中考數(shù)學(xué)總復(fù)習(xí)《 圓》題庫附答案詳解【奪分金卷】_第1頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》題庫附答案詳解【奪分金卷】_第2頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》題庫附答案詳解【奪分金卷】_第3頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》題庫附答案詳解【奪分金卷】_第4頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》題庫附答案詳解【奪分金卷】_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

中考數(shù)學(xué)總復(fù)習(xí)《圓》題庫考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、已知一個扇形的弧長為,圓心角是,則它的半徑長為()A.6cm B.5cm C.4cm D.3cm2、如圖,正五邊形內(nèi)接于⊙,為上的一點(點不與點重合),則的度數(shù)為(

)A. B. C. D.3、如圖所示,矩形紙片中,,把它分割成正方形紙片和矩形紙片后,分別裁出扇形和半徑最大的圓,恰好能作為一個圓錐的底面和側(cè)面,則圓錐的表面積為(

)A. B. C. D.4、一個點到圓的最大距離為11cm,最小距離為5cm,則圓的半徑為(

)A.16cm或6cm B.3cm或8cm C.3cm D.8cm5、一個等腰直角三角形的內(nèi)切圓與外接圓的半徑之比為(

)A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、一個扇形的弧長是,面積是,則這個扇形的圓心角是___度.2、已知直線m與半徑為5cm的⊙O相切于點P,AB是⊙O的一條弦,且,若AB=6cm,則直線m與弦AB之間的距離為_____.3、如圖,四邊形是正方形,曲線是由一段段90度的弧組成的.其中:的圓心為點A,半徑為;的圓心為點B,半徑為;的圓心為點C,半徑為;的圓心為點D,半徑為;…的圓心依次按點A,B,C,D循環(huán).若正方形的邊長為1,則的長是_________.4、如圖,是的直徑,弦于點E,,,則的半徑_______.5、如圖,AB是⊙O的直徑,點C,D,E都在⊙O上,∠1=55°,則∠2=_____°.三、解答題(5小題,每小題10分,共計50分)1、如圖,AD、BC是⊙O的兩條弦,且AB=CD,求證:AD=BC.2、如圖,四邊形OABC中,.OA=OC,BA=BC.以O(shè)為圓心,以O(shè)A為半徑作☉O(1)求證:BC是☉O的切線:(2)連接BO并延長交⊙O于點D,延長AO交⊙O于點E,與此的延長線交于點F若.①補全圖形;②求證:OF=OB.3、如圖,為的直徑,射線交于點F,點C為劣弧的中點,過點C作,垂足為E,連接.(1)求證:是的切線;(2)若,求陰影部分的面積.4、如圖,已知⊙O為Rt△ABC的內(nèi)切圓,切點分別為D,E,F(xiàn),且∠C=90°,AB=13,BC=12.(1)求BF的長;(2)求⊙O的半徑r.5、如圖,為⊙的直徑,過圓上一點作⊙的切線交的延長線與點,過點作交于點,連接.(1)直線與⊙相切嗎?并說明理由;(2)若,,求的長.-參考答案-一、單選題1、A【解析】【分析】設(shè)扇形半徑為rcm,根據(jù)扇形弧長公式列方程計算即可.【詳解】設(shè)扇形半徑為rcm,則=5π,解得r=6cm.故選A.【考點】本題主要考查扇形弧長公式.2、B【解析】【分析】根據(jù)圓周角的性質(zhì)即可求解.