版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025-2026學年江蘇省南通市通州海安數學高三上期末達標測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,且關于的方程有且只有一個實數根,則實數的取值范圍().A. B. C. D.2.若為過橢圓中心的弦,為橢圓的焦點,則△面積的最大值為()A.20 B.30 C.50 D.603.把函數的圖象向右平移個單位,得到函數的圖象.給出下列四個命題①的值域為②的一個對稱軸是③的一個對稱中心是④存在兩條互相垂直的切線其中正確的命題個數是()A.1 B.2 C.3 D.44.已知銳角滿足則()A. B. C. D.5.已知為定義在上的奇函數,若當時,(為實數),則關于的不等式的解集是()A. B. C. D.6.函數(其中是自然對數的底數)的大致圖像為()A. B. C. D.7.下圖所示函數圖象經過何種變換可以得到的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位8.已知實數滿足約束條件,則的最小值為()A.-5 B.2 C.7 D.119.2020年是脫貧攻堅決戰(zhàn)決勝之年,某市為早日實現目標,現將甲、乙、丙、丁4名干部派遺到、、三個貧困縣扶貧,要求每個貧困縣至少分到一人,則甲被派遣到縣的分法有()A.6種 B.12種 C.24種 D.36種10.若非零實數、滿足,則下列式子一定正確的是()A. B.C. D.11.平行四邊形中,已知,,點、分別滿足,,且,則向量在上的投影為()A.2 B. C. D.12.不等式的解集記為,有下面四個命題:;;;.其中的真命題是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數的圖像向左平移個單位得到函數的圖像.則在區(qū)間上的最小值為________.14.若復數(是虛數單位),則________15.運行下面的算法偽代碼,輸出的結果為_____.16.已知向量,,且,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列滿足,,其前n項和為.(1)通過計算,,,猜想并證明數列的通項公式;(2)設數列滿足,,,若數列是單調遞減數列,求常數t的取值范圍.18.(12分)已知函數,.(Ⅰ)判斷函數在區(qū)間上零點的個數,并證明;(Ⅱ)函數在區(qū)間上的極值點從小到大分別為,,證明:19.(12分)中國古建筑中的窗飾是藝術和技術的統(tǒng)一體,給人于美的享受.如圖(1)為一花窗;圖(2)所示是一扇窗中的一格,呈長方形,長30cm,寬26cm,其內部窗芯(不含長方形邊框)用一種條形木料做成,由兩個菱形和六根支條構成,整個窗芯關于長方形邊框的兩條對稱軸成軸對稱.設菱形的兩條對角線長分別為xcm和ycm,窗芯所需條形木料的長度之和為L.(1)試用x,y表示L;(2)如果要求六根支條的長度均不小于2cm,每個菱形的面積為130cm2,那么做這樣一個窗芯至少需要多長的條形木料(不計榫卯及其它損耗)?20.(12分)記無窮數列的前項中最大值為,最小值為,令,則稱是“極差數列”.(1)若,求的前項和;(2)證明:的“極差數列”仍是;(3)求證:若數列是等差數列,則數列也是等差數列.21.(12分)已知函數,.(1)若對于任意實數,恒成立,求實數的范圍;(2)當時,是否存在實數,使曲線:在點處的切線與軸垂直?若存在,求出的值;若不存在,說明理由.22.(10分)已知函數.(1)求函數的最小正周期以及單調遞增區(qū)間;(2)已知,若,,,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
根據條件可知方程有且只有一個實根等價于函數的圖象與直線只有一個交點,作出圖象,數形結合即可.【詳解】解:因為條件等價于函數的圖象與直線只有一個交點,作出圖象如圖,由圖可知,,故選:B.本題主要考查函數圖象與方程零點之間的關系,數形結合是關鍵,屬于基礎題.2.D【解析】
先設A點的坐標為,根據對稱性可得,在表示出面積,由圖象遏制,當點A在橢圓的頂點時,此時面積最大,再結合橢圓的標準方程,即可求解.【詳解】由題意,設A點的坐標為,根據對稱性可得,則的面積為,當最大時,的面積最大,由圖象可知,當點A在橢圓的上下頂點時,此時的面積最大,又由,可得橢圓的上下頂點坐標為,所以的面積的最大值為.故選:D.本題主要考查了橢圓的標準方程及簡單的幾何性質,以及三角形面積公式的應用,著重考查了數形結合思想,以及化歸與轉化思想的應用.3.C【解析】
