版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025-2026學(xué)年湖北省武漢市部分市級(jí)示范高中數(shù)學(xué)高三第一學(xué)期期末經(jīng)典試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若,,,則()A. B.C. D.2.若雙曲線的焦距為,則的一個(gè)焦點(diǎn)到一條漸近線的距離為()A. B. C. D.3.一個(gè)圓錐的底面和一個(gè)半球底面完全重合,如果圓錐的表面積與半球的表面積相等,那么這個(gè)圓錐軸截面底角的大小是()A. B. C. D.4.已知斜率為的直線與雙曲線交于兩點(diǎn),若為線段中點(diǎn)且(為坐標(biāo)原點(diǎn)),則雙曲線的離心率為()A. B.3 C. D.5.雙曲線x2a2A.y=±2x B.y=±3x6.已知函數(shù),,當(dāng)時(shí),不等式恒成立,則實(shí)數(shù)a的取值范圍為()A. B. C. D.7.設(shè)等差數(shù)列的前項(xiàng)和為,若,則()A.23 B.25 C.28 D.298.已知復(fù)數(shù)z滿足(i為虛數(shù)單位),則z的虛部為()A. B. C.1 D.9.已知,是兩條不重合的直線,是一個(gè)平面,則下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則10.已知不同直線、與不同平面、,且,,則下列說(shuō)法中正確的是()A.若,則 B.若,則C.若,則 D.若,則11.已知橢圓+=1(a>b>0)與直線交于A,B兩點(diǎn),焦點(diǎn)F(0,-c),其中c為半焦距,若△ABF是直角三角形,則該橢圓的離心率為()A. B. C. D.12.下列命題是真命題的是()A.若平面,,,滿足,,則;B.命題:,,則:,;C.“命題為真”是“命題為真”的充分不必要條件;D.命題“若,則”的逆否命題為:“若,則”.二、填空題:本題共4小題,每小題5分,共20分。13.已知四棱錐,底面四邊形為正方形,,四棱錐的體積為,在該四棱錐內(nèi)放置一球,則球體積的最大值為_(kāi)________.14.若,則________.15.如圖,某地一天從時(shí)的溫度變化曲線近似滿足函數(shù),則這段曲線的函數(shù)解析式為_(kāi)_____________.16.在中,角,,的對(duì)邊分別是,,,若,,則的面積的最大值為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),且.(1)求的解析式;(2)已知,若對(duì)任意的,總存在,使得成立,求的取值范圍.18.(12分)已知圓外有一點(diǎn),過(guò)點(diǎn)作直線.(1)當(dāng)直線與圓相切時(shí),求直線的方程;(2)當(dāng)直線的傾斜角為時(shí),求直線被圓所截得的弦長(zhǎng).19.(12分)如圖所示,在四面體中,,平面平面,,且.(1)證明:平面;(2)設(shè)為棱的中點(diǎn),當(dāng)四面體的體積取得最大值時(shí),求二面角的余弦值.20.(12分)已知函數(shù),,且.(1)當(dāng)時(shí),求函數(shù)的減區(qū)間;(2)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;(3)若方程的兩個(gè)實(shí)數(shù)根是,試比較,與的大小,并說(shuō)明理由.21.(12分)在直角坐標(biāo)系xOy中,直線的參數(shù)方程為(t為參數(shù),).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.(l)求直線的普通方程和曲線C的直角坐標(biāo)方程:(2)若直線與曲線C相交于A,B兩點(diǎn),且.求直線的方程.22.(10分)在中,角的對(duì)邊分別為.已知,且.(1)求的值;(2)若的面積是,求的周長(zhǎng).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性比較、、三個(gè)數(shù)與和的大小關(guān)系,進(jìn)而可得出、、三個(gè)數(shù)的大小關(guān)系.【詳解】對(duì)數(shù)函數(shù)為上的增函數(shù),則,即;指數(shù)函數(shù)為上的增函數(shù),則;指數(shù)函數(shù)為上的減函數(shù),則.綜上所述,.故選:C.本題考查指數(shù)冪與對(duì)數(shù)式的大小比較,一般利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性結(jié)合中間值法來(lái)比較,考查推理能力,屬于基礎(chǔ)題.2.B【解析】
