版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025-2026學(xué)年福建省莆田八中數(shù)學(xué)高三第一學(xué)期期末達(dá)標(biāo)測試試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.我國古代數(shù)學(xué)家秦九韶在《數(shù)書九章》中記述了“三斜求積術(shù)”,用現(xiàn)代式子表示即為:在中,角所對的邊分別為,則的面積.根據(jù)此公式,若,且,則的面積為()A. B. C. D.2.下列函數(shù)中,既是奇函數(shù),又是上的單調(diào)函數(shù)的是()A. B.C. D.3.明代數(shù)學(xué)家程大位(1533~1606年),有感于當(dāng)時(shí)籌算方法的不便,用其畢生心血寫出《算法統(tǒng)宗》,可謂集成計(jì)算的鼻祖.如圖所示的程序框圖的算法思路源于其著作中的“李白沽酒”問題.執(zhí)行該程序框圖,若輸出的的值為,則輸入的的值為()A. B. C. D.4.已知函數(shù),,若對,且,使得,則實(shí)數(shù)的取值范圍是()A. B. C. D.5.()A. B. C. D.6.若的二項(xiàng)式展開式中二項(xiàng)式系數(shù)的和為32,則正整數(shù)的值為()A.7 B.6 C.5 D.47.設(shè)x、y、z是空間中不同的直線或平面,對下列四種情形:①x、y、z均為直線;②x、y是直線,z是平面;③z是直線,x、y是平面;④x、y、z均為平面.其中使“且”為真命題的是()A.③④ B.①③ C.②③ D.①②8.已知是雙曲線的兩個(gè)焦點(diǎn),過點(diǎn)且垂直于軸的直線與相交于兩點(diǎn),若,則的內(nèi)切圓半徑為()A. B. C. D.9.在區(qū)間上隨機(jī)取一個(gè)實(shí)數(shù),使直線與圓相交的概率為()A. B. C. D.10.若表示不超過的最大整數(shù)(如,,),已知,,,則()A.2 B.5 C.7 D.811.已知橢圓的左、右焦點(diǎn)分別為、,過點(diǎn)的直線與橢圓交于、兩點(diǎn).若的內(nèi)切圓與線段在其中點(diǎn)處相切,與相切于點(diǎn),則橢圓的離心率為()A. B. C. D.12.已知三棱錐的四個(gè)頂點(diǎn)都在球的球面上,平面,是邊長為的等邊三角形,若球的表面積為,則直線與平面所成角的正切值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,在邊長為4的正方形紙片中,與相交于.剪去,將剩余部分沿,折疊,使、重合,則以、、、為頂點(diǎn)的四面體的外接球的體積為________.14.在中,,.若,則_________.15.經(jīng)過橢圓中心的直線與橢圓相交于、兩點(diǎn)(點(diǎn)在第一象限),過點(diǎn)作軸的垂線,垂足為點(diǎn).設(shè)直線與橢圓的另一個(gè)交點(diǎn)為.則的值是________________.16.已知函數(shù),且,,使得,則實(shí)數(shù)m的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程是(為參數(shù),常數(shù)),曲線的極坐標(biāo)方程是.(1)寫出的普通方程及的直角坐標(biāo)方程,并指出是什么曲線;(2)若直線與曲線,均相切且相切于同一點(diǎn),求直線的極坐標(biāo)方程.18.(12分)如圖,設(shè)A是由個(gè)實(shí)數(shù)組成的n行n列的數(shù)表,其中aij(i,j=1,2,3,…,n)表示位于第i行第j列的實(shí)數(shù),且aij{1,-1}.記S(n,n)為所有這樣的數(shù)表構(gòu)成的集合.