版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
滬科版9年級下冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、下面的圖形中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.2、下列汽車標(biāo)志中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.3、已知⊙O的半徑為4,,則點(diǎn)A在()A.⊙O內(nèi) B.⊙O上 C.⊙O外 D.無法確定4、中國有悠久的金石文化,印信是金石文化的代表之一.南北朝時期的官員獨(dú)孤信的印信是迄今發(fā)現(xiàn)的中國古代唯一一枚楷書印.它的表面均由正方形和等邊三角形組成(如圖1),可以看成圖2所示的幾何體.從正面看該幾何體得到的平面圖形是()A. B. C. D.5、一個不透明的盒子里裝有a個除顏色外完全相同的球,其中有6個白球,每次將球充分?jǐn)噭蚝螅我饷?個球記下顏色然后再放回盒子里,通過如此大量重復(fù)試驗,發(fā)現(xiàn)摸到白球的頻率穩(wěn)定在0.4左右,則a的值約為()A.10 B.12 C.15 D.186、如圖,PA,PB是⊙O的切線,A,B為切點(diǎn),PA=4,則PB的長度為()A.3 B.4 C.5 D.67、如圖是由幾個小立方體所搭成的幾何體從上面看到的平面圖形,小正方形中的數(shù)字表示在該位置小立方體的個數(shù),則這個幾何體從正面看到的平面圖形為()A. B. C. D.8、如圖,在Rt△ABC中,,,點(diǎn)D、E分別是AB、AC的中點(diǎn).將△ADE繞點(diǎn)A順時針旋轉(zhuǎn)60°,射線BD與射線CE交于點(diǎn)P,在這個旋轉(zhuǎn)過程中有下列結(jié)論:①△AEC≌△ADB;②CP存在最大值為;③BP存在最小值為;④點(diǎn)P運(yùn)動的路徑長為.其中,正確的()A.①②③ B.①②④ C.①③④ D.②③④第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、一個不透明的袋子中放有3個紅球和5個白球,這些球除顏色外均相同,隨機(jī)從袋子中摸出一球,摸到紅球的概率為_____.2、如圖,在矩形中,,,F(xiàn)為中點(diǎn),P是線段上一點(diǎn),設(shè),連結(jié)并將它繞點(diǎn)P順時針旋轉(zhuǎn)90°得到線段,連結(jié)、,則在點(diǎn)P從點(diǎn)B向點(diǎn)C的運(yùn)動過程中,有下面四個結(jié)論:①當(dāng)時,;②點(diǎn)E到邊的距離為m;③直線一定經(jīng)過點(diǎn);④的最小值為.其中結(jié)論正確的是______.(填序號即可)3、有四張完全相同的卡片,正面分別標(biāo)有數(shù)字,,,,將四張卡片背面朝上,任抽一張卡片,卡片上的數(shù)字記為,再從剩下卡片中抽一張,卡片上的數(shù)字記為,則二次函數(shù)的對稱軸在軸左側(cè)的概率是__________.4、為了落實(shí)“雙減”政策,朝陽區(qū)一些學(xué)校在課后服務(wù)時段開設(shè)了與冬奧會項目冰壺有關(guān)的選修課.如圖,在冰壺比賽場地的一端畫有一些同心圓作為營壘,其中有兩個圓的半徑分別約為60cm和180cm,小明擲出一球恰好沿著小圓的切線滑行出界,則該球在大圓內(nèi)滑行的路徑MN的長度為______cm.5、如圖,⊙O的半徑為2,△ABC是⊙O的內(nèi)接三角形,連接OB、OC,若弦BC的長度為,則∠BAC=________度.6、把一個正六邊形繞其中心旋轉(zhuǎn),至少旋轉(zhuǎn)________度,可以與自身重合.7、在一個不透明的盒子里裝有若干個紅球和20個白球,這些球除顏色外其余全部相同,每次從袋子中摸出一球記下顏色后放回,通過多次重復(fù)實(shí)驗發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定在0.6附近,則袋中紅球大約有________個.