【詳解】連接CO、DO,正五邊形內(nèi)心與相鄰兩點的夾角為72°,即∠COD=72°,同一圓中,同弧或同弦所對應(yīng)的圓周角為圓心角的一半,故∠CPD=,故選B.【考點】此題主要考查圓內(nèi)接多邊形的性質(zhì),解題的關(guān)鍵是熟知圓周角定理的應(yīng)用.3、B【解析】【分析】設(shè)圓錐的底面的半徑為rcm,則DE=2rcm,利用圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長得到2πr,解方程求出r,然后求得直徑即可.【詳解】解:設(shè)圓錐的底面的半徑為rcm,則AE=BF=6-2r根據(jù)題意得2πr,解得r=1,側(cè)面積=,底面積=所以圓錐的表面積=,故選:B.【考點】本題綜合考查有關(guān)扇形和圓錐的相關(guān)計算.解題思路:解決此類問題時要緊緊抓住兩者之間的兩個對應(yīng)關(guān)系:(1)圓錐的母線長等于側(cè)面展開圖的扇形半徑;(2)圓錐的底面周長等于側(cè)面展開圖的扇形弧長.正確對這兩個關(guān)系的記憶是解題的關(guān)鍵.4、B【解析】【分析】最大距離與最小距離的和是直徑;當點P在圓外時,點到圓的最大距離與最小距離的差是直徑,由此得解.【詳解】當點P在圓內(nèi)時,最近點的距離為5cm,最遠點的距離為11cm,則直徑是16cm,因而半徑是8cm;當點P在圓外時,最近點的距離為5cm,最遠點的距離為11cm,則直徑是6cm,因而半徑是3cm;故選B.【考點】本題考查了點與圓的位置關(guān)系,利用線段的和差得出直徑是解題關(guān)鍵,分類討論,以防遺漏.5、D【解析】【分析】設(shè)等腰直角三角形的直角邊是1,則其斜邊是.根據(jù)直角三角形的內(nèi)切圓半徑是兩條直角邊的和與斜邊的差的一半,得其內(nèi)切圓半徑是;其外接圓半徑是斜邊的一半,得其外接圓半徑是.所以它們的比為=.【詳解】解:設(shè)等腰直角三角形的直角邊是1,則其斜邊是;∵內(nèi)切圓半徑是,外接圓半徑是,∴所以它們的比為=.故選:D.【考點】本題考查三角形的內(nèi)切圓與外接圓的知識,解題的關(guān)鍵是熟記直角三角形外接圓的半徑和內(nèi)切圓的半徑公式:直角三角形的內(nèi)切圓半徑等于兩條直角邊的和與斜邊的差的一半;直角三角形外接圓的半徑是斜邊的一半.二、填空題1、150【解析】【分析】根據(jù)弧長公式計算.【詳解】根據(jù)扇形的面積公式可得:,解得r=24cm,再根據(jù)弧長公式,解得.故答案為:150.【考點】本題考查了弧長的計算及扇形面積的計算,要記熟公式:扇形的面積公式,弧長公式.2、1cm或9cm【解析】【分析】根據(jù)題意:分兩種情況進行分析,①當AB與直線位于圓心O的同側(cè)時,連接OA,OP交AB于點E;②當AB與直線m位于圓心O的異側(cè)時,連接OA’,OP交于點F;結(jié)合圖形利用圓的基本性質(zhì)及勾股定理進行求解即可得出結(jié)果.【詳解】解:根據(jù)題意:分兩種情況進行分析,①如圖所示,當AB與直線位于圓心O的同側(cè)時,連接OA,OP交AB于點E,∵,,∴,,∵直線m為圓O的切線,∴,在中,,∴,②如圖所示,當AB與直線m位于圓心O的異側(cè)時,連接OA’,OP交于點F,結(jié)合圖形及①可得,∴PF=PO+OF=5+4=9cm,故答案為:或.【考點】題目主要考查圓的基本性質(zhì)及勾股定理解直角三角形,理解題意,作出相應(yīng)圖形進行求解是解題關(guān)鍵.3、【解析】【分析】曲線是由一段段90度的弧組成的,半徑每次比前一段弧半徑+1,到,,再計算弧長.【詳解】解:由圖可知,曲線是由一段段90度的弧組成的,半徑每次比前一段弧半徑+1,,,……,,,故的半徑為,的弧長=.故答案為:.【考點】此題主要考查了弧長的計算,弧長的計算公式:,找到每段弧的半徑變化規(guī)律是解題關(guān)鍵.4、【解析】【分析】設(shè)半徑為r,則,得到,由垂徑定理得到,再根據(jù)勾股定理,即可求出答案.