版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
PublicDisclosureAuthorizedPublicDisclosureAuthorized
PolicyResearchWorkingPaper11181
MeasuringJobAccessibilityDifferentMethodsandNewData
AtsushiIimi
WORLDBANKGROUP
TransportGlobalDepartmentAugust2025
Averifiedreproducibilitypackageforthispaperisavailableat
,click
here
fordirectaccess.
ProducedbytheResearchSupportTeam
PolicyResearchWorkingPaper11181
Abstract
ThepaperreexamineshowtomeasurejobaccessibilityinenvironmentswithlimiteddataavailabilityandappliesdifferentmethodstoAntananarivo,thecapitalofMada-gascar.Jobcreationandaccessibilityareattractingrenewedinterestindevelopingcountries,whereunemploymentratesremainpersistentlyhigh.Thepaperfindstwotypesofjobaccessibilitymeasuresthatparticularlyimpactemploy-ment:proximitytopublictransportandaveragetraveltime
weightedbyavailablejobopportunities.Forthelatter,thepaperalsofindsthatnewopen-sourcedata,suchastheOpenBuildingsdataset,areeffectiveinidentifyingexistingjobopportunities.Usingthemeasuredresults,themarginalimpactofjobaccessibilityonemploymentisestimatedatabout?0.05to?0.06afterthepotentialendogeneityofaccessibilitymeasuresiscontrolled.
ThispaperisaproductoftheTransportGlobalDepartment.ItispartofalargereffortbytheWorldBanktoprovideopenaccesstoitsresearchandmakeacontributiontodevelopmentpolicydiscussionsaroundtheworld.PolicyResearchWorkingPapersarealsopostedontheWebat
/prwp.Theauthormaybecontactedat
aiimi@.Averifiedreproducibilitypackageforthispaperisavailableat
http://reproducibility.worldbank.
org
,click
here
fordirectaccess.
Y
C
I
A
E
RES
L
O
P
H
C
R
S
TRANSPARENT
P
E
R
W
O
R
K
I
ANALYSIS
A
NGP
ThePolicyResearchWorkingPaperSeriesdisseminatesthefindingsofworkinprogresstoencouragetheexchangeofideasaboutdevelopmentissues.Anobjectiveoftheseriesistogetthefindingsoutquickly,evenifthepresentationsarelessthanfullypolished.Thepaperscarrythenamesoftheauthorsandshouldbecitedaccordingly.Thefindings,interpretations,andconclusionsexpressedinthispaperareentirelythoseoftheauthors.TheydonotnecessarilyrepresenttheviewsoftheInternationalBankforReconstructionandDevelopment/WorldBankanditsaffiliatedorganizations,orthoseoftheExecutiveDirectorsoftheWorldBankorthegovernmentstheyrepresent.
MeasuringJobAccessibility:DifferentMethodsandNewData
AtsushiIimi
?
EasternandSouthernAfrica
TransportGlobalPractice
WorldBank
Keywords:Accesstojobs;Jobcreation;Probitmodel.
JELclassification:C25,J08;O14;O18
?Correspondingauthor.
-2-
I.INTRODUCTION
Thispaperaimstoreconsiderjobaccessibilitybycomparingdifferentmeasuresusedintheliteratureandexamininghowtheybehaveinconnectionwithlabormarketoutcomes,especiallywithinthecontextofdevelopingcountries.Inrecentyears,employmenthasbeenincreasingly
discussedinthedevelopingworld(e.g.,ILO,2022a,2022b,2024;BanerjeeandSequeira,2023;CarranzaandMcKenzie,2024).However,howtomeasurejobaccessibilityremainsrelatively
understudied.Variousmethodsandconceptsarediscussedintheliterature.Thepaperreviews
theprosandconsofexistingmethodsandproposesanewapproachusinganovelglobaldataset,OpenBuildings2.5DTemporalDataset(Sirkoetal.,2021),whichisapplicableevenindata-
scarceenvironments.Thepapertheninvestigateswhichaccessibilitymeasurementisthemosteffectivetoevaluateitspotentialimpactonlabormarketoutcomes,suchaslaborforce
participation.
