版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
滬科版9年級下冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,為正六邊形邊上一動點,點從點出發(fā),沿六邊形的邊以1cm/s的速度按逆時針方向運動,運動到點停止.設(shè)點的運動時間為,以點、、為頂點的三角形的面積是,則下列圖像能大致反映與的函數(shù)關(guān)系的是()A. B.C. D.2、已知菱形ABCD的對角線交于原點O,點A的坐標(biāo)為,點B的坐標(biāo)為,則點D的坐標(biāo)是()A. B. C. D.3、如圖,,,,都是上的點,,垂足為,若,則的度數(shù)為()A. B. C. D.4、如圖,ABCD是正方形,△CDE繞點C逆時針方向旋轉(zhuǎn)90°后能與△CBF重合,那么△CEF是()A..等腰三角形 B.等邊三角形C..直角三角形 D..等腰直角三角形5、如圖,DC是⊙O的直徑,弦AB⊥CD于M,則下列結(jié)論不一定成立的是()A.AM=BM B.CM=DM C. D.6、在一個不透明的盒子中裝有12個白球,4個黃球,這些球除顏色外都相同.若從中隨機摸出一個球,則摸出的一個球是黃球的概率為()A. B. C. D.7、如圖,點A、B、C在上,,則的度數(shù)是()A.100° B.50° C.40° D.25°8、下表記錄了一名球員在罰球線上投籃的結(jié)果:投籃次數(shù)50100150200250400500800投中次數(shù)286387122148242301480投中頻率0.5600.6300.5800.6100.5920.6050.6020.600根據(jù)頻率的穩(wěn)定性,估計這名球員投籃一次投中的概率約是()A.0.560 B.0.580 C.0.600 D.0.620第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、兩直角邊分別為6、8,那么的內(nèi)接圓的半徑為____________.2、如圖,在⊙O中,A,B,C是⊙O上三點,如果∠AOB=70o,那么∠C的度數(shù)為_______.3、如圖,正方形ABCD的邊長為1,⊙O經(jīng)過點C,CM為⊙O的直徑,且CM=1.過點M作⊙O的切線分別交邊AB,AD于點G,H.BD與CG,CH分別交于點E,F(xiàn),⊙O繞點C在平面內(nèi)旋轉(zhuǎn)(始終保持圓心O在正方形ABCD內(nèi)部).給出下列四個結(jié)論:①HD=2BG;②∠GCH=45°;③H,F(xiàn),E,G四點在同一個圓上;④四邊形CGAH面積的最大值為2.其中正確的結(jié)論有_____(填寫所有正確結(jié)論的序號).4、現(xiàn)有A、B兩個不透明的袋子,各裝有三個小球,A袋中的三個小球上分別標(biāo)記數(shù)字1,2,3;B袋中的三個小球上分別標(biāo)記數(shù)字2,3,4.這六個小球除標(biāo)記的數(shù)字外,其余完全相同.將A、B兩個袋子中的小球搖勻,然后從A、B袋中各隨機摸出一個小球,則摸出的這兩個小球標(biāo)記的數(shù)字之和為5的概率為______.5、如圖,已知,外心為,,,分別以,為腰向形外作等腰直角三角形與,連接,交于點,則的最小值是______.6、背面完全相同的四張卡片,正面分別寫著數(shù)字-4,-1,2,3,背面朝上并洗勻,從中隨機抽取一張,將卡片上的數(shù)字記為,再從余下的卡片中隨機抽取一張,將卡片上的數(shù)字記為,則點在第四象限的概率為__________.7、如圖,將半徑為的圓形紙片沿一條弦折疊,折疊后弧的中點與圓心重疊,則弦的長度為________.