根據(jù)焦距即可求得參數(shù),再根據(jù)點(diǎn)到直線的距離公式即可求得結(jié)果.【詳解】因?yàn)殡p曲線的焦距為,故可得,解得,不妨??;又焦點(diǎn),其中一條漸近線為,由點(diǎn)到直線的距離公式即可求的.故選:B.本題考查由雙曲線的焦距求方程,以及雙曲線的幾何性質(zhì),屬綜合基礎(chǔ)題.3.D【解析】
設(shè)圓錐的母線長(zhǎng)為l,底面半徑為R,再表達(dá)圓錐表面積與球的表面積公式,進(jìn)而求得即可得圓錐軸截面底角的大小.【詳解】設(shè)圓錐的母線長(zhǎng)為l,底面半徑為R,則有,解得,所以圓錐軸截面底角的余弦值是,底角大小為.故選:D本題考查圓錐的表面積和球的表面積公式,屬于基礎(chǔ)題.4.B【解析】
設(shè),代入雙曲線方程相減可得到直線的斜率與中點(diǎn)坐標(biāo)之間的關(guān)系,從而得到的等式,求出離心率.【詳解】,設(shè),則,兩式相減得,∴,.故選:B.本題考查求雙曲線的離心率,解題方法是點(diǎn)差法,即出現(xiàn)雙曲線的弦中點(diǎn)坐標(biāo)時(shí),可設(shè)弦兩端點(diǎn)坐標(biāo)代入雙曲線方程相減后得出弦所在直線斜率與中點(diǎn)坐標(biāo)之間的關(guān)系.5.A【解析】分析:根據(jù)離心率得a,c關(guān)系,進(jìn)而得a,b關(guān)系,再根據(jù)雙曲線方程求漸近線方程,得結(jié)果.詳解:∵e=因?yàn)闈u近線方程為y=±bax點(diǎn)睛:已知雙曲線方程x2a26.D【解析】
由變形可得,可知函數(shù)在為增函數(shù),由恒成立,求解參數(shù)即可求得取值范圍.【詳解】,即函數(shù)在時(shí)是單調(diào)增函數(shù).則恒成立..令,則時(shí),單調(diào)遞減,時(shí)單調(diào)遞增.故選:D.本題考查構(gòu)造函數(shù),借助單調(diào)性定義判斷新函數(shù)的單調(diào)性問(wèn)題,考查恒成立時(shí)求解參數(shù)問(wèn)題,考查學(xué)生的分析問(wèn)題的能力和計(jì)算求解的能力,難度較難.7.D【解析】
由可求,再求公差,再求解即可.【詳解】解:是等差數(shù)列,又,公差為,,故選:D考查等差數(shù)列的有關(guān)性質(zhì)、運(yùn)算求解能力和推理論證能力,是基礎(chǔ)題.8.D【解析】
根據(jù)復(fù)數(shù)z滿足,利用復(fù)數(shù)的除法求得,再根據(jù)復(fù)數(shù)的概念求解.【詳解】因?yàn)閺?fù)數(shù)z滿足,所以,所以z的虛部為.故選:D.本題主要考查復(fù)數(shù)的概念及運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.9.D【解析】
利用空間位置關(guān)系的判斷及性質(zhì)定理進(jìn)行判斷.【詳解】解:選項(xiàng)A中直線,還可能相交或異面,選項(xiàng)B中,還可能異面,選項(xiàng)C,由條件可得或.故選:D.本題主要考查直線與平面平行、垂直的性質(zhì)與判定等基礎(chǔ)知識(shí);考查空間想象能力、推理論證能力,屬于基礎(chǔ)題.10.C【解析】
根據(jù)空間中平行關(guān)系、垂直關(guān)系的相關(guān)判定和性質(zhì)可依次判斷各個(gè)選項(xiàng)得到結(jié)果.【詳解】對(duì)于,若,則可能為平行或異面直線,錯(cuò)誤;對(duì)于,若,則可能為平行、相交或異面直線,錯(cuò)誤;對(duì)于,若,且,由面面垂直的判定定理可知,正確;對(duì)于,若,只有當(dāng)垂直于的交線時(shí)才有,錯(cuò)誤.故選:.本題考查空間中線面關(guān)系、面面關(guān)系相關(guān)命題的辨析,關(guān)鍵是熟練掌握空間中的平行關(guān)系與垂直關(guān)系的相關(guān)命題.11.A【解析】