Whiletheunderlyingbasicconceptislargelysimilar,jobaccessibilityisdefineddifferentlyacrossexistingstudies.Forinstance,ShahandSturzenegger(2022)estimatethatSouthAfricansspendabout60percentoftheirincomeontransportcosts.Inthiscontext,jobaccessibilityis
simplymeasuredbycommutingtimeandcosts.BanerjeeandSequeira(2023)alsodiscussthe
effectivenessofpublictransportsubsidiestosupportjobsearches.Proximitytopublictransportisanothermeasureoftenusedtoexamineitsimpactonemployment(e.g.,Holzeretal.,2003;
MayerandTrevien,2017;Tyndall,2017).Incar-dependentcountries,suchastheUnitedStates,congestionanddrivingtimeonhighwaysmaybemorerelevant(e.g.,GoodwinandNoland,
2003;BurrowsandBurd,2024).
BaradaranandRamjerdi(2001)discusstheperformanceofdifferentjobaccessibility
measures,classifyingthemintofivegroups:travelcost,gravity,timeconstraint-based,utility-based,andcompositeapproaches.Whilethetravelcostapproachismoststraightforward,the
gravityapproachexaminespotentialopportunities.Thetimeconstraint-basedapproachcanalsoaccountforpeople’stimelimitationsforotherdailyactivitiesthatrequiretransportation.The
utility-basedapproachismoredataintensiveasittakesintoaccountpeople’spreferencesoverdifferenttransportoptions.Thecompositeapproachisevenmorecomplex,combiningthe
-3-
constraint-andutility-basedmethods.MerlinandHu(2017)emphasizetheeffectofcompetitionforjobs,classifyingmethodsslightlydifferentlyintofourgroups:cumulativeopportunity,
gravity,Shen’smodel,andinversebalancingfactorapproaches.Mostrecently,MazzullaandPirrone(2024)provideacomprehensivereviewofaccessibilitymeasures,developinga
systematicclassificationframework.
Despitedifferentclassifications,allmeasuresfocusontheavailabilityofopportunitiesandtransportationbarriersacrossdifferentlocations,differingmainlyinhowtheseimpedimentsandopportunitiesarequantifiedandaggregatedintoonemeasurementundertheoreticalassumptionsanddataconstraints.Thereareseveralmethodsthatarerelativelysimplemethodsandapplicableeventodevelopingcountrieswheredataavailabilityisoftenlimited.Insuchcountries,detailedorigin-destination(OD)dataarenotavailable,firmregistrydataareincomplete,anddataon
existingtransitsystemsareoftenlargelymissing.
Thefirstmethodinvolvestraditionaltravelcostortime-basedmeasures.Thistypeofdataisconceptuallyunderstandableandcanberelativelyeasilycollected.Soetal.(2001)examinetherelationshipbetweenwagesandcommutetimeobservedinthecensusdatafortheUnited
States.Ruppertetal.(2009)andLeBarbanchonetal.(2021)analyzeasimilarissueinFrance.
Commutetimeandcostsmaybeavailableinstandardhouseholdsurveysevenindeveloping
countries.AccordingtothenationaltravelsurveydatainSouthAfrica,averagecommutingtimeisabout50minutesoneway(ShahandSturzenegger,2022).Usinghouseholdsurveydata,
Lozano-GraciaandYoung,2014)showthatmedianhouseholdexpenditureontransportationnormallyrangesfrom2to8percentofincome.
Apotentialempiricalchallengeinusingthesemeasuresisthepartialobservabilityofdata.Inparticularindevelopingcountries,informalityisveryhigh(Dodmanetal.,2017;ILO2017;
Lalletal.,2017;OECD,2022).Over90percentofthetotalworkforceisengagedininformal
jobsorself-employment(ILO,2023).Inaddition,manyAfricanswalktowork.InAntananarivo,Madagascar,halfofthecityresidentssimplywalktotheirworkplaces(Iimi,2023).Thus,the
traditionalassumptionontime-minimizingtravelbehavior,giventheavailabilityof
transportationoptions,maynothold.Observedcommutetimesandcostsareinherentlytruncated
-4-
atzero.Thiscensoredregressorproblem,thoughoftenignored,maycausesignificantbiasifnongenuinezeroobservationsaredroppedorassumedtobezero(RigobonandStoker,2007).