三、解答題(7小題,每小題0分,共計0分)1、如圖,已知AB是的直徑,點(diǎn)D為弦BC中點(diǎn),過點(diǎn)C作切線,交OD延長線于點(diǎn)E,連結(jié)BE,OC.(1)求證:.(2)求證:BE是的切線.2、一張圓桌旁設(shè)有4個座位,丙先坐在了如圖所示的座位上,甲、乙、丁3人等可能地坐到①、②、③中的3個座位上.(1)甲坐在①號座位的概率是;(2)用畫樹狀圖或列表的方法,求甲與乙相鄰而坐的概率.3、對于平面直角坐標(biāo)系xOy中的圖形M,N,給出如下定義:若圖形M和圖形N有且只有一個公共點(diǎn)P,則稱點(diǎn)P是圖形M和圖形N的“關(guān)聯(lián)點(diǎn)”.已知點(diǎn),,,.(1)直線l經(jīng)過點(diǎn)A,的半徑為2,在點(diǎn)A,C,D中,直線l和的“關(guān)聯(lián)點(diǎn)”是______;(2)G為線段OA中點(diǎn),Q為線段DG上一點(diǎn)(不與點(diǎn)D,G重合),若和有“關(guān)聯(lián)點(diǎn)”,求半徑r的取值范圍;(3)的圓心為點(diǎn),半徑為t,直線m過點(diǎn)A且不與x軸重合.若和直線m的“關(guān)聯(lián)點(diǎn)”在直線上,請直接寫出b的取值范圍.4、如圖,已知弓形的長,弓高,(,并經(jīng)過圓心O).(1)請利用尺規(guī)作圖的方法找到圓心O;(2)求弓形所在的半徑的長.5、在平面直角坐標(biāo)系xOy中,給出如下定義:若點(diǎn)P在圖形M上,點(diǎn)Q在圖形N上,稱線段PQ長度的最小值為圖形M,N的“近距離”,記為d(M,N),特別地,若圖形M,N有公共點(diǎn),規(guī)定d(M,N)=0.已知:如圖,點(diǎn)A(,0),B(0,).(1)如果⊙O的半徑為2,那么d(A,⊙O)=,d(B,⊙O)=.(2)如果⊙O的半徑為r,且d(⊙O,線段AB)=0,求r的取值范圍;(3)如果C(m,0)是x軸上的動點(diǎn),⊙C的半徑為1,使d(⊙C,線段AB)<1,直接寫出m的取值范圍.6、4張相同的卡片上分別寫有數(shù)字0、1、、3,將卡片的背面朝上,洗后從中任意抽取1張,將卡片上的數(shù)字記錄下來;再從余下的3張卡片中任意抽取1張,同樣將卡片上的數(shù)字記錄下來.(1)第一次抽取的卡片上數(shù)字是非負(fù)數(shù)的概率為______;(2)小敏設(shè)計了如下游戲規(guī)則:當(dāng)?shù)谝淮斡涗浵聛淼臄?shù)字減去第二次記錄下來的數(shù)字所得結(jié)果為非負(fù)數(shù)時,甲獲勝;否則,乙獲勝.小敏設(shè)計的游戲規(guī)則公平嗎?為什么?(請用樹狀圖或列表等方法說明理由)7、如圖,在直角坐標(biāo)系中,將△ABC繞點(diǎn)A順時針旋轉(zhuǎn)90°.(1)畫出旋轉(zhuǎn)后的△AB1C1,并寫出B1、C1的坐標(biāo);(2)求線段AB在旋轉(zhuǎn)過程中掃過的面積.-參考答案-一、單選題1、A【詳解】解:A、既是軸對稱圖形又是中心對稱圖形,此項符合題意;B、是中心對稱圖形,不是軸對稱圖形,此項不符題意;C、是軸對稱圖形,不是中心對稱圖形,此項不符題意;D、是軸對稱圖形,不是中心對稱圖形,此項不符題意;故選:A.【點(diǎn)睛】本題考查了中心對稱圖形和軸對稱圖形,熟記中心對稱圖形的定義(在平面內(nèi),把一個圖形繞某點(diǎn)旋轉(zhuǎn),如果旋轉(zhuǎn)后的圖形與另一個圖形重合,那么這兩個圖形互為中心對稱圖形)和軸對稱圖形的定義(如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,那么這個圖形叫做軸對稱圖形)是解題關(guān)鍵.2、C【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;C、是軸對稱圖形,是中心對稱圖形,故此選項符合題意;D、不是軸對稱圖形,是中心對稱圖形,故此選項不符合題意;故選:C.