中考數(shù)學(xué)總復(fù)習(xí)《 圓》真題及一套參考答案詳解_第1頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》真題及一套參考答案詳解_第2頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》真題及一套參考答案詳解_第3頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》真題及一套參考答案詳解_第4頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》真題及一套參考答案詳解_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

中考數(shù)學(xué)總復(fù)習(xí)《圓》真題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、若某圓錐的側(cè)面展開圖是一個(gè)半圓,已知圓錐的底面半徑為r,那么圓錐的高為(

)A. B. C. D.2、已知扇形的圓心角為,半徑為,則弧長為(

)A. B. C. D.3、如圖,點(diǎn)A,B,C,D,E是⊙O上5個(gè)點(diǎn),若AB=AO=2,將弧CD沿弦CD翻折,使其恰好經(jīng)過點(diǎn)O,此時(shí),圖中陰影部分恰好形成一個(gè)“鉆戒型”的軸對稱圖形,則“鉆戒型”(陰影部分)的面積為()A. B.4π﹣3 C.4π﹣4 D.4、如圖,⊙O的直徑垂直于弦,垂足為.若,,則的長是(

)A. B. C. D.5、往直徑為的圓柱形容器內(nèi)裝入一些水以后,截面如圖所示,若水面寬,則水的最大深度為(

)A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖所示的扇形中,,C為上一點(diǎn),,連接,過C作的垂線交于點(diǎn)D,則圖中陰影部分的面積為_______.2、如圖,⊙O的直徑AB=4,P為⊙O上的動點(diǎn),連結(jié)AP,Q為AP的中點(diǎn),若點(diǎn)P在圓上運(yùn)動一周,則點(diǎn)Q經(jīng)過的路徑長是______.3、如圖,PA,PB分別切⊙O于A,B,并與⊙O的切線,分別相交于C,D,已知△PCD的周長等于10cm,則PA=__________cm.4、如圖,AB為△ADC的外接圓⊙O的直徑,若∠BAD=50°,則∠ACD=_____°.5、若一個(gè)扇形的弧長是,面積是,則扇形的圓心角是__________度.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),D在AB的延長線上,且∠BCD=∠A.(1)求證:CD是⊙O的切線;(2)若⊙O的半徑為3,CD=4,求BD的長.2、問題提出(1)如圖①,在△ABC中,AB=AC=10,BC=12,點(diǎn)O是△ABC的外接圓的圓心,則OB的長為問題探究(2)如圖②,已知矩形ABCD,AB=4,AD=6,點(diǎn)E為AD的中點(diǎn),以BC為直徑作半圓O,點(diǎn)P為半圓O上一動點(diǎn),求E、P之間的最大距離;問題解決(3)某地有一塊如圖③所示的果園,果園是由四邊形ABCD和弦CB與其所對的劣弧場地組成的,果園主人現(xiàn)要從入口D到上的一點(diǎn)P修建一條筆直的小路DP.已知AD∥BC,∠ADB=45°,BD=120米,BC=160米,過弦BC的中點(diǎn)E作EF⊥BC交于點(diǎn)F,又測得EF=40米.修建小路平均每米需要40元(小路寬度不計(jì)),不考慮其他因素,請你根據(jù)以上信息,幫助果園主人計(jì)算修建這條小路最多要花費(fèi)多少元?3、下列每個(gè)正方形的邊長為2,求下圖中陰影部分的面積.4、已知PA,PB分別與⊙O相切于點(diǎn)A,B,∠APB=80°,C為⊙O上一點(diǎn).(1)如圖①,求∠ACB的大小;(2)如圖②,AE為⊙O的直徑,AE與BC相交于點(diǎn)D.若AB=AD,求∠EAC的大?。?、已知:如圖,在⊙O中,AB為弦,C、D兩點(diǎn)在AB上,且AC=BD.求證:.-參考答案-一、單選題1、C【解析】【分析】設(shè)圓錐母線長為R,由題意易得圓錐的母線長為,然后根據(jù)勾股定理可求解.【詳解】解:設(shè)圓錐母線長為R,由題意得:∵圓錐的側(cè)面展開圖是一個(gè)半圓,已知圓錐的底面半徑為r,∴根據(jù)圓錐側(cè)面展開圖的弧長和圓錐底面圓的周長相等可得:,∴,∴圓錐的高為;故選C.