Second,theempiricalliteraturealsousestheproximitytotransportinfrastructureand
servicestomeasurejobaccessibility.Unliketheabovetraveltimeorcostapproach,thismeasureisobservableforallindividualswithknownresidences.Ithasbecomemorepracticalwiththe
increasingavailabilityofspatialdataandtoolsevenindevelopingcountries.Thechoiceofthisapproachdependsontheassumptionthatpeopleusethesetransportpublicservicestoaccess
jobs.Thismayormaynotbethecaseindevelopingcountriesbecausepeoplemaynotuseanytransportmeans.However,thismethodcanbeusefulifitismeasuredwithinformalpublic
transportincluded,whichisadominanttransportmeansinmanydevelopingcities(e.g.,ShimazakiandRahman,1996;CDIA,2011;Iimi,2023).
Theliteraturecommonlyusesa500to1,000-meterdistancefrompublictransportto
identifypotentialbeneficiaries(e.g.,Wasfietal.,2013;LachapelleandBoisjoly,2023).Tennoyetal.(2022)examinewalkingdistancestopublictransportinNorway,supportingaconventionalthresholdof500metersora4to6-minutewalktopromotepublictransportusage.Scholletal.
(2018)usealongerdistanceof1.5kmtodefinepotentialBRTcommutersinLima.
Theavailableevidencegenerallysupportsapositiveemploymentimpactofproximityto
publictransport(e.g.,seeBastiaanssenetal.(2020)forameta-analysis).Holzeretal.(2003)
findapositiveemploymenteffectofreversecommutetosuburbanareascausedbyanextendedmetrolineinSanFrancisco.Similarly,MayerandTrevien(2017)showthattheprogressive
developmentofRegionalExpressRailaroundParisledtoincreasedemployment.ProximitytoanewBRTinLimaalsohasapositiveimpactonemployment(Scholletal.,2018).Usingquasi-experimentalnaturalevents,Tyndall(2017)showsthatmetroservicedisruptionscausedby
HurricaneSandyincreasedunemploymentintheaffectedareasofNewYork.Anegative
correlationbetweenemploymentandhouseholddistancefromthenearestrailstationisalsofoundinMumbai,India(Alametal.,2021).
-5-
Third,thedistanceortraveltimetoworkplaces,namely,thecentralbusinessdistrict
(CBD),isanotherstraightforwardmeasureofjobaccessibility.Theaboveapproachmeasuringaccesstotransitmerelyrepresentspartofoverallaccessibility.Bycontrast,thismeasureis
potentiallycompleteandalignswellwithurbaneconomics.TraditionalurbanstudiescenteronaccessibilitytotheCBD,highlightingatradeoffbetweencommutingcostsandhousingcosts.
Forinstance,Levinson(1998)showsthatjob(andhousing)accessibilitydecreaseswithdistancefromtheCBDinWashington,DC.Similarly,Weber(2003)findsthatinPortland,Oregon,thedistancefromtheCBDisimportanttodeterminethenumberofopportunitiesandpeople’s
mobility.ThisinverserelationshipbetweenjobaccessibilityanddistancefromtheCBDisconfirmedinmostmajorU.S.cities(Ermagun,2021).
TheCBD-basedapproachassumesmobilitypatternswithintheframeworkofthe
monocentricurbanmodel,whichmayremainapplicabletomanyAfricancities.Primacyratesofthelargestcityindevelopingcountriesaregenerallyhigh.Unlikeotherregions,the
transformationfrommonocentrictopolycentricurbanstructuresisstilllimitedinAfricathoughsomesecondarycitiesareemerging(e.g.,Agyemangetal.,2019;OECD2022).InmanyAfricancities,theCBDcanbedefinedrelativelystraightforwardly.Thisisastrongadvantagefromtheempiricalpointofview.
Finally,thegravityapproachisperhapsthemostcommonmethodtomeasurejob
accessibilityintheliterature,withvariousextensionsdeveloped(e.g.,BaradaranandRamjerdi,2001;MerlinandHu,2017;JinandPaulsen,2018;Huang,2020;MazzullaandPirrone,2024).Itcantakeintoaccountpotentialopportunitiesacrossmultiplelocationsandweighsthem
negativelybytransporttime,costsorotherimpediments.Datarequirementsincrease
considerablywithgranularityinanalysis.Indevelopingcountries,itmaynotbeeasytoobtainhighlydisaggregatedspatialdataonhouseholds,employment,orfirms.