三、解答題(7小題,每小題0分,共計0分)1、在平面直角坐標(biāo)系中,⊙O的半徑為1,對于直線l和線段AB,給出如下定義:若將線段AB關(guān)于直線l對稱,可以得到⊙O的弦A′B′(A′,B′分別為A,B的對應(yīng)點),則稱線段AB是⊙O的關(guān)于直線l對稱的“關(guān)聯(lián)線段”.例如:在圖1中,線段是⊙O的關(guān)于直線l對稱的“關(guān)聯(lián)線段”.(1)如圖2,的橫、縱坐標(biāo)都是整數(shù).①在線段中,⊙O的關(guān)于直線y=x+2對稱的“關(guān)聯(lián)線段”是_______;②若線段中,存在⊙O的關(guān)于直線y=-x+m對稱的“關(guān)聯(lián)線段”,則=;(2)已知直線交x軸于點C,在△ABC中,AC=3,AB=1,若線段AB是⊙O的關(guān)于直線對稱的“關(guān)聯(lián)線段”,直接寫出b的最大值和最小值,以及相應(yīng)的BC長.2、在太原市創(chuàng)建國家文明城市的過程中,東東和南南積極參加志愿者活動,有下列三個志愿者工作崗位供他們選擇:(每個工作崗位僅能讓一個人工作)①2個清理類崗位:清理花壇衛(wèi)生死角;清理樓道雜物(分別用,表示);②1個宣傳類崗位:垃圾分類知識宣傳(用表示).(1)東東從三個崗位中隨機選取一個報名,恰好選擇清理類崗位的概率為________.(2)若東東和南南各隨機從三個崗位中選取一個報名,請你利用畫樹狀圖法或列表法求出他們恰好都選擇同一類崗位的概率.3、如圖,四邊形ABCD內(nèi)接于⊙O,AC是直徑,點C是劣弧BD的中點.(1)求證:.(2)若,,求BD.4、如圖,已知為的直徑,切于點C,交的延長線于點D,且.(1)求的大小;(2)若,求的長.5、隨著“新冠肺炎”疫情防控形勢日漸好轉(zhuǎn),各地開始復(fù)工復(fù)學(xué),某校復(fù)學(xué)后成立“防疫志愿者服務(wù)隊”,設(shè)立四個“服務(wù)監(jiān)督崗”:①洗手監(jiān)督崗,②戴口罩監(jiān)督崗,③就餐監(jiān)督崗,④操場活動監(jiān)督崗.李老師和王老師報名參加了志愿者服務(wù)工作,學(xué)校將報名的志愿者隨機分配到四個監(jiān)督崗.(1)王老師被分配到“就餐監(jiān)督崗”的概率為;(2)用列表法或畫樹狀圖法,求李老師和王老師被分配到同一個監(jiān)督崗的概率.6、如圖,是的弦,是上的一點,且,于點,交于點.若的半徑為6,求弦的長.7、如圖,四邊形ABCD是正方形.△ABE是等邊三角形,M為對角線BD(不含B,D點)上任意一點,將線段BM繞點B逆時針旋轉(zhuǎn)60°得到BN,連接EN,AM、CM.請判斷線段AM和線段EN的數(shù)量關(guān)系,并說明理由.-參考答案-一、單選題1、A【分析】設(shè)正六邊形的邊長為1,當(dāng)在上時,過作于而求解此時的函數(shù)解析式,當(dāng)在上時,延長交于點過作于并求解此時的函數(shù)解析式,當(dāng)在上時,連接并求解此時的函數(shù)解析式,由正六邊形的對稱性可得:在上的圖象與在上的圖象是對稱的,在上的圖象與在上的圖象是對稱的,從而可得答案.【詳解】解:設(shè)正六邊形的邊長為1,當(dāng)在上時,過作于而當(dāng)在上時,延長交于點過作于同理:則為等邊三角形,當(dāng)在上時,連接由正六邊形的性質(zhì)可得:由正六邊形的對稱性可得:而由正六邊形的對稱性可得:在上的圖象與在上的圖象是對稱的,在上的圖象與在上的圖象是對稱的,所以符合題意的是A,故選A【點睛】本題考查的是動點問題的函數(shù)圖象,銳角三角函數(shù)的應(yīng)用,正多邊形的性質(zhì),清晰的分類討論是解本題的關(guān)鍵.2、A【分析】根據(jù)菱形是中心對稱圖形,菱形ABCD的對角線交于原點O,則點與點關(guān)于原點中心對稱,根據(jù)中心對稱的點的坐標(biāo)特征進行求解即可【詳解】解:∵菱形是中心對稱圖形,菱形ABCD的對角線交于原點O,∴與點關(guān)于原點中心對稱,點B的坐標(biāo)為,點D的坐標(biāo)是故選A【點睛】本題考查了菱形的性質(zhì),求關(guān)于原點中心對稱的點的坐標(biāo),掌握菱形的性質(zhì)是解題的關(guān)鍵.3、B【分析】連接OC.