版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025年貴州省遵義市求是高級中學(xué)數(shù)學(xué)高三上期末調(diào)研模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)是虛數(shù)單位,則()A. B. C. D.2.某大學(xué)計算機學(xué)院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲從人工智能領(lǐng)域的語音識別、人臉識別,數(shù)據(jù)分析、機器學(xué)習(xí)、服務(wù)器開發(fā)五個方向展開研究,且每個方向均有研究生學(xué)習(xí),其中劉澤同學(xué)學(xué)習(xí)人臉識別,則這6名研究生不同的分配方向共有()A.480種 B.360種 C.240種 D.120種3.已知集合,則集合真子集的個數(shù)為()A.3 B.4 C.7 D.84.已知,,為圓上的動點,,過點作與垂直的直線交直線于點,若點的橫坐標(biāo)為,則的取值范圍是()A. B. C. D.5.已知向量,,=(1,),且在方向上的投影為,則等于()A.2 B.1 C. D.06.國務(wù)院發(fā)布《關(guān)于進一步調(diào)整優(yōu)化結(jié)構(gòu)、提高教育經(jīng)費使用效益的意見》中提出,要優(yōu)先落實教育投入.某研究機構(gòu)統(tǒng)計了年至年國家財政性教育經(jīng)費投入情況及其在中的占比數(shù)據(jù),并將其繪制成下表,由下表可知下列敘述錯誤的是()A.隨著文化教育重視程度的不斷提高,國在財政性教育經(jīng)費的支出持續(xù)增長B.年以來,國家財政性教育經(jīng)費的支出占比例持續(xù)年保持在以上C.從年至年,中國的總值最少增加萬億D.從年到年,國家財政性教育經(jīng)費的支出增長最多的年份是年7.已知復(fù)數(shù),,則()A. B. C. D.8.已知雙曲線的漸近線方程為,且其右焦點為,則雙曲線的方程為()A. B. C. D.9.設(shè)為坐標(biāo)原點,是以為焦點的拋物線上任意一點,是線段上的點,且,則直線的斜率的最大值為()A. B. C. D.110.一小商販準(zhǔn)備用元錢在一批發(fā)市場購買甲、乙兩種小商品,甲每件進價元,乙每件進價元,甲商品每賣出去件可賺元,乙商品每賣出去件可賺元.該商販若想獲取最大收益,則購買甲、乙兩種商品的件數(shù)應(yīng)分別為()A.甲件,乙件 B.甲件,乙件 C.甲件,乙件 D.甲件,乙件11.一個封閉的棱長為2的正方體容器,當(dāng)水平放置時,如圖,水面的高度正好為棱長的一半.若將該正方體繞下底面(底面與水平面平行)的某條棱任意旋轉(zhuǎn),則容器里水面的最大高度為()A. B. C. D.12.圓錐底面半徑為,高為,是一條母線,點是底面圓周上一點,則點到所在直線的距離的最大值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù)、滿足,且可行域表示的區(qū)域為三角形,則實數(shù)的取值范圍為______,若目標(biāo)函數(shù)的最小值為-1,則實數(shù)等于______.14.如圖,在△ABC中,AB=4,D是AB的中點,E在邊AC上,AE=2EC,CD與BE交于點O,若OB=OC,則△ABC面積的最大值為_______.15.曲線在點處的切線方程為______.16.展開式的第5項的系數(shù)為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,角,,的對邊分別為,,,已知.(1)若,,成等差數(shù)列,求的值;(2)是否存在滿足為直角?若存在,求的值;若不存在,請說明理由.18.(12分)已知橢圓的離心率為,橢圓C的長軸長為4.(1)求橢圓C的方程;(2)已知直線與橢圓C交于兩點,是否存在實數(shù)k使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點O?若存在,求出k的值;若不存在,請說明理由.19.(12分)中國古建筑中的窗飾是藝術(shù)和技術(shù)的統(tǒng)一體,給人于美的享受.