版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數(shù)學上冊《軸對稱》專題攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在中,,,,,則的長為(
).A. B. C. D.2、若點P(m﹣1,5)與點Q(3,2﹣n)關于y軸對稱,則m+n的值是()A.﹣5 B.1 C.5 D.113、如圖,將?ABCD沿對角線AC折疊,使點B落在B′處,若∠1=∠2=44°,則∠B為()A.66° B.104° C.114° D.124°4、如圖,在Rt△ABC中,∠ABC=90°,分別以點A和點B為圓心,大于AB的長為半徑作弧相交于點D和點E,直線DE交AC于點F,交AB于點G,連接BF,若BF=3,AG=2,則BC=()A.5 B.4 C.2 D.25、下列圖形中,是軸對稱圖形的是()A. B.C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在△ABC中,AD⊥BC,垂足為點D,CE是邊AB上的中線,如果CD=BE,∠B=40°,那么∠BCE=_____度.2、如圖,在四邊形中,,,,點為邊上一點,連接.,與交于點,且,若,,則的長為_______________.3、如圖,為內(nèi)部一條射線,點為射線上一點,,點分別為邊上動點,則周長的最小值為______.4、如圖,分別以的邊,所在直線為稱軸作的對稱圖形和,,線段與相交于點O,連接、、、.有如下結論:①;②;③平分:④;③.其中正確的結論個數(shù)為______.5、如圖,在△ABC中,AB=AC,外角∠ACD=110°,則∠A=__________.三、解答題(5小題,每小題10分,共計50分)1、如圖,在ABC中,AB=AC=2,∠B=40°,點D在線段BC上運動(點D不與點B、C重合),連接AD,作∠ADE=40°,DE交線段AC于點E.(1)當∠BDA=115°時,∠EDC=______°,∠AED=______°;(2)線段DC的長度為何值時,△ABD≌△DCE,請說明理由;(3)在點D的運動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,求∠BDA的度數(shù);若不可以,請說明理由.2、(1)已知等腰三角形的兩邊長分別為9cm和15cm,則周長為多少?(2)已知等腰三角形的兩邊長分別為6cm和15cm,則周長為多少?3、如圖,在中,,,求和的度數(shù).4、如圖,在等邊三角形ABC中,點D,E分別在邊BC,AC上,且DE∥AB,過點E作EF⊥DE,交BC的延長線于點F.(1)求∠F的度數(shù);(2)若CD=2,求DF的長.5、已知:如圖,為銳角,點A在射線上.求作:射線,使得.小靜的作圖思路如下:①以點A為圓心,為半徑作弧,交射線于點B,連接;②作的角平分線.射線即為所求的射線.(1)使用直尺和圓規(guī),按照小靜的作圖思路補全圖形(保留作圖痕跡);(2)完成下面的證明.證明:,(__________).是的一個外角,___________________..平分,..(__________).-參考答案-一、單選題1、B【解析】【分析】根據(jù)等腰三角形性質求出∠B,求出∠BAC,求出∠DAC=∠C,求出AD=DC=4cm,根據(jù)含30度角的直角三角形性質求出BD,即可求出答案.【詳解】∵AB=AC,∠C=30°,∴∠B=30°,∵AB⊥AD,AD=4cm,∴BD=8cm,∵∠ADB=60°∠C=30°,∴∠DAC=∠C=30°,∴CD=AD=4cm,∴BC=BD+CD=8+4=12cm.故選B.【考點】本題考查了等腰三角形的性質,含30度角的直角三角形性質,三角形的內(nèi)角和定理的應用,解此題的關鍵是求出BD和DC的長.2、A【解析】【分析】根據(jù)關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù),求出m、n,問題得解.【詳解】解:由題意得:m﹣1=﹣3,2﹣n=5,解得:m=﹣2,n=﹣3,則m+n=﹣2﹣3=﹣5,故選:A【考點】本題考查了關于y軸的對稱的點的坐標,解決本題的關鍵是掌握好對稱點的坐標規(guī)律:關于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù);關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù).3、C【解析】【分析】根據(jù)平行四邊形性質和折疊性質得∠BAC=∠ACD=∠B′AC=∠1,再根據(jù)三角形內(nèi)角和定理可得.【詳解】∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠ACD=∠BAC,由折疊的性質得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°,故選C.