根據(jù)確定,,進而計算出,根據(jù)圓心角的性質(zhì)求出,最后根據(jù)圓周角的性質(zhì)即可求出.【詳解】解:如下圖所示,連接OC.∵,∴,.∴.∵.∴.∴∵和分別是所對的圓周角和圓心角,∴.故選:B.【點睛】本題考查垂徑定理,圓心角的性質(zhì),圓周角的性質(zhì),綜合應(yīng)用這些知識點是解題關(guān)鍵.4、D【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)推出相等的邊CE=CF,旋轉(zhuǎn)角推出∠ECF=90°,即可得到△CEF為等腰直角三角形.【詳解】解:∵△CDE繞點C逆時針方向旋轉(zhuǎn)90°后能與△CBF重合,∴∠ECF=90°,CE=CF,∴△CEF是等腰直角三角形,故選:D.【點睛】本題主要考查旋轉(zhuǎn)的性質(zhì),掌握圖形旋轉(zhuǎn)前后的大小和形狀不變是解決問題的關(guān)鍵.5、B【分析】根據(jù)垂徑定理“垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧”進行判斷即可得.【詳解】解:∵弦AB⊥CD,CD過圓心O,∴AM=BM,,,即選項A、C、D選項說法正確,不符合題意,當(dāng)根據(jù)已知條件得CM和DM不一定相等,故選B.【點睛】本題考查了垂徑定理,解題的關(guān)鍵是掌握垂徑定理.6、C【分析】根據(jù)概率的求法,找準兩點:①全部等可能情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【詳解】解:一個不透明的盒子中裝有12個白球,4個黃球,從中隨機摸出一個球,所有等可能的情況16種,其中摸出的一個球是黃球的情況有4種,∴隨機抽取一個球是黃球的概率是.故選C.【點睛】本題主要考查了概率公式的應(yīng)用,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.得到所有符合條件的情況數(shù)是解決本題的關(guān)鍵.7、C【分析】先根據(jù)圓周角定理求出∠AOB的度數(shù),再由等腰三角形的性質(zhì)即可得出結(jié)論.【詳解】∵∠ACB=50°,∴∠AOB=100°,∵OA=OB,∴∠OAB=∠OBA=40°,故選:C.【點睛】本題考查的是圓周角定理,即在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.8、C【分析】根據(jù)頻率估計概率的方法并結(jié)合表格數(shù)據(jù)即可解答.【詳解】解:∵由頻率分布表可知,隨著投籃次數(shù)越來越大時,頻率逐漸穩(wěn)定到常數(shù)0.600附近,∴這名球員在罰球線上投籃一次,投中的概率為0.600.故選:C.【點睛】本題主要考查了利用頻率估計概率,概率的得出是在大量實驗的基礎(chǔ)上得出的,不能單純的依靠幾次決定.二、填空題1、5【分析】直角三角形外接圓的直徑是斜邊的長.【詳解】解:由勾股定理得:AB==10,∵∠ACB=90°,∴AB是⊙O的直徑,∴這個三角形的外接圓直徑是10,∴這個三角形的外接圓半徑長為5,故答案為:5.【點睛】本題考查了三角形的外接圓與外心,知道直角三角形外接圓的直徑是斜邊的長是關(guān)鍵;外心是三邊垂直平分線的交點,外心到三個頂點的距離相等.2、35°【分析】利用圓周角定理求出所求角度數(shù)即可.