如圖(1)為一花窗;圖(2)所示是一扇窗中的一格,呈長方形,長30cm,寬26cm,其內(nèi)部窗芯(不含長方形邊框)用一種條形木料做成,由兩個菱形和六根支條構(gòu)成,整個窗芯關(guān)于長方形邊框的兩條對稱軸成軸對稱.設(shè)菱形的兩條對角線長分別為xcm和ycm,窗芯所需條形木料的長度之和為L.(1)試用x,y表示L;(2)如果要求六根支條的長度均不小于2cm,每個菱形的面積為130cm2,那么做這樣一個窗芯至少需要多長的條形木料(不計榫卯及其它損耗)?20.(12分)在多面體中,四邊形是正方形,平面,,,為的中點.(1)求證:;(2)求平面與平面所成角的正弦值.21.(12分)已知.(1)若的解集為,求的值;(2)若對任意,不等式恒成立,求實數(shù)的取值范圍.22.(10分)如圖,在直三棱柱中,分別是中點,且,.求證:平面;求點到平面的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
利用復(fù)數(shù)的乘法運算可求得結(jié)果.【詳解】由復(fù)數(shù)的乘法法則得.故選:A.本題考查復(fù)數(shù)的乘法運算,考查計算能力,屬于基礎(chǔ)題.2.B【解析】
將人臉識別方向的人數(shù)分成:有人、有人兩種情況進行分類討論,結(jié)合捆綁計算出不同的分配方法數(shù).【詳解】當(dāng)人臉識別方向有2人時,有種,當(dāng)人臉識別方向有1人時,有種,∴共有360種.故選:B本小題主要考查簡單排列組合問題,考查分類討論的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.3.C【解析】
解出集合,再由含有個元素的集合,其真子集的個數(shù)為個可得答案.【詳解】解:由,得所以集合的真子集個數(shù)為個.故選:C此題考查利用集合子集個數(shù)判斷集合元素個數(shù)的應(yīng)用,含有個元素的集合,其真子集的個數(shù)為個,屬于基礎(chǔ)題.4.A【解析】
由題意得,即可得點M的軌跡為以A,B為左、右焦點,的雙曲線,根據(jù)雙曲線的性質(zhì)即可得解.【詳解】如圖,連接OP,AM,由題意得,點M的軌跡為以A,B為左、右焦點,的雙曲線,.故選:A.本題考查了雙曲線定義的應(yīng)用,考查了轉(zhuǎn)化化歸思想,屬于中檔題.5.B【解析】
先求出,再利用投影公式求解即可.【詳解】解:由已知得,由在方向上的投影為,得,則.故答案為:B.本題考查向量的幾何意義,考查投影公式的應(yīng)用,是基礎(chǔ)題.6.C【解析】
觀察圖表,判斷四個選項是否正確.【詳解】由表易知、、項均正確,年中國為萬億元,年中國為萬億元,則從年至年,中國的總值大約增加萬億,故C項錯誤.本題考查統(tǒng)計圖表,正確認識圖表是解題基礎(chǔ).7.B【解析】分析:利用的恒等式,將分子、分母同時乘以,化簡整理得詳解:,故選B點睛:復(fù)數(shù)問題是高考數(shù)學(xué)中的??紗栴},屬于得分題,主要考查的方面有:復(fù)數(shù)的分類、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模、共軛復(fù)數(shù)以及復(fù)數(shù)的乘除運算,在運算時注意符號的正、負問題.8.B【解析】試題分析:由題意得,,所以,,所求雙曲線方程為.考點:雙曲線方程.9.C【解析】試題分析:設(shè),由題意,顯然時不符合題意,故,則,可得:,當(dāng)且僅當(dāng)時取等號,故選C.考點:1.拋物線的簡單幾何性質(zhì);2.均值不等式.【方法點晴】本題主要考查的是向量在解析幾何中的應(yīng)用及拋物線標(biāo)準(zhǔn)方程方程,均值不等式的靈活運用,屬于中檔題.解題時一定要注意分析條件,根據(jù)條件,利用向量的運算可知,寫出直線的斜率,注意均值不等式的使用,特別是要分析等號是否成立,否則易出問題.10.D【解析】
由題意列出約束條件和目標(biāo)函數(shù),數(shù)形結(jié)合即可解決.【詳解】設(shè)購買甲、乙兩種商品的件數(shù)應(yīng)分別,利潤為元,由題意,畫出可行域如圖所示,顯然當(dāng)經(jīng)過時,最大.故選:D.本題考查線性目標(biāo)函數(shù)的線性規(guī)劃問題,解決此類問題要注意判斷,是否是整數(shù),是否是非負數(shù),并準(zhǔn)確的畫出可行域,本題是一道基礎(chǔ)題.11.B【解析】