由圖象變換的原則可得,由可求得值域;利用代入檢驗法判斷②③;對求導,并得到導函數的值域,即可判斷④.【詳解】由題,,則向右平移個單位可得,,的值域為,①錯誤;當時,,所以是函數的一條對稱軸,②正確;當時,,所以的一個對稱中心是,③正確;,則,使得,則在和處的切線互相垂直,④正確.即②③④正確,共3個.故選:C本題考查三角函數的圖像變換,考查代入檢驗法判斷余弦型函數的對稱軸和對稱中心,考查導函數的幾何意義的應用.4.C【解析】
利用代入計算即可.【詳解】由已知,,因為銳角,所以,,即.故選:C.本題考查二倍角的正弦、余弦公式的應用,考查學生的運算能力,是一道基礎題.5.A【解析】
先根據奇函數求出m的值,然后結合單調性求解不等式.【詳解】據題意,得,得,所以當時,.分析知,函數在上為增函數.又,所以.又,所以,所以,故選A.本題主要考查函數的性質應用,側重考查數學抽象和數學運算的核心素養(yǎng).6.D【解析】由題意得,函數點定義域為且,所以定義域關于原點對稱,且,所以函數為奇函數,圖象關于原點對稱,故選D.7.D【解析】
根據函數圖像得到函數的一個解析式為,再根據平移法則得到答案.【詳解】設函數解析式為,根據圖像:,,故,即,,,取,得到,函數向右平移個單位得到.故選:.本題考查了根據函數圖像求函數解析式,三角函數平移,意在考查學生對于三角函數知識的綜合應用.8.A【解析】
根據約束條件畫出可行域,再將目標函數化成斜截式,找到截距的最小值.【詳解】由約束條件,畫出可行域如圖變?yōu)闉樾甭蕿?3的一簇平行線,為在軸的截距,最小的時候為過點的時候,解得所以,此時故選A項本題考查線性規(guī)劃求一次相加的目標函數,屬于常規(guī)題型,是簡單題.9.B【解析】
分成甲單獨到縣和甲與另一人一同到縣兩種情況進行分類討論,由此求得甲被派遣到縣的分法數.【詳解】如果甲單獨到縣,則方法數有種.如果甲與另一人一同到縣,則方法數有種.故總的方法數有種.故選:B本小題主要考查簡答排列組合的計算,屬于基礎題.10.C【解析】
令,則,,將指數式化成對數式得、后,然后取絕對值作差比較可得.【詳解】令,則,,,,,因此,.故選:C.本題考查了利用作差法比較大小,同時也考查了指數式與對數式的轉化,考查推理能力,屬于中等題.11.C【解析】
將用向量和表示,代入可求出,再利用投影公式可得答案.【詳解】解:,得,則向量在上的投影為.故選:C.本題考查向量的幾何意義,考查向量的線性運算,將用向量和表示是關鍵,是基礎題.12.A【解析】
作出不等式組表示的可行域,然后對四個選項一一分析可得結果.【詳解】作出可行域如圖所示,當時,,即的取值范圍為,所以為真命題;為真命題;為假命題.故選:A此題考查命題的真假判斷與應用,著重考查作圖能力,熟練作圖,正確分析是關鍵,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
注意平移是針對自變量x,所以,再利用整體換元法求值域(最值)即可.【詳解】由已知,,,又,故,,所以的最小值為.故答案為:.本題考查正弦型函數在給定區(qū)間上的最值問題,涉及到圖象的平移變換、輔助角公式的應用,是一道基礎題.14.【解析】
直接根據復數的代數形式四則運算法則計算即可.【詳解】,.本題主要考查復數的代數形式四則運算法則的應用.15.【解析】
模擬程序的運行過程知該程序運行后計算并輸出的值,用裂項相消法求和即可.【詳解】模擬程序的運行過程知,該程序運行后執(zhí)行:.故答案為:本題考查算法語句中的循環(huán)語句和裂項相消法求和;掌握循環(huán)體執(zhí)行的次數是求解本題的關鍵;屬于基礎題.16.【解析】
根據垂直向量的坐標表示可得出關于實數的等式,即可求得實數的值.【詳解】,且,則,解得.故答案為:.本題考查利用向量垂直求參數,涉及垂直向量的坐標表示,考查計算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),證明見解析;(2)【解析】
(1)首先利用賦值法求出的值,進一步利用定義求出數列的通項公式;(2)首先利用疊乘法求出數列的通項公式,進一步利用數列的單調性和基本不等式的應用求出參數的范圍.【詳解】(1)數列滿足,,其前項和為.所以,,則,,,所以猜想得:.證明:由于,所以,則:(常數),所以數列是首項為1,公差為的等差數列.所以,整理得.(2)數列滿足,,所以,則,所以.則,所以,所以,整理得,由于,所以,即.本題考查的知識要點:數列的通項公式的求法及應用,疊乘法的應用,函數的單調性在數列中的應用,基本不等式的應用,主要考察學生的運算能力和轉換能力,屬于中檔題型.18.(Ⅰ)函數在區(qū)間上有兩個零點.見解析(Ⅱ)見解析【解析】