【考點】本題考查了平行四邊形的性質、折疊的性質、三角形的外角性質以及三角形內(nèi)角和定理;熟練掌握平行四邊形的性質,求出∠BAC的度數(shù)是解決問題的關鍵.4、C【解析】【分析】利用線段垂直平分線的性質得到,,再證明,利用勾股定理即可解決問題.【詳解】解:由作圖方法得垂直平分,∴,,∴,∵,∴,,∴,∴,∴,∴,,∴.故選:.【考點】本題考查了作圖-基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線)方法是解題關鍵,同時還考查了線段垂直平分線的性質.5、C【解析】【分析】依據(jù)軸對稱圖形的定義逐項分析即可得出C選項正確.【詳解】解:因為選項A、B、D中的圖形都不能通過沿某條直線折疊直線兩旁的部分能達到完全重合,所以它們不符合軸對稱圖形的定義和要求,因此選項A、B、D中的圖形都不是軸對稱圖形,而C選項中的圖形沿上下邊中點的連線折疊后,折痕的左右兩邊能完全重合,因此符合軸對稱圖形的定義和要求,因此C選項中的圖形是軸對稱圖形,故選:C.【考點】本題主要考查了軸對稱圖形的定義,學生需要掌握軸對稱圖形的定義內(nèi)容,理解軸對稱圖形的特征,方能解決問題找對圖形,同時也考查了學生對圖形的感知力和空間想象的能力.二、填空題1、20.【解析】【分析】連接ED,再加上AD⊥BC,利用直角三角形斜邊上的中線等于斜邊的一半,很容易可以推出△ECD為等腰三角形,根據(jù)等腰三角形的性質:等邊對等角,以及外角性質即可求出∠BCE的度數(shù).【詳解】如圖,連接ED,∵AD⊥BC,∴△ABD是直角三角形,∵CE是邊AB上的中線,∴ED=AB=BE,∴∠EDB=∠B=40°,又∵CD=BE,∴ED=CD,∴∠DEC=∠DCE,∵∠EDB是△DEC的外角,∴∠EDB=∠DEC+∠DCE=2∠DCE=40°,∴∠DCE=∠EDB=20°,∵∠DCE即∠BCE,∴∠BCE=20°.【考點】本題考查的是直角三角形的性質,等腰三角形的性質,掌握直角三角形中,斜邊上的中線等于斜邊的一半是解題的關鍵.2、【解析】【分析】由,知點A,C都在BD的垂直平分線上,因此,可連接交于點,易證是等邊三角形,是等邊三角形,根據(jù)等邊三角形的性質對三角形中的線段進行等量轉換即可求出OB,OC的長度,應用勾股定理可求解.【詳解】解:如圖,連接交于點∵,,,∴垂直平分,是等邊三角形∴,,∵∴,∴∴∴∵∴是等邊三角形∴∴,∴∴【考點】本題主要考查了等邊三角形的判定與性質、勾股定理,綜合運用等邊三角形的判定與性質進行線段間等量關系的轉換是解題的關鍵.3、6【解析】【分析】作點P關于OA的對稱點P1,點P關于OB的對稱點P2,連結P1P2,與OA的交點即為點M,與OB的交點即為點N,則此時M、N符合題意,求出線段P1P2的長即可.【詳解】解:作點P關于OA的對稱點P1,點P關于OB的對稱點P2,連結P1P2與OA的交點即為點M,與OB的交點即為點N,△PMN的最小周長為PM+MN+PN=P1M+MN+P2N=P1P2,即為線段P1P2的長,連結OP1、OP2,則OP1=OP2=OP=6,又∵∠P1OP2=2∠AOB=60°,∴△OP1P2是等邊三角形,∴P1P2=OP1=6,即△PMN的周長的最小值是6.故答案是:6.【考點】本題考查了等邊三角形的性質和判定,軸對稱?最短路線問題的應用,關鍵是確定M、N的位置.4、3【解析】【分析】根據(jù)軸對稱的性質以及全等三角形的性質一一判斷即可.【詳解】解:和是的軸對稱圖形,,,,,故①正確;,由翻折的性質得,,又,,故②正確;,,,邊上的高與邊上的高相等,即點到兩邊的距離相等,平分,故③正確;只有當時,,才有,故④錯誤;在和中,,,,,,故⑤錯誤;綜上所述,結論正確的是①②③.故答案為:3.【考點】本題考查軸對稱的性質,全等三角形的性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.5、40°【解析】【分析】由∠ACD=110,可知∠ACB=70;由AB=AC,可知∠B=∠ACB=70;利用三角形外角的性質可求出∠A.【詳解】解:∵∠ACD=110,∴∠ACB=180-110=70;∵AB=AC,∴∠B=∠ACB=70;∴∠A=∠ACD-∠B=110-70=40.故答案為40.【考點】本題考查了等邊對等角和三角形外角的性質.三、解答題1、(1)25°,65°;(2)2,理由見詳解;(3)可以,110°或80°.【解析】【分析】(1)利用鄰補角的性質和三角形內(nèi)角和定理解題;(2)當DC=2時,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE.(3)當∠BDA的度數(shù)為110°或80°時,△ADE的形狀是等腰三角形.【詳解】解:(1)∵∠B=40°,∠ADB=115°,∴∠BAD=180°-∠B-∠ADB=180°-115°-40°=25°,∵AB=AC,∴∠C=∠B=40°,∵∠EDC=180°-∠ADB-∠ADE=25°,∴∠DEC=180°-∠EDC-∠C=115°,∴∠AED=180°-∠DEC=180°-115°=65°;(2)當DC=2時,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,在△ABD和△DCE中,∴△ABD≌△DCE(AAS);(3)當∠BDA的度數(shù)為110°或80°時,△ADE的形狀是等腰三角形,∵∠BDA=110°時,∴∠ADC=70°,∵∠C=40°,∴∠DAC=70°,∴△ADE的形狀是等腰三角形;∵當∠BDA的度數(shù)為80°時,∴∠ADC=100°,∵∠C=40°,∴∠DAC=40°,∴△ADE的形狀是等腰三角形.