版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》章節(jié)測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、在銳角△ABC中,∠BAC=60°,BN、CM為高,P為BC的中點(diǎn),連接MN、MP、NP,則結(jié)論:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④當(dāng)∠ABC=60°時(shí),MN∥BC,一定正確的有()A.①②③ B.②③④ C.①②④ D.①④2、如圖,在菱形中,P是對(duì)角線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作于點(diǎn)E.于點(diǎn)F.若菱形的周長(zhǎng)為24,面積為24,則的值為()A.4 B. C.6 D.3、在數(shù)學(xué)活動(dòng)課上,老師和同學(xué)們判斷一個(gè)四邊形門框是否為矩形.下面是某個(gè)合作小組的4位同學(xué)擬定的方案,其中正確的是()A.測(cè)量對(duì)角線是否互相平分 B.測(cè)量?jī)山M對(duì)邊是否分別相等C.測(cè)量其內(nèi)角是否均為直角 D.測(cè)量對(duì)角線是否垂直4、如圖,在△ABC中,AC=BC=8,∠BCA=60°,直線AD⊥BC于點(diǎn)D,E是AD上的一個(gè)動(dòng)點(diǎn),連接EC,將線段EC繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)60°得到FC,連接DF,則在點(diǎn)E的運(yùn)動(dòng)過(guò)程中,DF的最小值是()A.1 B.1.5 C.2 D.45、如圖,平行四邊形ABCD的周長(zhǎng)為36,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E是CD的中點(diǎn),BD=12,則△DOE的周長(zhǎng)是()A.12 B.15 C.18 D.24第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、已知一直角三角形的兩直角邊長(zhǎng)分別為6和8,則斜邊上中線的長(zhǎng)度是_____.2、如圖,在矩形ABCD中,BC=2,AB=x,點(diǎn)E在邊CD上,且CEx,將BCE沿BE折疊,若點(diǎn)C的對(duì)應(yīng)點(diǎn)落在矩形ABCD的邊上,則x的值為_(kāi)______.3、如圖,四邊形ABCD是矩形,延長(zhǎng)DA到點(diǎn)E,使AE=DA,連接EB,點(diǎn)F1是CD的中點(diǎn),連接EF1,BF1,得到△EF1B;點(diǎn)F2是CF1的中點(diǎn),連接EF2,BF2,得到△EF2B;點(diǎn)F3是CF2的中點(diǎn),連接EF3,BF3,得到△EF3B;…;按照此規(guī)律繼續(xù)進(jìn)行下去,若矩形ABCD的面積等于2,則△EFnB的面積為_(kāi)_____.(用含正整數(shù)n的式子表示)4、正方形的對(duì)角線長(zhǎng)為cm,則它的周長(zhǎng)為_(kāi)_________cm.5、如圖,在△ABC中,∠ACB=90°,以AC,BC和AB為邊向上作正方形ACED和正方形BCMI和正方形ABGF,點(diǎn)G落在MI上,若AC+BC=7,空白部分面積為16,則圖中陰影部分的面積是_____.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,正方形ABCD中,點(diǎn)E在BC的延長(zhǎng)線上,AE分別交DC,BD于F,G,點(diǎn)H為EF的中點(diǎn).求證:(1)∠DAG=∠DCG;(2)GC⊥CH.2、如圖,的對(duì)角線與相交于點(diǎn)O,過(guò)點(diǎn)B作BPAC,過(guò)點(diǎn)C作CPBD,與相交于點(diǎn)P.
(1)試判斷四邊形的形狀,并說(shuō)明理由;(2)若將改為矩形,且,其他條件不變,求四邊形的面積;(3)要得到矩形,應(yīng)滿足的條件是_________(填上一個(gè)即可).3、△ABC為等邊三角形,AB=4,AD⊥BC于點(diǎn)D,E為線段AD上一點(diǎn),AE=.以AE為邊在直線AD右側(cè)構(gòu)造等邊△AEF.連結(jié)CE,N為CE的中點(diǎn).