【點(diǎn)睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.3、C【分析】根據(jù)⊙O的半徑r=4,且點(diǎn)A到圓心O的距離d=5知d>r,據(jù)此可得答案.【詳解】解:∵⊙O的半徑r=4,且點(diǎn)A到圓心O的距離d=5,∴d>r,∴點(diǎn)A在⊙O外,故選:C.【點(diǎn)睛】本題主要考查點(diǎn)與圓的位置關(guān)系,點(diǎn)與圓的位置關(guān)系有3種.設(shè)⊙O的半徑為r,點(diǎn)P到圓心的距離OP=d,則有:①點(diǎn)P在圓外?d>r;②點(diǎn)P在圓上?d=r;③點(diǎn)P在圓內(nèi)?d<r.4、D【分析】找到從正面看所得到的圖形即可.【詳解】解:從正面看是一個正六邊形,里面有2個矩形,故選D.【點(diǎn)睛】本題靈活考查了三種視圖之間的關(guān)系以及視圖和實(shí)物之間的關(guān)系,同時還考查了對圖形的想象力,難度適中.5、C【分析】在同樣條件下,大量反復(fù)試驗時,隨機(jī)事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從摸到白球的頻率穩(wěn)定在0.4左右得到比例關(guān)系,列出方程求解即可.【詳解】解:由題意可得,,解得,a=15.經(jīng)檢驗,a=15是原方程的解故選:C.【點(diǎn)睛】本題利用了用大量試驗得到的頻率可以估計事件的概率.關(guān)鍵是根據(jù)白球的頻率得到相應(yīng)的等量關(guān)系.6、B【分析】由切線的性質(zhì)可推出,.再根據(jù)直角三角形全等的判定條件“HL”,即可證明,即得出.【詳解】∵PA,PB是⊙O的切線,A,B為切點(diǎn),∴,,∴在和中,,∴,∴.故選:B【點(diǎn)睛】本題考查切線的性質(zhì),三角形全等的判定和性質(zhì).熟練掌握切線的性質(zhì)是解答本題的關(guān)鍵.7、B【分析】幾何體從上面看到的每個數(shù)字是該位置小立方體的個數(shù),可得從正面看共有3列,2層,從左往右的每列的小立方體的個數(shù)為1,2,1,從上往下的每層的小立方體的個數(shù)為1,3,即可求解【詳解】解:幾何體從上面看到的每個數(shù)字是該位置小立方體的個數(shù),可得從正面看共有3列,2層,從左往右每列的小立方體的個數(shù)為1,2,1,從上往下每層的小立方體的個數(shù)為1,3,所以這個幾何體從正面看到的平面圖形為故選:B【點(diǎn)睛】本題主要考查了幾何體的三視圖,熟練掌握三視圖是觀測者從三個不同位置觀察同一個幾何體,畫出的平面圖形;(1)從正面看:從物體前面向后面正投影得到的投影圖,它反映了空間幾何體的高度和長度;(2)從側(cè)面看:從物體左面向右面正投影得到的投影圖,它反映了空間幾何體的高度和寬度;(3)從上面看:從物體上面向下面正投影得到的投影圖,它反應(yīng)了空間幾何體的長度和寬度是解題的關(guān)鍵.8、B【分析】根據(jù),,點(diǎn)D、E分別是AB、AC的中點(diǎn).得出∠DAE=90°,AD=AE=,可證∠DAB=∠EAC,再證△DAB≌△EAC(SAS),可判斷①△AEC≌△ADB正確;作以點(diǎn)A為圓心,AE為半徑的圓,當(dāng)CP為⊙A的切線時,CP最大,根據(jù)△AEC≌△ADB,得出∠DBA=∠ECA,可證∠P=∠BAC=90°,CP為⊙A的切線,證明四邊形DAEP為正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判斷②CP存在最大值為正確;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判斷③BP存在最小值為不正確;取BC中點(diǎn)為O,連結(jié)AO,OP,AB=AC=6,∠BAC=90°,BP=CO=AO=,當(dāng)AE⊥CP時,CP與以點(diǎn)A為圓心,AE為半徑的圓相切,此時sin∠ACE=,可求∠ACE=30°,根據(jù)圓周角定理得出∠AOP=2∠ACE=60°,當(dāng)AD⊥BP′時,BP′與以點(diǎn)A為圓心,AE為半徑的圓相切,此時sin∠ABD=,可得∠ABD=30°根據(jù)圓周角定理得出∠AOP′=2∠ABD=60°,點(diǎn)P在以點(diǎn)O為圓心,OA長為半徑,的圓上運(yùn)動軌跡為,L可判斷④點(diǎn)P運(yùn)動的路徑長為正確即可.