【考點】本題主要考查學生對等腰三角形的判定與性質,全等三角形的判定與性質,三角形外角的性質等知識點的理解和掌握,此題涉及到的知識點較多,綜合性較強,但難度不大,屬于基礎題.2、(1)33cm或39cm;(2)36cm.【解析】【分析】(1)根據(jù)等腰三角形的特點與三角形的三邊關系求出第三條邊,故可求解;(2)根據(jù)等腰三角形的特點與三角形的三邊關系求出第三條邊,故可求解.【詳解】(1)已知等腰三角形的兩邊長分別為9cm和15cm,那么三邊的長可能是9cm、9cm、15cm或9cm、15cm、15cm。故其周長是9+9+15=33cm或9+15+15=39cm;(2)已知等腰三角形的兩邊長分別為6cm和15cm,那么三邊的長可能是6cm、6cm、15cm或6cm、15cm、15cm.其中6cm、6cm、15cm不能組成一個三角形,故其周長是6+15+15=36cm.【考點】此題主要考查學生對等腰三角形的性質及三角形的三邊關系的掌握情況.已知沒有明確腰和底邊的題目一定要想到兩種情況,分類進行討論,還應驗證各種情況是否能構成三角形進行解答,這點非常重要,也是解題的關鍵.3、65°;32.5°【解析】【分析】由題意,在△ABC中,AB=AD=DC,∠BAD=50°,根據(jù)等腰三角形的性質可以求出底角,再根據(jù)三角形內(nèi)角與外角的關系即可求出內(nèi)角∠C.【詳解】∵AB=AD,∴△ABD是等腰三角形∵∠BAD+∠B+∠ADB=180°∴∠B=∠ADB=×(180°-∠BAD)=×(180°﹣50°)=65°∵AD=DC,∴∠C=∠DAC∵∠ADB=∠C+∠DAC=2∠C∴∠C=∠ADB=×65°=【考點】本題考查等腰三角形的性質,三角形的內(nèi)角和定理及內(nèi)角與外角的關系.利用三角形的內(nèi)角求角的度數(shù)是一種常用的方法,要熟練掌握.4、(1)30°;(2)4.【解析】【分析】(1)根據(jù)平行線的性質可得∠EDC=∠B=60°,根據(jù)三角形內(nèi)角和定理即可求解;(2)易證△EDC是等邊三角形,再根據(jù)直角三角形的性質即可求解.【詳解】(1)∵△ABC是等邊三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等邊三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【考點】本題主要考查了運用三角形的內(nèi)角和算出角度,并能判定等邊三角形,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年廣西賀州市富川瑤族自治縣自然資源局招聘2人模擬筆試試題及答案解析
- 2026昆玉職業(yè)技術學院引進高層次人才(28人)參考考試試題及答案解析
- 2025漳州城投地產(chǎn)集團有限公司市場化用工人員招聘模擬筆試試題及答案解析
- 深度解析(2026)《GBT 26492.3-2011變形鋁及鋁合金鑄錠及加工產(chǎn)品缺陷 第3部分:板、帶缺陷》
- 深度解析(2026)《GBT 26056-2010真空熱壓鈹材》(2026年)深度解析
- 2026年寧波鎮(zhèn)海中學嵊州分校招聘事業(yè)編制教師2人考試備考題庫及答案解析
- 深度解析(2026)《GBT 25749.1-2010機械安全 空氣傳播的有害物質排放的評估 第1部分:試驗方法的選擇》(2026年)深度解析
- 2025泰安新泰市泰山電力學校教師招聘參考筆試題庫附答案解析
- 2025山東鋁業(yè)有限公司面向中鋁股份內(nèi)部招聘考試備考題庫及答案解析
- 2026福建三明市建寧縣公開招聘緊缺急需專業(yè)教師19人備考考試試題及答案解析
- 藥品生產(chǎn)企業(yè)銷售模式、組織架構及崗位設置-藥品生產(chǎn)企業(yè)銷售部門組
- 鄉(xiāng)村振興背景下農(nóng)村集體經(jīng)濟發(fā)展問題
- 頜下腺腫物的護理
- 小型水工建筑物設計基本知識-水工建筑物的安全加高
- 新視野大學英語(第四版)讀寫教程1(思政智慧版) 課件 Unit 4 Social media matters Section A
- 燃氣報警施工方案
- 保安員基本條件及行為規(guī)范
- 家裝設計的職責【部門職能】1、接待裝-112702874
- 艾堅蒙(安慶)科技發(fā)展有限公司年產(chǎn)4000噸光固化引發(fā)劑系列產(chǎn)品項目環(huán)境影響報告書
- GB/T 23794-2023企業(yè)信用評價指標
- GB/T 4457.2-2003技術制圖圖樣畫法指引線和基準線的基本規(guī)定
評論
0/150
提交評論