(1)如圖1,EF與AC交于點(diǎn)G,①連結(jié)NG,求線段NG的長(zhǎng);②連結(jié)ND,求∠DNG的大?。?)如圖2,將△AEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為α.M為線段EF的中點(diǎn).連結(jié)DN、MN.當(dāng)30°<α<120°時(shí),猜想∠DNM的大小是否為定值,并證明你的結(jié)論.4、如圖1,在平面直角坐標(biāo)系中,且;(1)試說(shuō)明是等腰三角形;(2)已知.寫(xiě)出各點(diǎn)的坐標(biāo):A(,),B(,),C(,).(3)在(2)的條件下,若一動(dòng)點(diǎn)M從點(diǎn)B出發(fā)沿線段BA向點(diǎn)A運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)A出發(fā)以相同速度沿線段AC向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)整個(gè)運(yùn)動(dòng)都停止.①若的一條邊與BC平行,求此時(shí)點(diǎn)M的坐標(biāo);②若點(diǎn)E是邊AC的中點(diǎn),在點(diǎn)M運(yùn)動(dòng)的過(guò)程中,能否成為等腰三角形?若能,求出此時(shí)點(diǎn)M的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.5、如圖,在△ABC中,點(diǎn)D,E分別是AC,AB的中點(diǎn),點(diǎn)F是CB延長(zhǎng)線上的一點(diǎn),且CF=3BF,連接DB,EF.(1)求證:四邊形DEFB是平行四邊形;(2)若∠ACB=90°,AC=12cm,DE=4cm,求四邊形DEFB的周長(zhǎng).-參考答案-一、單選題1、C【解析】【分析】利用直角三角形斜邊上的中線的性質(zhì)即可判定①正確;利用含30度角的直角三角形的性質(zhì)即可判定②正確,由勾股定理即可判定③錯(cuò)誤;由等邊三角形的判定及性質(zhì)、三角形中位線定理即可判定④正確.【詳解】∵CM、BN分別是高∴△CMB、△BNC均是直角三角形∵點(diǎn)P是BC的中點(diǎn)∴PM、PN分別是兩個(gè)直角三角形斜邊BC上的中線∴故①正確∵∠BAC=60゜∴∠ABN=∠ACM=90゜?∠BAC=30゜∴AB=2AN,AC=2AM∴AN:AB=AM:AC=1:2即②正確在Rt△ABN中,由勾股定理得:故③錯(cuò)誤當(dāng)∠ABC=60゜時(shí),△ABC是等邊三角形∵CM⊥AB,BN⊥AC∴M、N分別是AB、AC的中點(diǎn)∴MN是△ABC的中位線∴MN∥BC故④正確即正確的結(jié)論有①②④故選:C【點(diǎn)睛】本題考查了直角三角形斜邊上中線的性質(zhì),含30度角的直角三角形的性質(zhì),等邊三角形的判定及性質(zhì),勾股定理,三角形中位線定理等知識(shí),掌握這些知識(shí)并正確運(yùn)用是解題的關(guān)鍵.2、A【解析】【分析】連接BP,通過(guò)菱形的周長(zhǎng)為24,求出邊長(zhǎng),菱形面積為24,求出的面積,然后利用面積法,,即可求出的值.【詳解】解:如圖所示,連接BP,∵菱形ABCD的周長(zhǎng)為24,∴,又∵菱形ABCD的面積為24,∴,∴,∴,∵,∴,∵,∴,故選:A.【點(diǎn)睛】本題主要考查菱形的性質(zhì),解題關(guān)鍵在于添加輔助線,通過(guò)面積法得出等量關(guān)系.3、C【解析】【分析】根據(jù)矩形的判定:(1)四個(gè)角均為直角;(2)對(duì)邊互相平行且相等;(3)對(duì)角線相等且平分,據(jù)此即可判斷結(jié)果.