【詳解】解:與都對,且,,故答案為:.【點睛】本題考查了圓周角定理,解題的關(guān)鍵是熟練掌握圓周角定理.3、②③④【分析】根據(jù)切線的性質(zhì),正方形的性質(zhì),通過三角形全等,證明HD=HM,∠HCM=∠HCD,GM=GB,∠GCB=∠GCM,可判斷前兩個結(jié)論;運用對角互補的四邊形內(nèi)接于圓,證明∠GHF+∠GEF=180°,取GH的中點P,連接PA,則PA+PC≥AC,當(dāng)PC最大時,PA最小,根據(jù)直徑是圓中最大的弦,故PC=1時,PA最小,計算即可.【詳解】∵GH是⊙O的切線,M為切點,且CM是⊙O的直徑,∴∠CMH=90°,∵四邊形ABCD是正方形,∴∠CMH=∠CDH=90°,∵CM=CD,CH=CH,∴△CMH≌△CDH,∴HD=HM,∠HCM=∠HCD,同理可證,∴GM=GB,∠GCB=∠GCM,∴GB+DH=GH,無法確定HD=2BG,故①錯誤;∵∠HCM+∠HCD+∠GCB+∠GCM=90°,∴2∠HCM+2∠GCM=90°,∴∠HCM+∠GCM=45°,即∠GCH=45°,故②正確;∵△CMH≌△CDH,BD是正方形的對角線,∴∠GHF=∠DHF,∠GCH=∠HDF=45°,∴∠GHF+∠GEF=∠DHF+∠GCH+∠EFC=∠DHF+∠HDF+∠HFD=180°,根據(jù)對角互補的四邊形內(nèi)接于圓,∴H,F(xiàn),E,G四點在同一個圓上,故③正確;∵正方形ABCD的邊長為1,∴=1=,∠GAH=90°,AC=取GH的中點P,連接PA,∴GH=2PA,∴=,∴當(dāng)PA取最小值時,有最大值,連接PC,AC,則PA+PC≥AC,∴PA≥AC-PC,∴當(dāng)PC最大時,PA最小,∵直徑是圓中最大的弦,∴PC=1時,PA最小,∴當(dāng)A,P,C三點共線時,且PC最大時,PA最小,∴PA=-1,∴最大值為:1-(-1)=2-,∴四邊形CGAH面積的最大值為2,∴④正確;故答案為:②③④.【點睛】本題考查了切線的性質(zhì),直徑是最大的弦,三角形的全等,直角三角形斜邊上的中線,四點共圓,正方形的性質(zhì),熟練掌握圓的性質(zhì),靈活運用直角三角形的性質(zhì),線段最短原理是解題的關(guān)鍵.4、【分析】先列表,再利用表格信息得到所有的等可能的結(jié)果數(shù)與符合條件的結(jié)果數(shù),再利用概率公式進行計算即可.【詳解】解:列表如下:12321+2=32+2=42+3=533+1=43+2=53+3=644+1=54+2=64+3=7可得:所有的等可能的結(jié)果數(shù)有9種,而和為5的結(jié)果數(shù)有3種,摸出的這兩個小球標(biāo)記的數(shù)字之和為5的概率為:故答案為:【點睛】本題考查的是利用列表法或畫樹狀圖的方法求解簡單隨機事件的概率,掌握“列表或畫樹狀圖的方法”是解本題的關(guān)鍵.5、【分析】由與是等腰直角三角形,得到,,根據(jù)全等三角形的性質(zhì)得到,求得在以為直徑的圓上,由的外心為,,得到,如圖,當(dāng)時,的值最小,解直角三角形即可得到結(jié)論.【詳解】解:與是等腰直角三角形,,,在與中,,≌,,,,在以為直徑的圓上,的外心為,,,如圖,當(dāng)時,的值最小,,,,,.則的最小值是,故答案為:.【點睛】本題考查了三角形的外接圓與外心,全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),正確的作出輔助線是解題的關(guān)鍵.6、【分析】第四象限點的特征是,所以當(dāng)橫坐標(biāo)只能為2或3,縱坐標(biāo)只能是或,畫出列表圖或樹狀圖,算出滿足條件的情況,進一步求得概率即可.【詳解】如下圖:-4-123-4-123∵第四象限點的坐標(biāo)特征是,∴滿足條件的點分別是:,共4種情況,又∵從列表圖知,共有12種等可能性結(jié)果,∴點在第四象限的概率為.