2025-2026學(xué)年湖南省瀏陽一中、株洲二中等湘東七校高三數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題_第1頁
2025-2026學(xué)年湖南省瀏陽一中、株洲二中等湘東七校高三數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題_第2頁
2025-2026學(xué)年湖南省瀏陽一中、株洲二中等湘東七校高三數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題_第3頁
2025-2026學(xué)年湖南省瀏陽一中、株洲二中等湘東七校高三數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題_第4頁
2025-2026學(xué)年湖南省瀏陽一中、株洲二中等湘東七校高三數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025-2026學(xué)年湖南省瀏陽一中、株洲二中等湘東七校高三數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)的圖象向左平移個單位后得到函數(shù)的圖象,則的最小值為()A. B. C. D.2.ΔABC中,如果lgcosA=lgsinA.等邊三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形3.已知三棱錐的所有頂點都在球的球面上,平面,,若球的表面積為,則三棱錐的體積的最大值為()A. B. C. D.4.已知x,y滿足不等式組,則點所在區(qū)域的面積是()A.1 B.2 C. D.5.已知不等式組表示的平面區(qū)域的面積為9,若點,則的最大值為()A.3 B.6 C.9 D.126.定義在上的奇函數(shù)滿足,若,,則()A. B.0 C.1 D.27.若函數(shù)有且僅有一個零點,則實數(shù)的值為()A. B. C. D.8.已知,為兩條不同直線,,,為三個不同平面,下列命題:①若,,則;②若,,則;③若,,則;④若,,則.其中正確命題序號為()A.②③ B.②③④ C.①④ D.①②③9.已知滿足,則()A. B. C. D.10.已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},則下列結(jié)論正確的是()A.﹣3∈AB.3BC.A∩B=BD.A∪B=B11.的展開式中的系數(shù)是-10,則實數(shù)()A.2 B.1 C.-1 D.-212.已知集合,,則為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,分別為內(nèi)角,,的對邊,,,,則的面積為__________.14.如圖,直線是曲線在處的切線,則________.15.已知、為正實數(shù),直線截圓所得的弦長為,則的最小值為__________.16.已知圓,直線與圓交于兩點,,若,則弦的長度的最大值為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)己知的內(nèi)角的對邊分別為.設(shè)(1)求的值;(2)若,且,求的值.18.(12分)已知分別是內(nèi)角的對邊,滿足(1)求內(nèi)角的大?。?)已知,設(shè)點是外一點,且,求平面四邊形面積的最大值.19.(12分)在中,角的對邊分別為,且,.(1)求的值;(2)若求的面積.20.(12分)已知函數(shù),.(1)若不等式的解集為,求的值.(2)若當(dāng)時,,求的取值范圍.21.(12分)設(shè)函數(shù),().(1)若曲線在點處的切線方程為,求實數(shù)a、m的值;(2)若對任意恒成立,求實數(shù)a的取值范圍;(3)關(guān)于x的方程能否有三個不同的實根?證明你的結(jié)論.22.(10分)設(shè)函數(shù).(1)求不等式的解集;(2)若的最小值為,且,求的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

首先求得平移后的函數(shù),再根據(jù)求的最小值.【詳解】根據(jù)題意,的圖象向左平移個單位后,所得圖象對應(yīng)的函數(shù),所以,所以.又,所以的最小值為.故選:A本題考查三角函數(shù)的圖象變換,誘導(dǎo)公式,意在考查平移變換,屬于基礎(chǔ)題型.2.B【解析】

化簡得lgcosA=lgsinCsinB=﹣lg2,即cosA=sinCsinB=12,結(jié)合0<A<π,可求A=π【詳解】由lgcosA=lgsinC-lgsinB=-lg2,可得lgcosA=∵0<A<π,∴A=π3,B+C=2π3,∴sinC=12sinB=12sin2π3-C=34cosC+故選:B本題主要考查了對數(shù)的運算性質(zhì)的應(yīng)用,兩角差的正弦公式的應(yīng)用,解題的關(guān)鍵是靈活利用基本公式,屬于基礎(chǔ)題.3.B【解析】

由題意畫出圖形,設(shè)球0得半徑為R,AB=x,AC=y,由球0的表面積為20π,可得R2=5,再求出三角形ABC外接圓的半徑,利用余弦定理及基本不等式求xy的最大值,代入棱錐體積公式得答案.【詳解】設(shè)球的半徑為,,,由,得.如圖:設(shè)三角形的外心為,連接,,,可得,則.在中,由正弦定理可得:,即,由余弦定理可得,,.則三棱錐的體積的最大值為.故選:.本題考查三棱錐的外接球、三棱錐的側(cè)面積、體積,基本不等式等基礎(chǔ)知識,考查空間想象能力、邏輯思維能力、運算求解能力,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,是中檔題.4.C【解析】