【詳解】解:∵,,點(diǎn)D、E分別是AB、AC的中點(diǎn).∴∠DAE=90°,AD=AE=,∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC(SAS),故①△AEC≌△ADB正確;作以點(diǎn)A為圓心,AE為半徑的圓,當(dāng)CP為⊙A的切線時,CP最大,∵△AEC≌△ADB,∴∠DBA=∠ECA,∴∠PBA+∠P=∠ECP+∠BAC,∴∠P=∠BAC=90°,∵CP為⊙A的切線,∴AE⊥CP,∴∠DPE=∠PEA=∠DAE=90°,∴四邊形DAEP為矩形,∵AD=AE,∴四邊形DAEP為正方形,∴PE=AE=3,在Rt△AEC中,CE=,∴CP最大=PE+EC=3+,故②CP存在最大值為正確;∵△AEC≌△ADB,∴BD=CE=,在Rt△BPC中,BP最小=,BP最短=BD-PD=-3,故③BP存在最小值為不正確;取BC中點(diǎn)為O,連結(jié)AO,OP,∵AB=AC=6,∠BAC=90°,∴BP=CO=AO=,當(dāng)AE⊥CP時,CP與以點(diǎn)A為圓心,AE為半徑的圓相切,此時sin∠ACE=,∴∠ACE=30°,∴∠AOP=2∠ACE=60°,當(dāng)AD⊥BP′時,BP′與以點(diǎn)A為圓心,AE為半徑的圓相切,此時sin∠ABD=,∴∠ABD=30°,∴∠AOP′=2∠ABD=60°,∴點(diǎn)P在以點(diǎn)O為圓心,OA長為半徑,的圓上運(yùn)動軌跡為,∵∠POP=∠POA+∠AOP′=60°+60°=120°,∴L.故④點(diǎn)P運(yùn)動的路徑長為正確;正確的是①②④.故選B.【點(diǎn)睛】本題考查圖形旋轉(zhuǎn)性質(zhì),線段中點(diǎn)定義,三角形全等判定與性質(zhì),圓的切線,正方形判定與性質(zhì),勾股定理,銳角三角函數(shù),弧長公式,本題難度大,利用輔助線最長準(zhǔn)確圖形是解題關(guān)鍵.二、填空題1、【分析】讓紅球的個數(shù)除以球的總數(shù)即為摸到紅球的概率.【詳解】解:∵紅球的個數(shù)為3個,球的總數(shù)為3+5=8(個),∴摸到紅球的概率為,故答案為:.【點(diǎn)睛】本題考查了概率公式的應(yīng)用,用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.2、②③④【分析】①當(dāng)在點(diǎn)的右邊時,得出即可判斷;②證明出即可判斷;③根據(jù)為等腰直角三角形,得出都是等腰直角三角形,得到即可判斷;④當(dāng)時,有最小值,計算即可.【詳解】解:,為等腰直角三角形,,當(dāng)在點(diǎn)的左邊時,,當(dāng)在點(diǎn)的右邊時,,故①錯誤;過點(diǎn)作,在和中,根據(jù)旋轉(zhuǎn)的性質(zhì)得:,,,,,故②正確;由①中得知為等腰直角三角形,,也是等腰直角三角形,過點(diǎn),不管P在上怎么運(yùn)動,得到都是等腰直角三角形,,即直線一定經(jīng)過點(diǎn),故③正確;是等腰直角三角形,當(dāng)時,有最小值,,為等腰直角三角形,,,由勾股定理:,,故④正確;故答案是:②③④.【點(diǎn)睛】本題是四邊形綜合題,考查了矩形的性質(zhì),全等三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì),勾股定理,等腰直角三角形,解題的關(guān)鍵是靈活運(yùn)用這些性質(zhì)進(jìn)行推理.3、【分析】根據(jù)二次函數(shù)的性質(zhì),對稱軸為,進(jìn)而可得同號,根據(jù)列表法即可求得二次函數(shù)的對稱軸在軸左側(cè)的概率【詳解】解:二次函數(shù)的對稱軸在軸左側(cè)對稱軸為,即同號,列表如下共有12種等可能結(jié)果,其中同號的結(jié)果有4種則二次函數(shù)的對稱軸在軸左側(cè)的概率為故答案為:【點(diǎn)睛】本題考查了二次函數(shù)圖象的性質(zhì),列表法求概率,掌握二次函數(shù)的圖象與系數(shù)的關(guān)系以及列表法求概率是解題的關(guān)鍵.4、【分析】如圖,設(shè)小圓的切線MN與小圓相切于點(diǎn)D,與大圓交于M、N,連接OD、OM,根據(jù)切線的性質(zhì)定理和垂徑定理求解即可.