故答案為:【點睛】本題主要考察概率的求解,要熟悉樹狀圖或列表圖的要點是解題關(guān)鍵.7、【分析】連接OC交AB于點D,再連接OA.根據(jù)軸對稱的性質(zhì)確定,OD=CD;再根據(jù)垂徑定理確定AD=BD;再根據(jù)勾股定理求出AD的長度,進而即可求出AB的長度.【詳解】解:如下圖所示,連接OC交AB于點D,再連接OA.∵折疊后弧的中點與圓心重疊,∴,OD=CD.∴AD=BD.∵圓形紙片的半徑為10cm,∴OA=OC=10cm.∴OD=5cm.∴cm.∴BD=cm.∴cm.故答案為:.【點睛】本題考查軸對稱的性質(zhì),垂徑定理,勾股定理,綜合應(yīng)用這些知識點是解題關(guān)鍵.三、解答題1、(1)①A1B1;②2或3;(2)b的最大值為,此時BC=;b的最小值為,此時BC=【分析】(1)①根據(jù)題意作出圖象即可解答;②根據(jù)“關(guān)聯(lián)線段”的定義,可確定線段A2B2存在“關(guān)聯(lián)線段”,再分情況解答即可;(2)設(shè)與AB對應(yīng)的“關(guān)聯(lián)線段”是A’B’,由題意可知:當(dāng)點A’(1,0)時,b最大,當(dāng)點A’(-1,0)時,b最?。蝗缓蠓謩e畫出圖形求解即可;【詳解】解:(1)①作出各點關(guān)于直線y=x+2的對稱點,如圖所示,只有A1B1符合題意;故答案為:A1B1;②由于直線A1B1與直線y=-x+m垂直,故A1B1不是⊙O的關(guān)于直線y=-x+m對稱的“關(guān)聯(lián)線段”;由于線段A3B3=,而圓O的最大弦長直徑=2,故A3B3也不是⊙O的關(guān)于直線y=-x+m對稱的“關(guān)聯(lián)線段”;直線A2B2的解析式是y=-x+5,且,故A2B2是⊙O的關(guān)于直線y=x+2對稱的“關(guān)聯(lián)線段”;當(dāng)A2B2是⊙O的關(guān)于直線y=-x+m對稱的“關(guān)聯(lián)線段”,且對應(yīng)兩個端點分別是(0,1)與(1,0)時,m=3,當(dāng)A2B2是⊙O的關(guān)于直線y=-x+m對稱的“關(guān)聯(lián)線段”,且對應(yīng)兩個端點分別是(0,-1)與(-1,0)時,m=2,故答案為:2或3.(2)設(shè)與AB對應(yīng)的“關(guān)聯(lián)線段”是A’B’,由題意可知:當(dāng)點A’(1,0)時,b最大,當(dāng)點A’(-1,0)時,b最??;當(dāng)點A’(1,0)時,如圖,連接OB’,CB’,作B’M⊥x軸于點M,∴CA’=CA=3,∴點C坐標(biāo)為(4,0),代入直線,得b=;∵A’B’=OA’=OB’=1,∴△OA’B’是等邊三角形,∴OM=,,在直角三角形CB’M中,CB'=,即;當(dāng)點A’(-1,0)時,如圖,連接OB’,CB’,作B’M⊥x軸于點M,∴CA’=CA=3,∴點C坐標(biāo)為(2,0),代入直線,得b=;∵A’B’=OA’=OB’=1,∴△OA’B’是等邊三角形,∴OM=,,在直角三角形CB’M中,CB'=;即綜上,b的最大值為,此時BC=;b的最小值為,此時BC=.【點睛】本題是新定義綜合題,主要考查了一次函數(shù)圖象上點的坐標(biāo)特點、圓的有關(guān)知識、等邊三角形的判定和性質(zhì)、勾股定理、軸對稱的性質(zhì)等知識,正確理解新定義的含義、靈活應(yīng)用數(shù)形結(jié)合思想是解題的關(guān)鍵.2、(1);(2)【分析】(1)利用概率公式,即可求解;(2)根據(jù)題意畫出樹狀圖,得到共有6種等可能的情況數(shù),其中他們恰好都選擇同一類崗位的有2種,再利用概率公式,即可求解【詳解】解:東東從三個崗位中隨機選取一個報名,恰好選擇清理類崗位的概率為.