【考點(diǎn)】本題主要考查圓錐側(cè)面展開圖及弧長計(jì)算公式,熟練掌握圓錐的特征及弧長計(jì)算公式是解題的關(guān)鍵.2、D【解析】【分析】根據(jù)扇形的弧長公式計(jì)算即可.【詳解】∵扇形的圓心角為30°,半徑為2cm,∴弧長cm故答案為:D.【考點(diǎn)】本題主要考查扇形的弧長,熟記扇形的弧長公式是解題的關(guān)鍵.3、A【解析】【分析】連接CD、OE,根據(jù)題意證明四邊形OCED是菱形,然后分別求出扇形OCD和菱形OCED以及△AOB的面積,最后利用割補(bǔ)法求解即可.【詳解】解:連接CD、OE,由題意可知OC=OD=CE=ED,?。交?,∴S扇形ECD=S扇形OCD,四邊形OCED是菱形,∴OE垂直平分CD,由圓周角定理可知∠COD=∠CED=120°,∴CD=2×2×=2,∵AB=OA=OB=2,∴△AOB是等邊三角形,∴S△AOB=×2××2=,∴S陰影=2S扇形OCD﹣2S菱形OCED+S△AOB=2(2×2)+=2(π﹣2)+=π﹣3,故選:A.【考點(diǎn)】此題考查了菱形的性質(zhì)和判定,等邊三角形的性質(zhì),圓周角定理,求解圓中陰影面面積等知識,解題的關(guān)鍵是根據(jù)題意做出輔助線,利用割補(bǔ)法求解.4、C【解析】【分析】根據(jù)直角三角形的性質(zhì)可求出CE=1,再根據(jù)垂徑定理可求出CD.【詳解】解:∵⊙O的直徑垂直于弦,∴∵,,∴CE=1∴CD=2.故選:C.【考點(diǎn)】本題考查了直角三角形的性質(zhì),垂徑定理等知識點(diǎn),能求出CE=DE是解此題的關(guān)鍵.5、C【解析】【分析】過點(diǎn)O作OD⊥AB于D,交⊙O于E,連接OA,根據(jù)垂徑定理即可求得AD的長,又由⊙O的直徑為,求得OA的長,然后根據(jù)勾股定理,即可求得OD的長,進(jìn)而求得油的最大深度的長.【詳解】解:過點(diǎn)O作OD⊥AB于D,交⊙O于E,連接OA,由垂徑定理得:,∵⊙O的直徑為,∴,在中,由勾股定理得:,∴,∴油的最大深度為,故選:.【考點(diǎn)】本題主要考查了垂徑定理的知識.此題難度不大,解題的關(guān)鍵是注意輔助線的作法,構(gòu)造直角三角形,利用勾股定理解決.二、填空題1、【解析】【分析】先根據(jù)題目條件計(jì)算出OD,CD的長度,判斷為等邊三角形,之后表示出陰影面積的計(jì)算公式進(jìn)行計(jì)算即可.【詳解】在中,∴∵∴∵∴為等邊三角形∴故答案為:【考點(diǎn)】本題考查了陰影面積的計(jì)算,熟知不規(guī)則陰影面積的計(jì)算方法是解題的關(guān)鍵.2、【解析】【分析】連接OQ,以O(shè)A為直徑作⊙C,確定出點(diǎn)Q的運(yùn)動路徑即可求得路徑長.【詳解】解:連接OQ.在⊙O中,∵AQ=PQ,OQ經(jīng)過圓心O,∴OQ⊥AP.∴∠AQO=90°.∴點(diǎn)Q在以O(shè)A為直徑的⊙C上.∴當(dāng)點(diǎn)P在⊙O上運(yùn)動一周時(shí),點(diǎn)Q在⊙C上運(yùn)動一周.∵AB=4,∴OA=2.∴⊙C的周長為.∴點(diǎn)Q經(jīng)過的路徑長為.故答案為:【考點(diǎn)】本題考查了垂徑定理的推論、圓周角定理的推論、圓周長的計(jì)算等知識點(diǎn),熟知相關(guān)定理及其推論是解題的基礎(chǔ),確定點(diǎn)Q的運(yùn)動路徑是解題的關(guān)鍵.3、5【解析】【詳解】如圖,設(shè)DC與⊙O的切點(diǎn)為E,∵PA、PB分別是⊙O的切線,且切點(diǎn)為A、B,∴PA=PB,同理,可得:DE=DA,CE=CB,則△PCD的周長=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=10(cm),∴PA=PB=5cm,故答案為:5.4、40【解析】【分析】若要利用∠BAD的度數(shù),需構(gòu)建與其相等的圓周角;連接BD,由圓周角定理可知∠ACD=∠ABD,在Rt△ABD中,求出∠ABD的度數(shù)即可得答案.【詳解】連接BD,如圖,∵AB為△ADC的外接圓⊙O的直徑,∴∠ADB=90°,∴∠ABD=90°﹣∠BAD=90°﹣50°=40°,∴∠ACD=∠ABD=40°,故答案為40.【考點(diǎn)】本題考查了圓周角定理及其推論:同弧所對的圓周角相等;半圓(?。┖椭睆剿鶎Φ膱A周角是直角,正確添加輔助線是解題的關(guān)鍵.5、60【解析】【分析】根據(jù)扇形的面積公式求出半徑,然后根據(jù)弧長公式求出圓心角即可.【詳解】解:扇形的面積==6π,解得:r=6,又∵=2π,∴n=60.故答案為:60.