聯(lián)立直線與橢圓方程求出交點(diǎn)A,B兩點(diǎn),利用平面向量垂直的坐標(biāo)表示得到關(guān)于的關(guān)系式,解方程求解即可.【詳解】聯(lián)立方程,解方程可得或,不妨設(shè)A(0,a),B(-b,0),由題意可知,·=0,因?yàn)?,,由平面向量垂直的坐?biāo)表示可得,,因?yàn)?,所以a2-c2=ac,兩邊同時(shí)除以可得,,解得e=或(舍去),所以該橢圓的離心率為.故選:A本題考查橢圓方程及其性質(zhì)、離心率的求解、平面向量垂直的坐標(biāo)表示;考查運(yùn)算求解能力和知識(shí)遷移能力;利用平面向量垂直的坐標(biāo)表示得到關(guān)于的關(guān)系式是求解本題的關(guān)鍵;屬于中檔題、??碱}型.12.D【解析】
根據(jù)面面關(guān)系判斷A;根據(jù)否定的定義判斷B;根據(jù)充分條件,必要條件的定義判斷C;根據(jù)逆否命題的定義判斷D.【詳解】若平面,,,滿足,,則可能相交,故A錯(cuò)誤;命題“:,”的否定為:,,故B錯(cuò)誤;為真,說(shuō)明至少一個(gè)為真命題,則不能推出為真;為真,說(shuō)明都為真命題,則為真,所以“命題為真”是“命題為真”的必要不充分條件,故C錯(cuò)誤;命題“若,則”的逆否命題為:“若,則”,故D正確;故選D本題主要考查了判斷必要不充分條件,寫(xiě)出命題的逆否命題等,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由題知,該四棱錐為正四棱錐,作出該正四棱錐的高和斜高,連接,則球心O必在的邊上,設(shè),由球與四棱錐的內(nèi)切關(guān)系可知,設(shè),用和表示四棱錐的體積,解得和的關(guān)系,進(jìn)而表示出內(nèi)切球的半徑,并求出半徑的最大值,進(jìn)而求出球的體積的最大值.【詳解】設(shè),,由球O內(nèi)切于四棱錐可知,,,則,球O的半徑,,,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,此時(shí).故答案為:.本題考查了棱錐的體積問(wèn)題,內(nèi)切球問(wèn)題,考查空間想象能力,屬于較難的填空壓軸題.14.13【解析】
由導(dǎo)函數(shù)的應(yīng)用得:設(shè),,所以,,又,所以,即,由二項(xiàng)式定理:令得:,再由,求出,從而得到的值;【詳解】解:設(shè),,所以,,又,所以,即,取得:,又,所以,故,故答案為:13本題考查了導(dǎo)函數(shù)的應(yīng)用、二項(xiàng)式定理,屬于中檔題15.,【解析】
根據(jù)圖象得出該函數(shù)的最大值和最小值,可得,,結(jié)合圖象求得該函數(shù)的最小正周期,可得出,再將點(diǎn)代入函數(shù)解析式,求出的值,即可求得該函數(shù)的解析式.【詳解】由圖象可知,,,,,從題圖中可以看出,從時(shí)是函數(shù)的半個(gè)周期,則,.又,,得,取,所以,.故答案為:,.本題考查由圖象求函數(shù)解析式,考查計(jì)算能力,屬于中等題.16.【解析】
化簡(jiǎn)得到,,根據(jù)余弦定理和均值不等式得到,根據(jù)面積公式計(jì)算得到答案.【詳解】,即,,故.根據(jù)余弦定理:,即.當(dāng)時(shí)等號(hào)成立,故.故答案為:.本題考查了三角恒等變換,余弦定理,均值不等式,面積公式,意在考查學(xué)生的綜合應(yīng)用能力和計(jì)算能力.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1);(2)【解析】
(1)由,可求出的值,進(jìn)而可求得的解析式;(2)分別求得和的值域,再結(jié)合兩個(gè)函數(shù)的值域間的關(guān)系可求出的取值范圍.【詳解】(1)因?yàn)?所以,解得,故.(2)因?yàn)?所以,所以,則,圖象的對(duì)稱軸是.因?yàn)?所以,則,解得,故的取值范圍是.本題考查了三角函數(shù)的恒等變換,考查了二次函數(shù)及三角函數(shù)值域的求法,考查了學(xué)生的計(jì)算求解能力,屬于中檔題.18.(1)或(2).【解析】
(1)根據(jù)題意分斜率不存在和斜率存在兩種情況即可求得結(jié)果;(2)先求出直線方程,然后求得圓心與直線的距離,由弦長(zhǎng)公式即可得出答案.【詳解】解:(1)由題意可得,直線與圓相切當(dāng)斜率不存在時(shí),直線的方程為,滿足題意當(dāng)斜率存在時(shí),設(shè)直線的方程為,即∴,解得∴直線的方程為∴直線的方程為或(2)當(dāng)直線的傾斜角為時(shí),直線的方程為圓心到直線的距離為∴弦長(zhǎng)為本題考查了直線的方程、直線與圓的位置關(guān)系、點(diǎn)到直線的距離公式及弦長(zhǎng)公式,培養(yǎng)了學(xué)生分析問(wèn)題與解決問(wèn)題的能力.19.(1)見(jiàn)證明;(2)【解析】
