠MHC=∠MCE=∠EAH∴AE=HE,在△AEM和△HEC中,,∴△AEM≌△HEC(AAS),∴EM=EC,∴∠EMC=∠ECM,∵∠AME+∠EMC=∠ECM+∠MCF=90°,∴∠AME=∠MCF,在△AME和△MCF中,∴△AME≌△MCF(AAS),∴AE=MF,∴CE=EJ+JC=MF+AE;(3)分兩種情況,當(dāng)BE在∠ABC的平分線(xiàn)上時(shí),與BE在△ABC外部時(shí),當(dāng)當(dāng)BE在∠ABC的平分線(xiàn)上時(shí),作∠ABC的平分線(xiàn)交AC于O,將△AEC逆時(shí)針旋轉(zhuǎn)90°得到△AFC′,過(guò)點(diǎn)O作OP⊥BC于P,則點(diǎn)E在BO上,有∠ABE=∠ABC,∵△AEC≌△AFC′,∴∠CAE=∠C′AF,∵∠BAC′=∠BAC+∠OAC′=∠BAC+∠FAC′+∠OAF=∠BAC+∠EAC+∠OAF=∠BAC+∠EAF=180°,∴B、A、C′三點(diǎn)共線(xiàn),∴BF+CE=BF+C′F≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,此時(shí)點(diǎn)E在AC上與點(diǎn)O重合,∵BO為∠ABC的平分線(xiàn),OA⊥AB,OP⊥BC,∴OP=AO=AF,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°,∴∠PEC=180°-∠EPC-∠C=45°,∴PC=EP=AF,∴EC=,∴AC=AE+EC=AF+=(1+)AF,∴BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF,在Rt△ABE中,根據(jù)勾股定理,∴;當(dāng)BE在△ABC外部時(shí),∠EBA=,將△EAC逆時(shí)針旋轉(zhuǎn)90°得到△FAC′,則△EAC≌△FAC′,∴AC′=AC,EC=FC′,∠EAC=∠FAC′,∵∠FEB+∠EAC=360°-∠EAF-∠BAC=360°-90°-90°=180°,∴∠FAB+∠FAC′=∠FAB+∠EAC=180°,∴B、A、C′三點(diǎn)共線(xiàn),∴BF+CE=BF+FC′≥BC′,∴點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,∵∠EBA=,∠EFA=45°,∴∠EFA=∠EBA+∠BEF=45°,∴∠BEF=45°-∠EBA=45°-22.5°=22.5°,∴EF=BF,在Rt△EAF中,,∴BF=,∴AB=BF+AF=+AF=,∴CE=AE+AC=AF+AB=,在Rt△EAB中,根據(jù)勾股定理,∴.綜合.【點(diǎn)睛】本題考查等腰直角三角形性質(zhì),三角形外角性質(zhì),30°直角三角形性質(zhì),勾股定理,三角形全等判定與性質(zhì),四點(diǎn)共圓,同弧所對(duì)圓周角性質(zhì),三角形相似判定與性質(zhì),圖形旋轉(zhuǎn)性質(zhì),最短路徑問(wèn)題,角平分線(xiàn)性質(zhì),分類(lèi)討論思想,本題難度大,應(yīng)用知識(shí)多,是中考?jí)狠S題,利用輔助線(xiàn)作出正確圖形是解題關(guān)鍵.3、(1)見(jiàn)解析;(2)見(jiàn)解析;(3)見(jiàn)解析【分析】(1)因?yàn)锳B=5,作腰為5的等腰三角形即可(答案不唯一);(2)作邊長(zhǎng)為2,高為4的平行四邊形即可;(3)根據(jù)(1)的結(jié)論,作BG邊的中線(xiàn),即可得解.【詳解】解:(1)如圖①中,△ABC即為所求作(答案不唯一);(2)如圖②中,平行四邊形ABCD即為所求作;(3)如圖③中,△ABC即為所求作(答案不唯一);∵AB=AG,BC=CG,∴AC⊥BG,∵△ABG的面積為,∴△ABC的面積為5,且∠ACB=90°.【點(diǎn)睛】本題考查作圖-應(yīng)用與設(shè)計(jì),等腰三角形的判定和性質(zhì),勾股定理及其逆定理等知識(shí),解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題.4、(1)中心(2)見(jiàn)解析【分析】(1)利用中心對(duì)稱(chēng)圖形的意義得到答案即可;(2)①每個(gè)直角三角形的頂點(diǎn)均在方格紙的格點(diǎn)上,且四個(gè)三角形不重疊,是軸對(duì)稱(chēng)圖形;②所設(shè)計(jì)的圖案(不含方格紙)必須是中心對(duì)稱(chēng)圖形或軸對(duì)稱(chēng)圖形.(1)圖1中的“弦圖”的四個(gè)直角三角形組成的圖形是中心對(duì)稱(chēng)圖形,故答案為:中心;(2)如圖2是

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論