對于,記ri(A)為A的第i行各數(shù)之積,cj(A)為A的第j列各數(shù)之積.令a11a12…a1na21a22a2n…………an1an2…ann(Ⅰ)請寫出一個(gè)AS(4,4),使得l(A)=0;(Ⅱ)是否存在AS(9,9),使得l(A)=0?說明理由;(Ⅲ)給定正整數(shù)n,對于所有的AS(n,n),求l(A)的取值集合.19.(12分)已知函數(shù)f(x)=x-2a-x-a(Ⅰ)若f(1)>1,求a的取值范圍;(Ⅱ)若a<0,對?x,y∈-∞,a,都有不等式f(x)≤(y+2020)+20.(12分)已知.(Ⅰ)若,求不等式的解集;(Ⅱ),,,求實(shí)數(shù)的取值范圍.21.(12分)如圖,⊙的直徑的延長線與弦的延長線相交于點(diǎn),為⊙上一點(diǎn),,交于點(diǎn).求證:~.22.(10分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若存在,使得不等式對一切恒成立,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
根據(jù),利用正弦定理邊化為角得,整理為,根據(jù),得,再由余弦定理得,又,代入公式求解.【詳解】由得,即,即,因?yàn)?,所以,由余弦定理,所以,由的面積公式得故選:A本題主要考查正弦定理和余弦定理以及類比推理,還考查了運(yùn)算求解的能力,屬于中檔題.2.C【解析】
對選項(xiàng)逐個(gè)驗(yàn)證即得答案.【詳解】對于,,是偶函數(shù),故選項(xiàng)錯(cuò)誤;對于,,定義域?yàn)?,在上不是單調(diào)函數(shù),故選項(xiàng)錯(cuò)誤;對于,當(dāng)時(shí),;當(dāng)時(shí),;又時(shí),.綜上,對,都有,是奇函數(shù).又時(shí),是開口向上的拋物線,對稱軸,在上單調(diào)遞增,是奇函數(shù),在上是單調(diào)遞增函數(shù),故選項(xiàng)正確;對于,在上單調(diào)遞增,在上單調(diào)遞增,但,在上不是單調(diào)函數(shù),故選項(xiàng)錯(cuò)誤.故選:.本題考查函數(shù)的基本性質(zhì),屬于基礎(chǔ)題.3.C【解析】
根據(jù)程序框圖依次計(jì)算得到答案.【詳解】,;,;,;,;,此時(shí)不滿足,跳出循環(huán),輸出結(jié)果為,由題意,得.故選:本題考查了程序框圖的計(jì)算,意在考查學(xué)生的理解能力和計(jì)算能力.4.D【解析】
先求出的值域,再利用導(dǎo)數(shù)討論函數(shù)在區(qū)間上的單調(diào)性,結(jié)合函數(shù)值域,由方程有兩個(gè)根求參數(shù)范圍即可.【詳解】因?yàn)椋?,?dāng)時(shí),,故在區(qū)間上單調(diào)遞減;當(dāng)時(shí),,故在區(qū)間上單調(diào)遞增;當(dāng)時(shí),令,解得,故在區(qū)間單調(diào)遞減,在區(qū)間上單調(diào)遞增.又,且當(dāng)趨近于零時(shí),趨近于正無窮;對函數(shù),當(dāng)時(shí),;根據(jù)題意,對,且,使得成立,只需,即可得,解得.故選:D.本題考查利用導(dǎo)數(shù)研究由方程根的個(gè)數(shù)求參數(shù)范圍的問題,涉及利用導(dǎo)數(shù)研究函數(shù)單調(diào)性以及函數(shù)值域的問題,屬綜合困難題.5.B【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡得答案.【詳解】.故選B.本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.6.C【解析】