(1)根據(jù)面面垂直的性質(zhì)得到平面,從而得到,利用勾股定理得到,利用線面垂直的判定定理證得平面;(2)設(shè),利用椎體的體積公式求得,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而求得時(shí),四面體的體積取得最大值,之后利用空間向量求得二面角的余弦值.【詳解】(1)證明:因?yàn)椋矫嫫矫?,平面平面,平面,所以平面,因?yàn)槠矫妫?因?yàn)?,所以,所以,因?yàn)椋云矫?(2)解:設(shè),則,四面體的體積.,當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減.故當(dāng)時(shí),四面體的體積取得最大值.以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量為,則,即,令,得,同理可得平面的一個(gè)法向量為,則.由圖可知,二面角為銳角,故二面角的余弦值為.該題考查的是有關(guān)立體幾何的問(wèn)題,涉及到的知識(shí)點(diǎn)有面面垂直的性質(zhì),線面垂直的判定,椎體的體積,二面角的求法,在解題的過(guò)程中,注意巧用導(dǎo)數(shù)求解體積的最大值.20.(1)(2)詳見(jiàn)解析(3)【解析】
試題分析:(1)當(dāng)時(shí),,由得減區(qū)間;(2)因?yàn)?,所以,因?yàn)樗裕匠逃袃蓚€(gè)不相等的實(shí)數(shù)根;(3)因?yàn)?,,所以試題解析:(1)當(dāng)時(shí),,由得減區(qū)間;(2)法1:,,,所以,方程有兩個(gè)不相等的實(shí)數(shù)根;法2:,,是開(kāi)口向上的二次函數(shù),所以,方程有兩個(gè)不相等的實(shí)數(shù)根;(3)因?yàn)?,,又在和增,在減,所以.考點(diǎn):利用導(dǎo)數(shù)求函數(shù)減區(qū)間,二次函數(shù)與二次方程關(guān)系21.(1)見(jiàn)解析(2)【解析】
(1)將消去參數(shù)t可得直線的普通方程,利用x=ρcosθ,可將極坐標(biāo)方程轉(zhuǎn)為直角坐標(biāo)方程.(2)利用直線被圓截得的弦長(zhǎng)公式計(jì)算可得答案.【詳解】(1)由消去參數(shù)t得(),由得曲線C的直角坐標(biāo)方程為:(2)由得,圓心為(1,0),半徑為2,圓心到直線的距離為,∴,即,整理得,∵,∴,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025福建省能源石化集團(tuán)有限責(zé)任公司秋季招聘416人筆試考試參考題庫(kù)及答案解析
- 做好寶寶頭發(fā)護(hù)理
- 重癥病人護(hù)理案例分享
- 攀枝花市東區(qū)公益性崗位安置筆試考試參考題庫(kù)及答案解析
- 2025福建泉州僑鄉(xiāng)文體產(chǎn)業(yè)開(kāi)發(fā)有限公司泉州市鯉城開(kāi)元分公司招聘12人筆試考試備考題庫(kù)及答案解析
- 術(shù)前評(píng)估與麻醉計(jì)劃
- 祛斑后術(shù)后護(hù)理方法
- 2025西安高新區(qū)第九初級(jí)中學(xué)招聘教師筆試考試備考題庫(kù)及答案解析
- 時(shí)刻守護(hù)均衡營(yíng)養(yǎng)
- 中班線上活動(dòng)自我介紹
- 公司反貪腐類培訓(xùn)課件
- 寢室內(nèi)務(wù)規(guī)范講解
- 新的生產(chǎn)季度安全培訓(xùn)課件
- 2025年慢阻肺培訓(xùn)試題(附答案)
- 部隊(duì)地雷使用課件
- 航空材料基礎(chǔ)培訓(xùn)課件
- 血細(xì)胞形態(tài)學(xué)幻燈片課件
- 鐵路車務(wù)培訓(xùn)課件
- 2025至2030軍工自動(dòng)化行業(yè)市場(chǎng)深度研究及發(fā)展前景投資可行性分析報(bào)告
- 海上風(fēng)電場(chǎng)項(xiàng)目陸上集控中心環(huán)評(píng)報(bào)告公示
- 老舊小區(qū)消防系統(tǒng)升級(jí)改造方案
評(píng)論
0/150
提交評(píng)論