【詳解】解:由題意,設(shè)半徑為r,則,∵,∴,∵是的直徑,弦于點E,∴點E是CD的中點,∵,∴,在直角△OCE中,由勾股定理得,即,解得:.故答案為:.【考點】本題考查了垂徑定理,勾股定理,解題的關(guān)鍵是熟練掌握垂徑定理和勾股定理進行解題.5、35【解析】【分析】如圖(見解析),連接AD,先根據(jù)圓周角定理可得,從而可得,再根據(jù)圓周角定理可得,由此即可得.【詳解】如圖,連接AD∵AB是⊙O的直徑∴,即又由圓周角定理得:∵∴故答案為:35.【考點】本題考查了圓周角定理,熟記圓周角定理是解題關(guān)鍵.三、解答題1、證明見解析.【解析】【分析】根據(jù)AB=CD,得出,進而得出,即可解答.【詳解】證明:∵AB,CD是⊙O的兩條弦,且AB=CD,∴,∴,∴,∴AD=BC.【考點】此題考查圓心角、弧、弦的關(guān)系,關(guān)鍵是利用三者的關(guān)系解答.2、(1)證明見解析(2)①圖見解析(2)證明見解析【解析】【分析】(1)連接AC,根據(jù)等腰三角形的性質(zhì)得到∠OAC=∠OCA,∠BAC=∠BCA,得到∠OCB=∠OAB=90°,根據(jù)切線的判定定理證明;(2)①根據(jù)題意畫出圖形;②根據(jù)切線長定理得到BA=BC,得到BD是AC的垂直平分線,根據(jù)垂徑定理、圓心角和弧的關(guān)系定理得到∠AOC=120°,根據(jù)等腰三角形的判定定理證明結(jié)論.【詳解】(1)證明:如圖1,連接AC,∵OA=OC,∴∠OAC=∠OCA,∵BA=BC,∴∠BAC=∠BCA,∴∠OAC+∠BCA=∠OCA+∠BCA,即∠OCB=∠OAB=90°,∴OC⊥BC,∴BC是⊙O的切線;(2)①解:補全圖形如圖2;②證明:∵∠OAB=90°,∴BA是⊙O的切線,又BC是⊙O的切線,∴BA=BC,∵BA=BC,OA=OC,∴BD是AC的垂直平分線,∴,∵,∴=,∴∠AOC=120°,∴∠AOB=∠COB=∠COE=60°,∴∠OBF=∠F=30°,∴OF=OB.【考點】本題考查的是切線的判定、垂徑定理、切線長定理的應(yīng)用,掌握切線的判定定理、圓心角和弧之間的關(guān)系定理是解題的關(guān)鍵.3、(1)證明見解析;(2).【解析】【分析】(1)連接BF,證明BF//CE,連接OC,證明OC⊥CE即可得到結(jié)論;(2)連接OF,求出扇形FOC的面積即可得到陰影部分的面積.【詳解】(1)連接,是的直徑,,即,,連接,∵點C為劣弧的中點,,∵,∵OC是的半徑,∴CE是的切線;(2)連接,,∵點C為劣弧的中點,,,,,∴S扇形FOC=,即陰影部分的面積為:.【考點】本題主要考查了切線的判定以及扇形面積的求法,熟練掌握切線的判定定理以及扇形面積的求法是解答此題的關(guān)鍵.4、(1)BF=10;(2)r=2.【解析】【分析】(1)設(shè)BF=BD=x,利用切線長定理,構(gòu)建方程解決問題即可.(2)證明四邊形OECF是矩形,推出OE=CF即可解決問題.【詳解】解:(1)在Rt△ABC中,∵∠C=90°,AB=13,BC=12,∴AC===5,∵⊙O為Rt△ABC的內(nèi)切圓,切點分別為D,E,F(xiàn),∴BD=BF,AD=AE,CF=CE,設(shè)BF=BD=x,則AD=AE=13﹣x,CFCE=12﹣x,∵AE+EC=5,∴13﹣x+12﹣x=5,∴x=10,∴BF=10.(2)連接OE,OF,∵OE⊥AC,OF⊥BC,∴∠OEC=∠C=∠OFC=90°,∴四邊形OECF是矩形,∴OE=CF=BC﹣BF=12﹣10=2.即r=2.【考點】本題考查三角形的內(nèi)心,勾股定理,切線長定理等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論