【詳解】解:A、根據(jù)矩形的對(duì)角線相等且平分,故錯(cuò)誤;B、對(duì)邊分別相等只能判定四邊形是平行四邊形,故錯(cuò)誤;C、矩形的四個(gè)角都是直角,故正確;D、矩形的對(duì)角線互相相等且平分,所以垂直與否與矩形的判定無(wú)關(guān),故錯(cuò)誤.故選:C.【點(diǎn)睛】本題主要考查的是矩形的判定方法,熟練掌握矩形的判定是解題的關(guān)鍵.4、C【解析】【分析】取線段AC的中點(diǎn)G,連接EG,根據(jù)等邊三角形的性質(zhì)以及角的計(jì)算即可得出CD=CG以及∠FCD=∠ECG,由旋轉(zhuǎn)的性質(zhì)可得出EC=FC,由此即可利用全等三角形的判定定理SAS證出△FCD≌△ECG,進(jìn)而即可得出DF=GE,再根據(jù)點(diǎn)G為AC的中點(diǎn),即可得出EG的最小值,此題得解.【詳解】解:取線段AC的中點(diǎn)G,連接EG,如圖所示.∵AC=BC=8,∠BCA=60°,∴△ABC為等邊三角形,且AD為△ABC的對(duì)稱軸,∴CD=CG=AB=4,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG,在△FCD和△ECG中,,∴△FCD≌△ECG(SAS),∴DF=GE.當(dāng)EG∥BC時(shí),EG最小,∵點(diǎn)G為AC的中點(diǎn),∴此時(shí)EG=DF=CD=BC=2.故選:C.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)以及全等三角形的判定與性質(zhì),三角形中位線的性質(zhì),解題的關(guān)鍵是通過(guò)全等三角形的性質(zhì)找出DF=GE,本題屬于中檔題,難度不大,解決該題型題目時(shí),根據(jù)全等三角形的性質(zhì)找出相等的邊是關(guān)鍵.5、B【解析】【分析】根據(jù)平行四邊形的對(duì)邊相等和對(duì)角線互相平分可得,OB=OD,又因?yàn)镋點(diǎn)是CD的中點(diǎn),可得OE是△BCD的中位線,可得OE=BC,所以易求△DOE的周長(zhǎng).【詳解】解:∵?ABCD的周長(zhǎng)為36,∴2(BC+CD)=36,則BC+CD=18.∵四邊形ABCD是平行四邊形,對(duì)角線AC,BD相交于點(diǎn)O,BD=12,∴OD=OB=BD=6.又∵點(diǎn)E是CD的中點(diǎn),∴OE是△BCD的中位線,DE=CD,∴OE=BC,∴△DOE的周長(zhǎng)=OD+OE+DE=BD+(BC+CD)=6+9=15,故選:B.【點(diǎn)睛】本題考查了三角形中位線定理、平行四邊形的性質(zhì).解題時(shí),利用了“平行四邊形對(duì)角線互相平分”、“平行四邊形的對(duì)邊相等”的性質(zhì).二、填空題1、5【解析】【分析】直角三角形中,斜邊長(zhǎng)為斜邊中線長(zhǎng)的2倍,所以求斜邊上中線的長(zhǎng)求斜邊長(zhǎng)即可.【詳解】解:在直角三角形中,兩直角邊長(zhǎng)分別為6和8,則斜邊長(zhǎng)==10,∴斜邊中線長(zhǎng)為×10=5,故答案為5.【點(diǎn)睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半,勾股定理,根據(jù)勾股定理求得斜邊長(zhǎng)是解題的關(guān)鍵.2、或【解析】【分析】分兩種情況進(jìn)行解答,即當(dāng)點(diǎn)落在邊上和點(diǎn)落在邊上,分別畫(huà)出相應(yīng)的圖形,利用翻折變換的性質(zhì),勾股定理進(jìn)行計(jì)算即可.