(2)根據(jù)題意畫圖如下:共有6種等可能的情況數(shù),其中他們恰好都選擇同一類崗位的有2種,則他們恰好都選擇同一類崗位的概率是【點睛】本題主要考查了利用畫樹狀圖法或列表法求概率,熟練掌握隨機事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)除以所有可能出現(xiàn)的結(jié)果數(shù);P(必然事件)=1;P(不可能事件)=0是解題的關(guān)鍵.3、(1)見詳解;(2)【分析】(1)由題意及垂徑定理可知AC垂直平分BD,進而問題可求解;(2)由題意易得,然后由(1)可知△ABD是等邊三角形,進而問題可求解.【詳解】(1)證明:∵AC是直徑,點C是劣弧BD的中點,∴AC垂直平分BD,∴;(2)解:∵,,∴,∵,∴△ABD是等邊三角形,∵,∴.【點睛】本題主要考查垂徑定理、等邊三角形的性質(zhì)與判定及圓周角定理,熟練掌握垂徑定理、等邊三角形的性質(zhì)與判定及圓周角定理是解題的關(guān)鍵.4、(1)45°(2)【分析】(1)連接OC,根據(jù)切線的性質(zhì)得到OC⊥CD,根據(jù)圓周角定理得到∠DOC=2∠CAD,進而證明∠D=∠DOC,根據(jù)等腰直角三角形的性質(zhì)求出∠D的度數(shù);(2)根據(jù)等腰三角形的性質(zhì)求出OC,根據(jù)弧長公式計算即可.(1)連接.∵,∴,即.∵,∴.∵是⊙的切線,∴,即.∴.∴.∴.(2)∵,,∴.∵,∴.∴的長.【點睛】本題考查的是切線的性質(zhì)、圓周角定理、弧長的計算,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關(guān)鍵.5、(1);(2)李老師和王老師被分配到同一個監(jiān)督崗的概率為.【分析】(1)直接利用概率公式計算;(2)畫樹狀圖展示所有16種等可能的結(jié)果,找出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高校學(xué)生資助政策的精準識別機制-基于家庭經(jīng)濟困難學(xué)生認定指導(dǎo)意見
- 2025四川綿陽市鹽亭發(fā)展投資集團有限公司招聘職能部門及所屬子公司人員7人考試備考題庫及答案解析
- 2026遼寧本溪市教育系統(tǒng)冬季名校優(yōu)生引進急需緊缺人才4人(本溪市第一中學(xué))考試備考題庫及答案解析
- 2025重慶聯(lián)交所集團所屬單位招聘1人模擬筆試試題及答案解析
- 《平行四邊形面積》數(shù)學(xué)課件教案
- 2025寧夏沙湖旅游股份有限公司招聘6人(第二批)參考考試題庫及答案解析
- 2025四川港榮數(shù)字科技有限公司第一批項目制員工招聘3人模擬筆試試題及答案解析
- 2025廣東東莞市南城第一初級中學(xué)招聘1人參考筆試題庫附答案解析
- 2025年西安高新區(qū)第十一初級中學(xué)教師招聘參考考試題庫及答案解析
- 2025青海西寧湟源縣青少年活動中心教師招聘1人參考考試題庫及答案解析
- 科研誠信和倫理管理制度(3篇)
- 肝硬化的康復(fù)護理
- 2025年淮北市交通投資控股集團有限公司及下屬子公司面向社會招聘工作人員4名筆試考試參考試題及答案解析
- 四川省涼山彝族自治州2024-2025學(xué)年七年級上學(xué)期語文期末試卷(含答案)
- 基礎(chǔ)染料知識培訓(xùn)課件
- GB/T 33084-2016大型合金結(jié)構(gòu)鋼鍛件技術(shù)條件
- 關(guān)節(jié)鏡肘關(guān)節(jié)檢查法
- 生化講座犬貓血液常規(guī)檢驗項目及正常值
- 山茶油知識普及課件
- 心腦血管疾病的預(yù)防及治療課件
- (完整版)新版新概念英語第一冊課文PDF
評論
0/150
提交評論