(Ⅰ)根據題意,,利用導函數研究函數的單調性,分類討論在區(qū)間的單調區(qū)間和極值,進而研究零點個數問題;(Ⅱ)求導,,由于在區(qū)間上的極值點從小到大分別為,,求出,利用導數結合單調性和極值點,即可證明出.【詳解】解:(Ⅰ),,當時,,,在區(qū)間上單調遞減,,在區(qū)間上無零點;當時,,在區(qū)間上單調遞增,,在區(qū)間上唯一零點;當時,,,在區(qū)間上單調遞減,,;在區(qū)間上唯一零點;綜上可知,函數在區(qū)間上有兩個零點.(Ⅱ),,由(Ⅰ)知在無極值點;在有極小值點,即為;在有極大值點,即為,由,即,,2…,,,,,,以及的單調性,,,,,由函數在單調遞增,得,,由在單調遞減,得,即,故.本題考查利用導數研究函數的單調性和極值,通過導數解決函數零點個數問題和證明不等式,考查轉化思想和計算能力.19.(1)(2)【解析】試題分析:(1)由條件可先求水平方向每根支條長,豎直方向每根支條長為,因此所需木料的長度之和L=(2)先確定范圍由可得,再由面積為130cm2,得,轉化為一元函數,令,則在上為增函數,解得L有最小值.試題解析:(1)由題意,水平方向每根支條長為cm,豎直方向每根支條長為cm,菱形的邊長為cm.從而,所需木料的長度之和L=cm.(2)由題意,,即,又由可得.所以.令,其導函數在上恒成立,故在上單調遞減,所以可得.則=.因為函數和在上均為增函數,所以在上為增函數,故當,即時L有最小值.答:做這樣一個窗芯至少需要cm長的條形木料.考點:函數應用題20.(1)(2)證明見解析(3)證明見解析【解析】
(1)由是遞增數列,得,由此能求出的前項和.(2)推導出,,由此能證明的“極差數列”仍是.(3)證當數列是等差數列時,設其公差為,,是一個單調遞增數列,從而,,由,,,分類討論,能證明若數列是等差數列,則數列也是等差數列.【詳解】(1)解:∵無窮數列的前項中最大值為,最小值為,,,是遞增數列,∴,∴的前項和.(2)證明:∵,,∴,∴,∵,∴,∴的“極差數列”仍是(3)證明:當數列是等差數列時,設其公差為,,根據,的定義,得:,,且兩個不等式中至少有一個取等號,當時,必有,∴,∴是一個單調遞增數列,∴,,∴,∴,∴是等差數列,當時,則必有,∴,∴是一個單調遞減數列,∴,,∴,∴.∴是等差數列,當時,,∵,中必有一個為0,根據上式,一個為0,為一個必為0,∴,,∴數列是常數數列,則數列是等差數列.綜上,若數列是等差數列,則數列也是等差數列.本小題主要考查新定義數列的理解和運用,考查等差數列的證明,考查數列的單調性,考查化歸與轉化的數學思想方法,屬于難題.21.(1);(2)不存在實數,使曲線在點處的切線與軸垂直.【解析】
(1)分類時,恒成立,時,分離參數為,引入新函數,利用導數求得函數最值即可;(2),導出導函數,問題轉化為在上有解.再用導數研究的性質可得.【詳解】解:(1)因為當時,恒成立,所以,若,為任意實數,恒成立.若,恒成立,即當時,,設,,當時,,則在上單調遞增,當時,,則在上單調遞減,所以當時,取得最大值.,所以,要使時,恒成立,的取值范圍為.(2)由題意,曲線為:.令,所以,設,則,當時,,故在上為增函數,因此在區(qū)間上的最小值,所以,當時,,,所以,曲線在點處的切線與軸垂直等價于方程在上有實數解.而,即方程無實數解.故不存在實數,使曲線在點處的切線與軸垂直.本題考查不等式恒成立,考查用導數的幾何意義,由導數幾何把問題進行轉化是解題關鍵.本題屬于困難題.22.(1)最小正周期為,單調遞增區(qū)間
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)戰(zhàn)略管理與執(zhí)行監(jiān)控
- 2025年通信設備維護與維修操作手冊
- 2025年企業(yè)投資決策實施手冊
- 夫妻共同債務制度
- 超市員工培訓及安全管理制度
- 超市商品退換貨處理制度
- 2026年鄭州大學生態(tài)與環(huán)境學院面向社會公開招聘非事業(yè)編制(勞務派遣)工作人員備考題庫及答案詳解1套
- 2026年湖南省事業(yè)單位面向新疆吐魯番籍少數民族高校畢業(yè)生專項招聘(空缺崗位)7人備考題庫及一套參考答案詳解
- 2026年鹽城市工業(yè)和備考題庫化局直屬事業(yè)單位公開招錄政府購買服務用工人員的備考題庫含答案詳解
- 2026年荔城區(qū)教師進修學校公開選聘教研員備考題庫有答案詳解
- 2026年四川單招單招考前沖刺測試題卷及答案
- 2026年全國公務員考試行測真題解析及答案
- 2025新疆華夏航空招聘筆試歷年難易錯考點試卷帶答案解析
- (2025)70周歲以上老年人換長久駕照三力測試題庫(附答案)
- 2026年泌尿護理知識培訓課件
- 2026云南省產品質量監(jiān)督檢驗研究院招聘編制外人員2人考試參考試題及答案解析
- 泥漿護壁成孔灌注樁施工操作規(guī)程
- 舞臺燈光效果課件
- 藝術史課件教學課件
- 2026元旦主題班會:馬年猜猜樂馬年成語教學課件
- ARDS患者肺保護性機械通氣方案
評論
0/150
提交評論