【詳解】解:如圖1,當(dāng)點(diǎn)落在邊上,由翻折變換可知,,,在△中,由勾股定理得,,,在中,由勾股定理得,,即,解得,或(舍去),如圖2,當(dāng)點(diǎn)落在邊上,由翻折變換可知,四邊形是正方形,,,故答案為:或.【點(diǎn)睛】本題考查翻折變換,解題的關(guān)鍵是掌握翻折變換的性質(zhì)以及勾股定理是解決問(wèn)題的前提.3、.【解析】【分析】由AE=DA,點(diǎn)F1是CD的中點(diǎn),矩形ABCD的面積等于2,結(jié)合矩形的性質(zhì)可得△EF1D和△EAB的面積都等于1,結(jié)合三角形中線的性質(zhì)可得△EF1F2的面積等于,同理可得△EFn﹣1Fn的面積為,△BCFn的面積為22,即可得出結(jié)論.【詳解】∵AE=DA,點(diǎn)F1是CD的中點(diǎn),矩形ABCD的面積等于2,∴△EF1D和△EAB的面積都等于1,∵點(diǎn)F2是CF1的中點(diǎn),∴△EF1F2的面積等于,同理可得△EFn﹣1Fn的面積為,∵△BCFn的面積為22,∴△EFnB的面積為2+1﹣12﹣(1).故答案為:.【點(diǎn)睛】本題考查了矩形的性質(zhì),三角形中線的性質(zhì),解題的關(guān)鍵是根據(jù)面積找出規(guī)律.4、16【解析】【分析】根據(jù)正方形對(duì)角線的長(zhǎng),可將正方形的邊長(zhǎng)求出,進(jìn)而可將正方形的周長(zhǎng)求出.【詳解】解:設(shè)正方形的邊長(zhǎng)為x,∵正方形的對(duì)角線長(zhǎng)為cm,∴,解得:x=4,∴正方形的邊長(zhǎng)為:4(cm),∴正方形的周長(zhǎng)為4×4=16(cm).故答案為:16.【點(diǎn)睛】本題考查了正方形的性質(zhì),勾股定理,解決本題的關(guān)鍵是掌握正方形的性質(zhì).5、【解析】【分析】根據(jù)余角的性質(zhì)得到,根據(jù)全等三角形的性質(zhì)得到,推出,根據(jù)勾股定理得到,解方程組得到,接著由圖可知空白部分為重疊部分,陰影部分為非重疊部分,所以2倍的空白部分與陰影部分面積和等于三個(gè)正方形與三角形面積和.結(jié)合即可得出結(jié)論.依此即可求解.【詳解】解:如圖,四邊形是正方形,,,,,,,∵,即,,在中,,,,,,,陰影部分的面積和=三個(gè)正方形面積+三角形面積-2倍空白部分面積=.故答案為:.【點(diǎn)睛】本題考查勾股定理的知識(shí),有一定難度,解題關(guān)鍵是將勾股定理和正方形的面積公式進(jìn)行靈活的結(jié)合和應(yīng)用.三、解答題1、(1)見(jiàn)解析;(2)見(jiàn)解析【分析】(1)要證明,需把兩角放到兩三角形中,證明兩三角形與全等得到,全等的方法是:由為正方形,得到與相等,與相等,再加上公共邊,利用“”得到全等,利用全等三角形的對(duì)應(yīng)角相等得證;(2)要證明與垂直,需證,即,方法是:由正方形的對(duì)邊與平行,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等得到與相等,由(1)得到的與相等,等量代換得到與相等,再由為直角三角形斜邊上的中線,得到與相等都等于斜邊的一半,根據(jù)“等邊對(duì)等角”得到與相等,又等于,等量代換得到,即,得證.【詳解】證明:(1)為正方形,,,,又,,;(2)為正方形,,,又,,為直角三角形斜邊邊的中點(diǎn),,,,又,,即,.【點(diǎn)睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),以及直角三角形的性質(zhì),以及直角三角形斜邊上的中線等于斜邊的一半,是一道證明題.