由二項(xiàng)式系數(shù)性質(zhì),的展開式中所有二項(xiàng)式系數(shù)和為計(jì)算.【詳解】的二項(xiàng)展開式中二項(xiàng)式系數(shù)和為,.故選:C.本題考查二項(xiàng)式系數(shù)的性質(zhì),掌握二項(xiàng)式系數(shù)性質(zhì)是解題關(guān)鍵.7.C【解析】
①舉反例,如直線x、y、z位于正方體的三條共點(diǎn)棱時(shí)②用垂直于同一平面的兩直線平行判斷.③用垂直于同一直線的兩平面平行判斷.④舉例,如x、y、z位于正方體的三個(gè)共點(diǎn)側(cè)面時(shí).【詳解】①當(dāng)直線x、y、z位于正方體的三條共點(diǎn)棱時(shí),不正確;②因?yàn)榇怪庇谕黄矫娴膬芍本€平行,正確;③因?yàn)榇怪庇谕恢本€的兩平面平行,正確;④如x、y、z位于正方體的三個(gè)共點(diǎn)側(cè)面時(shí),不正確.故選:C.此題考查立體幾何中線面關(guān)系,選擇題一般可通過特殊值法進(jìn)行排除,屬于簡單題目.8.B【解析】
首先由求得雙曲線的方程,進(jìn)而求得三角形的面積,再由三角形的面積等于周長乘以內(nèi)切圓的半徑即可求解.【詳解】由題意將代入雙曲線的方程,得則,由,得的周長為,設(shè)的內(nèi)切圓的半徑為,則,故選:B本題考查雙曲線的定義、方程和性質(zhì),考查三角形的內(nèi)心的概念,考查了轉(zhuǎn)化的思想,屬于中檔題.9.D【解析】
利用直線與圓相交求出實(shí)數(shù)的取值范圍,然后利用幾何概型的概率公式可求得所求事件的概率.【詳解】由于直線與圓相交,則,解得.因此,所求概率為.故選:D.本題考查幾何概型概率的計(jì)算,同時(shí)也考查了利用直線與圓相交求參數(shù),考查計(jì)算能力,屬于基礎(chǔ)題.10.B【解析】
求出,,,,,,判斷出是一個(gè)以周期為6的周期數(shù)列,求出即可.【詳解】解:.,∴,,,同理可得:;;.;,,…….∴.故是一個(gè)以周期為6的周期數(shù)列,則.故選:B.本題考查周期數(shù)列的判斷和取整函數(shù)的應(yīng)用.11.D【解析】
可設(shè)的內(nèi)切圓的圓心為,設(shè),,可得,由切線的性質(zhì):切線長相等推得,解得、,并設(shè),求得的值,推得為等邊三角形,由焦距為三角形的高,結(jié)合離心率公式可得所求值.【詳解】可設(shè)的內(nèi)切圓的圓心為,為切點(diǎn),且為中點(diǎn),,設(shè),,則,且有,解得,,設(shè),,設(shè)圓切于點(diǎn),則,,由,解得,,,所以為等邊三角形,所以,,解得.因此,該橢圓的離心率為.故選:D.本題考查橢圓的定義和性質(zhì),注意運(yùn)用三角形的內(nèi)心性質(zhì)和等邊三角形的性質(zhì),切線的性質(zhì),考查化簡運(yùn)算能力,屬于中檔題.12.C【解析】
設(shè)為中點(diǎn),先證明平面,得出為所求角,利用勾股定理計(jì)算,得出結(jié)論.【詳解】設(shè)分別是的中點(diǎn)平面是等邊三角形又平面為與平面所成的角是邊長為的等邊三角形,且為所在截面圓的圓心球的表面積為球的半徑平面本題正確選項(xiàng):本題考查了棱錐與外接球的位置關(guān)系問題,關(guān)鍵是能夠通過垂直關(guān)系得到直線與平面所求角,再利用球心位置來求解出線段長,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