【詳解】解:如圖,設(shè)小圓的切線MN與小圓相切于點(diǎn)D,與大圓交于M、N,連接OD、OM,則OD⊥MN,∴MD=DN,在Rt△ODM中,OM=180cm,OD=60cm,∴cm,∴cm,即該球在大圓內(nèi)滑行的路徑MN的長度為cm,故答案為:.【點(diǎn)睛】本題考查切線的性質(zhì)定理、垂徑定理、勾股定理,熟練掌握切線的性質(zhì)和垂徑定理是解答的關(guān)鍵.5、60【分析】在Rt△BOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圓周角定理即可解決問題.【詳解】解:如圖作OE⊥BC于E.∵OE⊥BC,∴BE=EC=,∠BOE=∠COE,∴OE=1,∴OB=2OE,∴∠OBE=30°,∴∠BOE=∠COE=60°,∴∠BOC=120°,∴∠BAC=60°,故答案為:60.【點(diǎn)睛】本題考查三角形的外心與外接圓、圓周角定理.垂徑定理、勾股定理、直角三角形30度角性質(zhì)、等腰三角形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,靈活運(yùn)用所學(xué)知識解決問題.6、60【分析】正六邊形連接各個頂點(diǎn)和中心,這些連線會將360°分成6分,每份60°因此至少旋轉(zhuǎn)60°,正六邊形就能與自身重合.【詳解】360°÷6=60°故答案為:60【點(diǎn)睛】本題考查中心對稱圖形的性質(zhì),根據(jù)圖形特征找到最少旋轉(zhuǎn)度數(shù)是本題關(guān)鍵.7、30【分析】設(shè)袋中紅球有x個,根據(jù)題意用紅球數(shù)除以白球和紅球的總數(shù)等于紅球的頻率列出方程即可求出紅球數(shù).【詳解】解:設(shè)袋中紅球有x個,根據(jù)題意,得:,解并檢驗得:x=30.所以袋中紅球有30個.故答案為:30.【點(diǎn)睛】本題考查了利用頻率估計概率,解決本題的關(guān)鍵是用頻率的集中趨勢來估計概率,這個固定的近似值三、解答題1、(1)見解析(2)見解析【分析】(1)由垂徑定理可得OD⊥BC、CD=DB、∠CDE=∠BDE,然后說明Rt△CDE≌Rt△BDE,最后運(yùn)用全等三角形的性質(zhì)即可證明;(2)由等腰三角形的性質(zhì)可得∠ECB=∠EBC、∠OCB=∠OBC,再根據(jù)CE是切線得到∠OCE=90°,即∠OCB+∠BCE=90°,進(jìn)而說明BE⊥AB即可證明.(1)證明:∵點(diǎn)D為弦BC中點(diǎn)∴OD⊥BC,CD=DB∴∠CDE=∠BDE在Rt△CDE和Rt△BDECD=BD,∠CDE=∠BDE,DE=DE∴Rt△CDE≌Rt△BDE∴EC=EB.(2)證明:∵EC=EB,OC=OB∴∠ECB=∠EBC,∠OCB=∠OBC,∵CE是切線∴∠OCE=90°,即∠OCB+∠BCE=90°∴∠OBC+∠EBC=90°,即BE⊥AB∴BE是的切線.【點(diǎn)睛】本題主要考查了垂徑定理、全等三角形的判定與性質(zhì)、切線的證明、等腰三角形的性質(zhì)等知識點(diǎn),掌握垂徑定理是解答本題的關(guān)鍵.2、(1)(2)【分析】(1)根據(jù)概率公式直角計算即可;(2)畫樹狀圖可知共有6種等可能的結(jié)果,而甲與乙相鄰而坐的結(jié)果有4種,最后用概率公式求解即可.(1)解:∵丙坐了一張座位,∴甲坐在①號座位的概率是.故答案是.(2)解:根據(jù)題意畫樹狀圖如圖:共有6種等可能的結(jié)果,甲與乙兩同學(xué)恰好相鄰而坐的結(jié)果有4種,∴甲與乙相鄰而坐的概率為=.