解題的關(guān)鍵是要求學(xué)生熟練掌握正方形的性質(zhì):四條邊都相等,四個(gè)角相等都為直角,對(duì)角線互相垂直且平分,一條對(duì)角線平分一組對(duì)角.2、(1)平行四邊形,理由見(jiàn)解析;(2)四邊形的面積為24;(3)AB=BC或AC⊥BD等(答案不唯一)【分析】(1)利用平行四邊形的判定:兩組對(duì)邊分別平行的四邊形是平行四邊形,即可證明.(2)利用矩形的性質(zhì),得到對(duì)角線互相平分,進(jìn)而證明四邊形是菱形,分別求出菱形的對(duì)角線長(zhǎng)度,利用對(duì)角線乘積的一半,求解面積即可.(3)添加的條件只要可以證明即可得到矩形.【詳解】解:(1)四邊形BPCO是平行四邊形,
∵BP∥AC,CP∥BD,∴四邊形BPCO是平行四邊形.(2)連接OP.∵四邊形ABCD是矩形,∴OB=BD,OC=AC,AC=BD,∠ABC=90°,∴OB=OC.又四邊形BPCO是平行四邊形,∴□BPCO是菱形.
∴OP⊥BC.又∵AB⊥BC,∴OP∥AB.又∵AC∥BP,四邊形是平行四邊形,∴OP=AB=6.∴S菱形BPCO=.(3)AB=BC或AC⊥BD等(答案不唯一).當(dāng)AB=BC時(shí),為菱形,此時(shí)有:,利用含有的平行四邊形為矩形,即可得到矩形,當(dāng)AC⊥BD時(shí),利用含有的平行四邊形為矩形,即可得到矩形.【點(diǎn)睛】本題主要是考查了平行四邊形、矩形和菱形的判定和性質(zhì),熟練掌握特殊四邊形的判定和性質(zhì),是求解該類問(wèn)題的關(guān)鍵.3、(1)①;②;(2)的大小是定值,證明見(jiàn)解析.【分析】(1)①先根據(jù)等邊三角形的性質(zhì)、勾股定理可得,從而可得,再利用勾股定理可得,然后根據(jù)等邊三角形的性質(zhì)可得,最后根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可得;②先根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得,再根據(jù)等腰三角形的性質(zhì)可得,從而可得,然后根據(jù)四邊形的內(nèi)角和即可得;(2)連接,先證出,根據(jù)全等三角形的性質(zhì)可得,從而可得,再根據(jù)三角形中位線定理可得,然后根據(jù)三角形的外角性質(zhì)、角的和差即可得出結(jié)論.【詳解】解:(1)①∵是等邊三角形,,,∴,∴,∵,∴,∴,∵是等邊三角形,,,∴,即,又∵點(diǎn)為的中點(diǎn),∴;②如圖,連接,由(1)①知,,∵,點(diǎn)為的中點(diǎn),∴,,,∴;(2)的大小是定值,證明如下:如圖,連接,∵和都是等邊三角形,∴,∴,即,在和中,,∴,∴,∵,∴,∵點(diǎn)為的中點(diǎn),點(diǎn)為的中點(diǎn),∴,∴,∵,即點(diǎn)是的中點(diǎn),∴,∴,∵,∴,∴的大小為定值.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)、直角三角形斜邊上的中線等于斜邊的一半、三角形中位線定理等知識(shí)點(diǎn),較難的是題(2),通過(guò)作輔助線,構(gòu)造全等三角形和利用到三角形中位線定理是解題關(guān)鍵.4、(1)見(jiàn)解析;(2)12,0;-8,0;0,16;(3)①當(dāng)M的坐標(biāo)為(2,0)或(4,0)時(shí),△OMN的一條邊與BC平行;②當(dāng)M的坐標(biāo)為(0,10)或(12,0)或(,0)時(shí),,△MOE是等腰三角形.