根據(jù)已知可知水面的最大高度為正方體面對角線長的一半,由此得到結(jié)論.【詳解】正方體的面對角線長為,又水的體積是正方體體積的一半,且正方體繞下底面(底面與水平面平行)的某條棱任意旋轉(zhuǎn),所以容器里水面的最大高度為面對角線長的一半,即最大水面高度為,故選B.本題考查了正方體的幾何特征,考查了空間想象能力,屬于基礎(chǔ)題.12.C【解析】分析:作出圖形,判斷軸截面的三角形的形狀,然后轉(zhuǎn)化求解的位置,推出結(jié)果即可.詳解:圓錐底面半徑為,高為2,是一條母線,點是底面圓周上一點,在底面的射影為;,,過的軸截面如圖:,過作于,則,在底面圓周,選擇,使得,則到的距離的最大值為3,故選:C點睛:本題考查空間點線面距離的求法,考查空間想象能力以及計算能力,解題的關(guān)鍵是作出軸截面圖形,屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,結(jié)合目標(biāo)函數(shù)的最小值,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出可行域如圖,則要為三角形需滿足在直線下方,即,;目標(biāo)函數(shù)可視為,則為斜率為1的直線縱截距的相反數(shù),該直線截距最大在過點時,此時,直線:,與:的交點為,該點也在直線:上,故,故答案為:;.本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法,屬于基礎(chǔ)題.14.【解析】
先根據(jù)點共線得到,從而得到O的軌跡為阿氏圓,結(jié)合三角形和三角形的面積關(guān)系可求.【詳解】設(shè)B,O,E共線,則,解得,從而O為CD中點,故.在△BOD中,BD=2,,易知O的軌跡為阿氏圓,其半徑,故.故答案為:.本題主要考查三角形的面積問題,把所求面積進行轉(zhuǎn)化是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).15.【解析】
對函數(shù)求導(dǎo),得出在處的一階導(dǎo)數(shù)值,即得出所求切線的斜率,再運用直線的點斜式求出切線的方程.【詳解】令,,所以,又,所求切線方程為,即.故答案為:.本題考查運用函數(shù)的導(dǎo)函數(shù)求函數(shù)在切點處的切線方程,關(guān)鍵在于求出在切點處的導(dǎo)函數(shù)值就是切線的斜率,屬于基礎(chǔ)題.16.70【解析】
根據(jù)二項式定理的通項公式,可得結(jié)果.【詳解】由題可知:第5項為故第5項的的系數(shù)為故答案為:70.本題考查的是二項式定理,屬基礎(chǔ)題。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.見解析【解析】
(1)因為,,成等差數(shù)列,所以,由余弦定理可得,因為,所以,即,所以.(2)若B為直角,則,,由及正弦定理可得,所以,即,上式兩邊同時平方,可得,所以(*).又,所以,,所以,與(*)矛盾,所以不存在滿足為直角.18.(1);(2)存在,當(dāng)時,以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點O.【解析】
(1)設(shè)橢圓的焦半距為,利用離心率為,橢圓的長軸長為1.列出方程組求解,推出,即可得到橢圓的方程.(2)存在實數(shù)使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點.設(shè)點,,,,將直線的方程代入,化簡,利用韋達定理,結(jié)合向量的數(shù)量積為0,轉(zhuǎn)化為:.求解即可.【詳解】解:(1)設(shè)橢圓的焦半距為c,則由題設(shè),得,解得,所以,故所求橢圓C的方程為(2)存在實數(shù)k使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點O.理由如下:設(shè)點,,將直線的方程代入,并整理,得.(*)則,因為以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點O,所以,即.又,于是,解得,經(jīng)檢驗知:此時(*)式的,符合題意.