畫出不等式表示的平面區(qū)域,計算面積即可.【詳解】不等式表示的平面區(qū)域如圖:直線的斜率為,直線的斜率為,所以兩直線垂直,故為直角三角形,易得,,,,所以陰影部分面積.故選:C.本題考查不等式組表示的平面區(qū)域面積的求法,考查數(shù)形結(jié)合思想和運算能力,屬于??碱}.5.C【解析】

分析:先畫出滿足約束條件對應(yīng)的平面區(qū)域,利用平面區(qū)域的面積為9求出,然后分析平面區(qū)域多邊形的各個頂點,即求出邊界線的交點坐標(biāo),代入目標(biāo)函數(shù)求得最大值.詳解:作出不等式組對應(yīng)的平面區(qū)域如圖所示:則,所以平面區(qū)域的面積,解得,此時,由圖可得當(dāng)過點時,取得最大值9,故選C.點睛:該題考查的是有關(guān)線性規(guī)劃的問題,在求解的過程中,首先需要正確畫出約束條件對應(yīng)的可行域,之后根據(jù)目標(biāo)函數(shù)的形式,判斷z的幾何意義,之后畫出一條直線,上下平移,判斷哪個點是最優(yōu)解,從而聯(lián)立方程組,求得最優(yōu)解的坐標(biāo),代入求值,要明確目標(biāo)函數(shù)的形式大體上有三種:斜率型、截距型、距離型;根據(jù)不同的形式,應(yīng)用相應(yīng)的方法求解.6.C【解析】

首先判斷出是周期為的周期函數(shù),由此求得所求表達式的值.【詳解】由已知為奇函數(shù),得,而,所以,所以,即的周期為.由于,,,所以,,,.所以,又,所以.故選:C本小題主要考查函數(shù)的奇偶性和周期性,屬于基礎(chǔ)題.7.D【解析】

推導(dǎo)出函數(shù)的圖象關(guān)于直線對稱,由題意得出,進而可求得實數(shù)的值,并對的值進行檢驗,即可得出結(jié)果.【詳解】,則,,,所以,函數(shù)的圖象關(guān)于直線對稱.若函數(shù)的零點不為,則該函數(shù)的零點必成對出現(xiàn),不合題意.所以,,即,解得或.①當(dāng)時,令,得,作出函數(shù)與函數(shù)的圖象如下圖所示:此時,函數(shù)與函數(shù)的圖象有三個交點,不合乎題意;②當(dāng)時,,,當(dāng)且僅當(dāng)時,等號成立,則函數(shù)有且只有一個零點.綜上所述,.故選:D.本題考查利用函數(shù)的零點個數(shù)求參數(shù),考查函數(shù)圖象對稱性的應(yīng)用,解答的關(guān)鍵就是推導(dǎo)出,在求出參數(shù)后要對參數(shù)的值進行檢驗,考查分析問題和解決問題的能力,屬于中等題.8.C【解析】

根據(jù)直線與平面,平面與平面的位置關(guān)系進行判斷即可.【詳解】根據(jù)面面平行的性質(zhì)以及判定定理可得,若,,則,故①正確;若,,平面可能相交,故②錯誤;若,,則可能平行,故③錯誤;由線面垂直的性質(zhì)可得,④正確;故選:C本題主要考查了判斷直線與平面,平面與平面的位置關(guān)系,屬于中檔題.9.A【解析】

利用兩角和與差的余弦公式展開計算可得結(jié)果.【詳解】,.故選:A.本題考查三角求值,涉及兩角和與差的余弦公式的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.10.C【解析】試題分析:集合考點:集合間的關(guān)系11.C【解析】

利用通項公式找到的系數(shù),令其等于-10即可.【詳解】二項式展開式的通項為,令,得,則,所以,解得.故選:C本題考查求二項展開式中特定項的系數(shù),考查學(xué)生的運算求解能力,是一道容易題.12.C【解析】

分別求解出集合的具體范圍,由集合的交集運算即可求得答案.【詳解】因為集合,,所以故選:C本題考查對數(shù)函數(shù)的定義域求法、一元二次不等式的解法及集合的交集運算,考查基本運算能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據(jù)題意,利用余弦定理求得,再運用三角形的面積公式即可求得結(jié)果.【詳解】解:由于,,,∵,∴,,由余弦定理得,解得,∴的面積.故答案為:.本題考查余弦定理的應(yīng)用和三角形的面積公式,考查計算能力.14..【解析】

求出切線的斜率,即可求出結(jié)論.【詳解】由圖可知直線過點,可求出直線的斜率,由導(dǎo)數(shù)的幾何意義可知,.故答案為:.本題考查導(dǎo)數(shù)與曲線的切線的幾何意義,屬于基礎(chǔ)題.15.【解析】