【點(diǎn)睛】本題主要考查了概率公式以及運(yùn)用樹狀圖法求概率,正確畫出樹狀圖是解答本題的關(guān)鍵.3、(1)C(2)(3)【分析】(1)作出圖形,根據(jù)切線的定義結(jié)合“關(guān)聯(lián)點(diǎn)”即可求解;(2)根據(jù)題意,為等邊三角形,則僅與相切時,和有“關(guān)聯(lián)點(diǎn)”,進(jìn)而求得半徑r的取值范圍;(3)根據(jù)關(guān)聯(lián)點(diǎn)以及切線的性質(zhì),直徑所對的角是直角,找到點(diǎn)的運(yùn)動軌跡是以為圓心半徑為的半圓在軸上的部分,進(jìn)而即可求得的值.(1)解:如圖,,,,,,軸,.的半徑為2,直線與相切直線l和的“關(guān)聯(lián)點(diǎn)”是點(diǎn)故答案為:(2)如圖,根據(jù)題意與有“關(guān)聯(lián)點(diǎn)”,則與相切,且與相離,是等邊三角形為的中點(diǎn),則當(dāng)與相切時,則點(diǎn)為的內(nèi)心半徑r的取值范圍為:(3)如圖,設(shè)和直線m的“關(guān)聯(lián)點(diǎn)”為,,交軸于點(diǎn),是的切線,的圓心為點(diǎn),半徑為t,軸是的切線點(diǎn)的運(yùn)動軌跡是以為圓心半徑為的半圓在軸上的部分,則點(diǎn),在直線上,當(dāng)直線與相切時,即當(dāng)點(diǎn)與點(diǎn)重合時,最大,此時與軸交于點(diǎn),當(dāng)點(diǎn)運(yùn)動到點(diǎn)時,則過點(diǎn),則解得b的取值范圍為:【點(diǎn)睛】本題考查了切線的性質(zhì)與判定,切線長定理,勾股定理,一次函數(shù)與坐標(biāo)軸交點(diǎn)問題,等邊三角形的性質(zhì),等邊三角形的內(nèi)心的性質(zhì),掌握以上知識是解題的關(guān)鍵.4、(1)見解析(2)10【分析】(1)作BC的垂直平分線,與直線CD的交點(diǎn)即為圓心;(2)連接OA,根據(jù)勾股定理列出方程即可求解.(1)解:如圖所示,點(diǎn)O即是圓心;(2)解:連接OA,∵,并經(jīng)過圓心O,,∴,∵,∴解得,,答:半徑為10.【點(diǎn)睛】本題考查了垂徑定理和確定圓心,解題關(guān)鍵是熟練作圖確定圓心,利用垂徑定理和勾股定理求半徑.5、(1)0,;(2);(3)【分析】(1)根據(jù)新定義,即可求解;(2)過點(diǎn)O作OD⊥AB于點(diǎn)D,根據(jù)三角形的面積,可得,再由d(⊙O,線段AB)=0,可得當(dāng)⊙O的半徑等于OD時最小,當(dāng)⊙O的半徑等于OB時最大,即可求解;(3)過點(diǎn)C作CN⊥AB于點(diǎn)N,利用銳角三角函數(shù),可得∠OAB=60°,然后分三種情況:當(dāng)點(diǎn)C在點(diǎn)A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 循證護(hù)理在手術(shù)護(hù)理中的角色
- 腦血栓患者家庭護(hù)理技巧
- 護(hù)理專業(yè)患者權(quán)利保護(hù)
- 護(hù)理繼續(xù)教育與專業(yè)成長
- 券商運(yùn)營面試技巧
- 解決醫(yī)患關(guān)系六大對策
- 邀約話術(shù)避坑指南
- 醫(yī)患關(guān)系的信任危機(jī)
- 會計插本押題真題及答案
- 2025年知識競答常識題庫及答案
- 瀝青混凝土心墻碾壓石渣壩施工方案
- 裝載機(jī)鏟斗的設(shè)計
- 中國民俗文化概說(山東聯(lián)盟)智慧樹知到答案2024年青島理工大學(xué)
- 基礎(chǔ)有機(jī)化學(xué)實(shí)驗智慧樹知到期末考試答案章節(jié)答案2024年浙江大學(xué)
- 2024年北京市人力資源市場薪酬狀況白皮書
- 數(shù)字孿生智慧水利整體規(guī)劃建設(shè)方案
- 業(yè)委會換屆問卷調(diào)查表
- 慕課《如何寫好科研論文》期末考試答案
- 國開作業(yè)《建筑測量》學(xué)習(xí)過程(含課程實(shí)驗)表現(xiàn)-參考(含答案)33
- 幼兒園中班安全教育《這些東西能吃嗎》
- 電力線路維護(hù)檢修規(guī)程
評論
0/150
提交評論