【分析】(1)設(shè),,,則,由勾股定理求出,即可得出結(jié)論;(2)由的面積求出m的值,從而得到、、的長(zhǎng),即可得到A、B、C的坐標(biāo);(3)①分當(dāng)時(shí),;當(dāng)時(shí),;得出方程,解方程即可;②由直角三角形的性質(zhì)得出,根據(jù)題意得出為等腰三角形,有3種可能:如果;如果;如果;分別得出方程,解方程即可.【詳解】解:(1)證明:設(shè),,,則,在中,,,∴是等腰三角形;(2)∵,,∴,∴,,,.∴A點(diǎn)坐標(biāo)為(12,0),B點(diǎn)坐標(biāo)為(-8,0),C點(diǎn)坐標(biāo)為(0,16),故答案為:12,0;-8,0;0,16;(3)①如圖3-1所示,當(dāng)MN∥BC時(shí),∵AB=AC,∴∠ABC=∠ACB,∵M(jìn)N∥BC,∴∠AMN=∠ABC,∠ANM=∠ACB,∴∠AMN=∠ANM,∴AM=AN,∴AM=BM,∴M為AB的中點(diǎn),∵,∴,∴,∴點(diǎn)M的坐標(biāo)為(2,0);如圖3-2所示,當(dāng)ON∥BC時(shí),同理可得,∴,∴M點(diǎn)的坐標(biāo)為(4,0);∴綜上所述,當(dāng)M的坐標(biāo)為(2,0)或(4,0)時(shí),△OMN的一條邊與BC平行;
②如圖3-
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 高級(jí)審計(jì)師面試題及審計(jì)流程解析
- 人力資源薪酬績(jī)效主管筆試題及答案
- 中國(guó)聯(lián)通財(cái)務(wù)分析師財(cái)務(wù)分析筆試題及答案
- 2025年國(guó)際貨運(yùn)代理平臺(tái)項(xiàng)目可行性研究報(bào)告
- 2025年智能互聯(lián)網(wǎng)家居集成項(xiàng)目可行性研究報(bào)告
- 2025年繪畫(huà)藝術(shù)數(shù)字化平臺(tái)項(xiàng)目可行性研究報(bào)告
- 2025年人工智能技術(shù)投資項(xiàng)目可行性研究報(bào)告
- 2025年高端制造業(yè)創(chuàng)意設(shè)計(jì)中心可行性研究報(bào)告
- 2025年光伏發(fā)電項(xiàng)目建設(shè)與經(jīng)濟(jì)效益可行性研究報(bào)告
- 2025年社區(qū)兒童教育項(xiàng)目可行性研究報(bào)告
- 大慶一中、六十九中初四上學(xué)期期末質(zhì)量檢測(cè)物理試題
- 建材有限公司砂石卸車作業(yè)安全風(fēng)險(xiǎn)分級(jí)管控清單
- 小學(xué)生一、二、三年級(jí)家庭獎(jiǎng)罰制度表
- 中石化華北分公司鉆井定額使用說(shuō)明
- 礦山壓力與巖層控制智慧樹(shù)知到答案章節(jié)測(cè)試2023年湖南科技大學(xué)
- 機(jī)加工車間主任年終總結(jié)3篇
- WB/T 1119-2022數(shù)字化倉(cāng)庫(kù)評(píng)估規(guī)范
- GB/T 5125-1985有色金屬?zèng)_杯試驗(yàn)方法
- GB/T 4937.3-2012半導(dǎo)體器件機(jī)械和氣候試驗(yàn)方法第3部分:外部目檢
- 我國(guó)尾管懸掛器研制(for cnpc)
- 第3章樁基工程課件
評(píng)論
0/150
提交評(píng)論