先根據(jù)弦長,半徑,弦心距之間的關(guān)系列式求得,代入整理得,利用基本不等式求得最值.【詳解】解:圓的圓心為,則到直線的距離為,由直線截圓所得的弦長為可得,整理得,解得或(舍去),令,又,當(dāng)且僅當(dāng)時,等號成立,則.故答案為:.本題考查直線和圓的位置關(guān)系,考核基本不等式求最值,關(guān)鍵是對目標(biāo)式進行變形,變成能用基本不等式求最值的形式,也可用換元法進行變形,是中檔題.16.【解析】

設(shè)為的中點,根據(jù)弦長公式,只需最小,在中,根據(jù)余弦定理將表示出來,由,得到,結(jié)合弦長公式得到,求出點的軌跡方程,即可求解.【詳解】設(shè)為的中點,在中,,①在中,,②①②得,即,,.,得.所以,.故答案為:.本題考查直線與圓的位置關(guān)系、相交弦長的最值,解題的關(guān)鍵求出點的軌跡方程,考查計算求解能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】

(1)由正弦定理將,轉(zhuǎn)化,即,由余弦定理求得,再由平方關(guān)系得再求解.(2)由,得,結(jié)合再求解.【詳解】(1)由正弦定理,得,即,則,而,又,解得,故.(2)因為,則,因為,故,故,解得,故,則.本題考查正弦定理、余弦定理、三角形的面積公式,考查運算求解能力以及化歸與轉(zhuǎn)化思想,屬于中檔題.18.(1)(2)【解析】

(1)首先利用誘導(dǎo)公式及兩角和的余弦公式得到,再由同角三角三角的基本關(guān)系得到,即可求出角;(2)由(1)知,是正三角形,設(shè),由余弦定理可得:,則,得到,再利用輔助角公式化簡,最后由正弦函數(shù)的性質(zhì)求得最大值;【詳解】解:(1)由,,,,,,,;(2)由(1)知,是正三角形,設(shè),由余弦定理得:,,,所以當(dāng)時有最大值本題考查同角三角函數(shù)的基本關(guān)系,三角恒等變換公式的應(yīng)用,三角形面積公式的應(yīng)用,以及正弦函數(shù)的性質(zhì),屬于中檔題.19.(1)3(2)78【解析】試題分析:(1)由兩角和差公式得到,由三角形中的數(shù)值關(guān)系得到,進而求得數(shù)值;(2)由三角形的三個角的關(guān)系得到,再由正弦定理得到b=15,故面積公式為.解析:(1)在中,由,得為銳角,所以,所以,所以.(2)在三角形中,由,所以,由,由正弦定理,得,所以的面積.20.(1);(2)【解析】試題分析:(1)求得的解集,根據(jù)集合相等,列出方程組,即可求解的值;(2)①當(dāng)時,恒成立,②當(dāng)時,轉(zhuǎn)化為,設(shè),求得函數(shù)的最小值,即可求解的取值范圍.試題解析:(1)由,得,因為不等式的解集為,所以,故不等式可化為,解得,所以,解得.(2)①當(dāng)時,恒成立,所以.②當(dāng)時,可化為,設(shè),則,所以當(dāng)時,,所以.綜上,的取值范圍是.21.(1),;(2);(3)不能,證明見解析【解析】

(1)求出,結(jié)合導(dǎo)數(shù)的幾何意義即可求解;(2)構(gòu)造,則原題等價于對任意恒成立,即時,,利用導(dǎo)數(shù)求最值即可,值得注意的是,可以通過代特殊值,由求出的范圍,再研究該范圍下單調(diào)性;(3)構(gòu)造并進行求導(dǎo),研究單調(diào)性,結(jié)合函數(shù)零點存在性定理證明即可.【詳解】(1),,曲線在點處的切線方程為,,解得.(2)記,整理得,由題知,對任意恒成立,對任意恒成立,即時,,,解得,當(dāng)時,對任意,,,,,即在單調(diào)遞增,此時,實數(shù)的取值范圍為.(3)關(guān)于的方程不可能有三個不同的實根,以下給出證明:記,,則關(guān)于的方程有三個不同的實根,等價于函數(shù)有三個零點,,當(dāng)時,,記,則,在單調(diào)遞增,,即,,在單調(diào)遞增,至多有一個零點;當(dāng)時,記,則,在單調(diào)遞增,即在單調(diào)遞增,至多有一個零點,則至多有兩個單調(diào)區(qū)間,至多有兩個零點.因此,不可能有三個零點.關(guān)于的方程不可能有三個不同的實

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論