【考點(diǎn)】此題考查了扇形的面積和弧長公式,解題的關(guān)鍵是掌握運(yùn)算方法.三、解答題1、(1)證明見解析(2)2【解析】【分析】(1)連接OC,由AB是⊙O的直徑可得出∠ACB=90°,即∠ACO+∠OCB=90°,由等腰三角形的性質(zhì)結(jié)合∠BCD=∠A,即可得出∠OCD=90°,即CD是⊙O的切線;(2)在Rt△OCD中,由勾股定理可求出OD的值,進(jìn)而可得出BD的長.【詳解】解:(1)如圖,連接OC.∵AB是⊙O的直徑,C是⊙O上一點(diǎn),∴∠ACB=90°,即∠ACO+∠OCB=90°.∵OA=OC,∠BCD=∠A,∴∠ACO=∠A=∠BCD,∴∠BCD+∠OCB=90°,即∠OCD=90°,∴CD是⊙O的切線.(2)在Rt△OCD中,∠OCD=90°,OC=3,CD=4,∴OD==5,∴BD=OD﹣OB=5﹣3=2.2、(1);(2)E、P之間的最大距離為7;(3)修建這條小路最多要花費(fèi)元.【解析】【分析】(1)若AO交BC于K,則AK=8,在Rt△BOK中,設(shè)OB=x,可得x2=62+(8﹣x)2,解方程可得OB的長;(2)延長EO交半圓于點(diǎn)P,可求出此時(shí)E、P之間的最大距離為OE+OP的長即可;(3)先求出所在圓的半徑,過點(diǎn)D作DG⊥BC,垂足為G,連接DO并延長交于點(diǎn)P,則DP為入口D到上一點(diǎn)P的最大距離,求出DP長即可求出修建這條小路花費(fèi)的最多費(fèi)用.【詳解】(1)如圖,若AO交BC于K,∵點(diǎn)O是△ABC的外接圓的圓心,AB=AC,∴AK⊥BC,BK=,∴AK=,在Rt△BOK中,OB2=BK2+OK2,設(shè)OB=x,∴x2=62+(8?x)2,解得x=,∴OB=;故答案為:.(2)如圖,連接EO,延長EO交半圓于點(diǎn)P,可求出此時(shí)E、P之間的距離最大,∵在是任意取一點(diǎn)異于點(diǎn)P的P′,連接OP′,P′E,∴EP=EO+OP=EO+OP′>EP′,即EP>EP′,∵AB=4,AD=6,∴EO=4,OP=OC=,∴EP=OE+OP=7,∴E、P之間的最大距離為7.(3)作射線FE交BD于點(diǎn)M,∵BE=CE,EF⊥BC,是劣弧,∴所在圓的圓心在射線FE上,假設(shè)圓心為O,半徑為r,連接OC,則OC=r,OE=r?40,BE=CE=,在Rt△OEC中,r2=802+(r?40)2,解得:r=100,∴OE=OF?EF=60,過點(diǎn)D作DG⊥BC,垂足為G,∵AD∥BC,∠ADB=45°,∴∠DBC=45°,在Rt△BDG中,DG=BG=,在Rt△BEM中,ME=BE=80,∴ME>OE,∴點(diǎn)O在△BDC內(nèi)部,∴連接DO并延長交于點(diǎn)P,則DP為入口D到上一點(diǎn)P的最大距離,∵在上任取一點(diǎn)異于點(diǎn)P的點(diǎn)P′,連接OP′,P′D,∴DP=OD+OP=OD+OP′>DP′,即DP>DP′,過點(diǎn)O作OH⊥DG,垂足為H,則OH=EG=40,DH=DG?HG=DG?OE=60,∴,∴DP=OD+r=,∴修建這條小路最多要花費(fèi)40×元.【考點(diǎn)】本題主要考查了圓的性質(zhì)與矩形性質(zhì)的綜合運(yùn)用,熟練掌握相關(guān)方法是解題關(guān)鍵.3、2.28【解析】【分析】由圖形可知陰影面積=半圓面積-兩個(gè)小三角形面積和,根據(jù)公式計(jì)算即可.【詳解】πr2÷2-2×2÷2×2=3.14×2×2÷2-4=2.28.【考點(diǎn)】本題考查了圓的面積公式,解題的關(guān)鍵是熟練掌握間接法求陰影部分圖形的面積.4、(1)∠ACB=50°(2)∠EAC=20°【解析】【分析】(1)連接OA、OB,根據(jù)切線性質(zhì)和∠P=80°,得到∠AOB=100°,根據(jù)圓周角定理得到∠C=50°;(2)連接CE,證明∠BCE=∠BAE=40°,根據(jù)等腰三角形性質(zhì)得到∠ABD=∠ADB=70°,由三角形外角性質(zhì)得到∠EAC=20°.(1)連接OA、OB,

∵PA,PB是⊙O的切線,∴∠OAP=∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣80°=100°,由圓周角定理得,∠ACB=∠AOB=50°;(2)連接CE,∵AE為⊙O的直徑,∴∠ACE=90°,∵∠ACB=50°,∴∠BCE=90°﹣50°=40°,∴∠BAE=∠BCE=40°,∵AB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論