所以當(dāng)時,以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點O本題考查橢圓方程的求法,橢圓的簡單性質(zhì),直線與橢圓位置關(guān)系的綜合應(yīng)用,考查計算能力以及轉(zhuǎn)化思想的應(yīng)用,屬于中檔題.19.(1)(2)【解析】試題分析:(1)由條件可先求水平方向每根支條長,豎直方向每根支條長為,因此所需木料的長度之和L=(2)先確定范圍由可得,再由面積為130cm2,得,轉(zhuǎn)化為一元函數(shù),令,則在上為增函數(shù),解得L有最小值.試題解析:(1)由題意,水平方向每根支條長為cm,豎直方向每根支條長為cm,菱形的邊長為cm.從而,所需木料的長度之和L=cm.(2)由題意,,即,又由可得.所以.令,其導(dǎo)函數(shù)在上恒成立,故在上單調(diào)遞減,所以可得.則=.因為函數(shù)和在上均為增函數(shù),所以在上為增函數(shù),故當(dāng),即時L有最小值.答:做這樣一個窗芯至少需要cm長的條形木料.考點:函數(shù)應(yīng)用題20.(1)證明見解析(2)【解析】
(1)首先證明,,,∴平面.即可得到平面,.(2)以為坐標(biāo)原點,,,所在的直線分別為軸、軸、軸建立空間直角坐標(biāo)系,分別求出平面和平面的法向量,帶入公式求解即可.【詳解】(1)∵平面,平面,∴.又∵四邊形是正方形,∴.∵,∴平面.∵平面,∴.又∵,為的中點,∴.∵,∴平面.∵平面,∴.(2)∵平面,,∴平面.以為坐標(biāo)原點,,,所在的直線分別為軸、軸、軸建立空間直角坐標(biāo)系.如圖所示:則,,,.∴,,.設(shè)為平面的法向量,則,得,令,則.由題意知為平面的一個法向量,∴,∴平面與平面所成角的正弦值為.本題第一問考查線線垂直,先證線面垂直時解題關(guān)鍵,第二問考查二面角,建立空間直角坐標(biāo)系是解題關(guān)鍵,屬于中檔題.21.(1);(2)【解析】
(1)利用兩邊平方法解含有絕對值的不等式,再根據(jù)根與系數(shù)的關(guān)系求出的值;(2)利用絕對值不等式求出的最小值,把不等式化為只含有的不等式,求出不等式解集即可.【詳解】(1)不等式,即兩邊平方整理得由題意知和是方程的兩個實數(shù)根即,解得(2)因為所以要使不等式恒成立,只需當(dāng)時,,解得,即;當(dāng)時,,解得,即;綜上所述,的取值范圍是本題考查了含有絕對值的不
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026貴州省政府辦公廳所屬事業(yè)單位招聘21人考試備考試題及答案解析
- 2026山東東營市勝利油田中心醫(yī)院消防監(jiān)控操作員招聘3人筆試備考試題及答案解析
- 2026貴州省審計廳所屬事業(yè)單位招聘2人筆試參考題庫及答案解析
- 合肥市四河小學(xué)招聘英語教師1名筆試備考題庫及答案解析
- 2026廣西南寧市直屬機關(guān)遴選公務(wù)員27人考試備考題庫及答案解析
- 2026廣西桂林市政法機關(guān)招聘輔警3名備考題庫附答案詳解
- 2026內(nèi)蒙古銀行春季校園招聘30人筆試備考試題及答案解析
- 2026四川雅安滎經(jīng)縣發(fā)布公益性崗位安置計劃的3人備考題庫及完整答案詳解一套
- 2026安徽亳州市蒙城縣縣直幼兒園面向農(nóng)村學(xué)校選調(diào)教師55人備考題庫及參考答案詳解
- 2025年法律法規(guī)遵從性檢查手冊
- 2026年遼寧省盤錦市高職單招語文真題及參考答案
- 近五年貴州中考物理真題及答案2025
- 2026年南通科技職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測試備考試題含答案解析
- 2025年黑龍江省大慶市中考數(shù)學(xué)試卷
- 2025年廣西職業(yè)師范學(xué)院招聘真題
- 中遠海運集團筆試題目2026
- 扦插育苗技術(shù)培訓(xùn)課件
- 妝造店化妝品管理制度規(guī)范
- 浙江省2026年1月普通高等學(xué)校招生全國統(tǒng)一考試英語試題(含答案含聽力原文含音頻)
- 江西省房屋建筑與裝飾工程消耗量定額及統(tǒng)一基價表
- 不確定度評估的基本方法
評論
0/150
提交評論