將三棱錐置入正方體中,利用正方體體對角線為三棱錐外接球的直徑即可得到答案.【詳解】由已知,將三棱錐置入正方體中,如圖所示,,故正方體體對角線長為,所以外接球半徑為,其體積為.故答案為:.本題考查三棱錐外接球的體積問題,一般在處理特殊幾何體的外接球問題時(shí),要考慮是否能將其置入正(長)方體中,是一道中檔題.14.【解析】分析:首先設(shè)出相應(yīng)的直角邊長,利用余弦勾股定理得到相應(yīng)的斜邊長,之后應(yīng)用余弦定理得到直角邊長之間的關(guān)系,從而應(yīng)用正切函數(shù)的定義,對邊比臨邊,求得對應(yīng)角的正切值,即可得結(jié)果.詳解:根據(jù)題意,設(shè),則,根據(jù),得,由勾股定理可得,根據(jù)余弦定理可得,化簡整理得,即,解得,所以,故答案是.點(diǎn)睛:該題考查的是有關(guān)解三角形的問題,在解題的過程中,注意分析要求對應(yīng)角的正切值,需要求誰,而題中所給的條件與對應(yīng)的結(jié)果之間有什么樣的連線,設(shè)出直角邊長,利用所給的角的余弦值,利用余弦定理得到相應(yīng)的等量關(guān)系,求得最后的結(jié)果.15.【解析】
作出圖形,設(shè)點(diǎn),則、,設(shè)點(diǎn),利用點(diǎn)差法得出,利用斜率公式得出,進(jìn)而可得出,可得出,由此可求得的值.【詳解】設(shè)點(diǎn),則、,設(shè)點(diǎn),則,兩式相減得,即,即,由斜率公式得,,,故,因此,.故答案為:.本題考查橢圓中角的余弦值的求解,涉及了點(diǎn)差法與斜率公式的應(yīng)用,考查計(jì)算能力,屬于中等題.16.【解析】
根據(jù)條件轉(zhuǎn)化為函數(shù)在上的值域是函數(shù)在上的值域的子集;分別求值域即可得到結(jié)論.【詳解】解:依題意,,即函數(shù)在上的值域是函數(shù)在上的值域的子集.因?yàn)樵谏系闹涤驗(yàn)椋ǎ┗颍ǎ?,在上的值域?yàn)椋驶?,解得故答案為?本題考查了分段函數(shù)的值域求參數(shù)的取值范圍,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1),,表示以為圓心為半徑的圓;為拋物線;(2)【解析】
(1)消去參數(shù)的直角坐標(biāo)方程,利用,即得的直角坐標(biāo)方程;(2)由直線與拋物線相切,求導(dǎo)可得切線斜率,再由直線與圓相切,故切線與圓心與切點(diǎn)連線垂直,可求解得到切點(diǎn)坐標(biāo),即得解.【詳解】(1)消去參數(shù)的直角坐標(biāo)方程為:.的極坐標(biāo)方程.∵,.當(dāng)時(shí)表示以為圓心為半徑的圓;為拋物線.(2)設(shè)切點(diǎn)為,由于,則切線斜率為,由于直線與圓相切,故切線與圓心與切點(diǎn)連線垂直,故有,直線的直角坐標(biāo)方程為,所以的極坐標(biāo)方程為.本題考查了極坐標(biāo),參數(shù)方程綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.18.(Ⅰ)答案見解析;(Ⅱ)不存在,理由見解析;(Ⅲ)【解析】
(Ⅰ)可取第一行都為-1,其余的都取1,即滿足題意;(Ⅱ)用反證法證明:假設(shè)存在,得出矛盾,從而證明結(jié)論;(Ⅲ)通過分析正確得出l(A)的表達(dá)式,以及從A0如何得到A1,A2……,以此類推可得到Ak.【詳解】(Ⅰ)答案不唯一,如圖所示數(shù)表符合要求.(Ⅱ)不存在AS(9,9),使得l(A)=0,證明如下:假如存在,使得.因?yàn)?,,所以,?..,,,,...,這18個(gè)數(shù)中有9個(gè)1,9個(gè)-1.令.一方面,由于這18個(gè)數(shù)中有9個(gè)1,9個(gè)-1,從而①,另一方面,表示數(shù)表中所有元素之積(記這81個(gè)實(shí)數(shù)之積為m);也表示m,從而②,①,②相矛盾,從而不存在,使得.(Ⅲ)記這個(gè)實(shí)數(shù)之積為p.一方面,從“行”的角度看,有;另一方面,從“列”的角度看,有;從而有③,注意到,,下面考慮,,...,,,,...,中-1的個(gè)數(shù),由③知,上述2n個(gè)實(shí)數(shù)中,-1的個(gè)數(shù)一定為偶數(shù),該偶數(shù)記為,則1的個(gè)數(shù)為2n-2k,所以,對數(shù)表,顯然.將數(shù)表中的由1變?yōu)?1,得到數(shù)表,顯然,將數(shù)表中的由1變?yōu)?1,得到數(shù)表,顯然,依此類推,將數(shù)表中的由1變?yōu)?1,得到數(shù)表,即數(shù)表滿足:,其余,所以,,所以,由k的任意性知,l(A)的取值集合為.本題為數(shù)列的創(chuàng)新應(yīng)用題,考查數(shù)學(xué)分析與思考能力及推理求解能力,解題關(guān)鍵是讀懂題意,根據(jù)引入的概念與性質(zhì)進(jìn)行推理求解,屬于較難題.19.(Ⅰ)(-∞,-1)∪(1,+∞);(Ⅱ)-1010,0.【解析】
(Ⅰ)由題意不等式化為|1-2a|-|1-a|>1,利用分類討論法去掉絕對值求出不等式的解集即可;(Ⅱ)由題意把問題轉(zhuǎn)化為[f(x)]max≤[|y+2020|+|y-a|]min,分別求出【詳解】(Ⅰ)由題意知,f(1)=|1-2a|-|1-a|>1,若a≤12,則不等式化為1-2a-1+a>1,解得若12<a<1,則不等式化為2a-1-(1-a)>1,解得若a≥1,則不等式化為2a-1+1-a>1,解得a>1,綜上所述,a的取值范圍是(-∞,-1)∪(1,+∞);(Ⅱ)由題意知,要使得不等式f(x)≤|(y+2020)|+|y-a|恒成立,只需[f(x)]max當(dāng)x∈(-∞,a]時(shí),|x-2a|-|x-a|≤-a,[f(x)]max因?yàn)閨y+2020|+|y-a|≥|a+2020|,所以當(dāng)(y+2020)(y-a)≤0時(shí),[|y+2020|+|y-a|]min即-a≤|a+2020|,解得a≥-1010,結(jié)合a<0,所以a的取值范圍是[-1010,0).本題考查了絕對值不等式的求解問題,含有絕對值的不等式恒成立應(yīng)用問題,以及絕對值三角不等式的應(yīng)用,考查了分類討論思想,是中檔題.含有絕對值的不等式恒成立應(yīng)用問題,關(guān)鍵是等價(jià)轉(zhuǎn)化為最值問題,再通過絕對值三角不等式求解最值,從而建立不等關(guān)系,求出參數(shù)范圍.20.(Ⅰ);(Ⅱ).【解析】
(Ⅰ)利
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年電子產(chǎn)品銷售合同
- 2025年綠色生態(tài)農(nóng)業(yè)示范園區(qū)建設(shè)項(xiàng)目可行性研究報(bào)告
- 2025年辦公空間共享經(jīng)濟(jì)模式探索可行性研究報(bào)告
- 2025年南方沿海港口物流園區(qū)項(xiàng)目可行性研究報(bào)告
- 償還墊付協(xié)議書
- 置換協(xié)議合同模板
- 臨時(shí)人員協(xié)議書
- 乙方補(bǔ)充協(xié)議書
- 游戲原畫設(shè)計(jì)師職業(yè)發(fā)展及面試題含答案
- 人力資源專員面試指南及問題解答
- T/CECS 10114-2021增強(qiáng)高密度聚乙烯(HDPE-IW)六棱結(jié)構(gòu)壁管材
- 配電線路缺陷管理
- 基于用戶行為的廣告精準(zhǔn)推送
- 第六單元《時(shí)間像小馬車》課件 人音版音樂一年級下冊
- 2025年科研項(xiàng)目保密合同
- 大學(xué)生勞動(dòng)教育(高職版)知到智慧樹章節(jié)測試課后答案2024年秋深圳職業(yè)技術(shù)大學(xué)
- 提高手術(shù)接臺(tái)效率
- 2024秋五年級英語上冊 Unit 4 What can you do說課稿1 人教PEP
- 華南理工大學(xué)《大數(shù)據(jù)導(dǎo)論》2021-2022學(xué)年期末試卷
- 土地政策學(xué)形成性考核一-國開(SC)-參考資料
- 屋面瓦更換施工方案
評論
0/150
提交評論