Thispaperaimsatcontributingtoidentifyingareliableandpracticaljobaccessibility
measureinthecontextofdevelopingcountries,especiallyinrelationshipwithemployment
outcomes.Usingvarioussourcesofdata,thepapercomparesdifferentmeasuresofjob
accessibility,usinguniquedatafromAntananarivo,thecapitalofMadagascar.Itnotonlyusesa
-6-
detailedlandusemaptoidentifyjoblocationsbutalsotestsanovelglobaldatasettoproxyjobopportunities.TheevidenceindicatesthatthejobaccessibilitymeasurederivedfromtheOpenBuildings2.5DTemporalDataset(Sirkoetal.,2021)ispromising.Thisisthefirstcontributionofthepaper.
Inaddition,thepaperalsocontributestodemonstratingapracticalwayofcontrollingforendogeneityofjobaccessibility.Aspredictedbytheory(e.g.,Rupertetal.,2009),commutingvariablesorjobaccessibilityarelikelyendogenousinthecontextoflaborforceparticipation.
Thispaperemploystheinstrumentalvariable(IV)techniqueusingsimpletopographicandmeteorologicaldata,withtheirempiricalvalidityreaffirmedbyconventionalHansen’sJ
statisticsandGuevara’sRefutabilityteststatistics(Guevara,2018).
Therestofthepaperisorganizedasfollows:SectionIIbrieflyexplainsthecountrycontextandmeasuresjobaccessibilitybydifferentmethods.SectionIIIdevelopsourempiricalstrategy.SectionIVdescribesthedata.SectionVpresentsthemainresults.SectionVIconcludes.
II.MEASURINGJOBACCESSIBILITYINANTANANARIVO
MadagascarisoneoftheleastdevelopedcountriesinAfrica,withaGDPpercapitaof
approximatelyUS$520.About21millionMalagasypeople,orroughly80percentofthe
population,livebelowthepovertyline.LikemanyotherAfricannations,Madagascarhasbeenexperiencingrapidurbanizationinrecentyears.Thetotalpopulationstandsataround26
million,
1
with3.3millionresidinginGreaterAntananarivo,thecapital.
2
Antananarivoisthe
fourthlargestcityintheEasternandSouthernAfricanregion,followingDaresSalaam,Nairobi,andAddisAbaba(Figure1).Othersecondarycities,suchasToamasinaandMahajanga,arealsoexperiencinggrowth.However,GreaterAntananarivoremainstheprimaryeconomichub.
Antananarivoexperiencessignificantcongestion,duetolimitedlandallocatedfortransportinfrastructure,historicbuildingsdatingbacktotheearly1600s,andsurroundinghillymountains.
1Accordingtothelatestnationalcensusdata(INSTAT2018).
2AccordingtotheUNHabitatestimate(UNESA2018).
-7-
Thecity’smainpublictransportservices,knownastaxi-be,areinefficientandunreliable.Over6,000minibusesoperateonabout130routes,manyofwhichareduplicatedandfragmented.
Minibusservicesareconcentratedalongmajornationalcorridorswithhighdemand,all
convergingtowardsthecitycenteraroundLakeAnosy.ThisareahistoricallyconstitutestheCBD,hostingmanyjobs(Figure2).
Inthispaper,fourmetricsareconsideredtomeasurejobaccessibility.First,dataon
reportedcommutingtimeorcostcanbeused.Arecentcity-levelhouseholdsurvey,MeasuringUrbanLivingStandards(MULS)inAntananarivocarriedoutin2016,includedabout9,300
individualsfromabout2,300households.Accordingtothisdata,peopleinthecityspendan
averageofabout15minutescommutingtowork(Figure3).
3
Onaverage,menspend21minutesforcommuting,whilewomenspend11minutes.Notably,however,asignificantnumberof
peopleeitherdonotworkorworkathome.Whenexcludingzerocommutetimes,theaveragecommutingdurationisabout29minutes(32minutesformenand25minutesforwomen).
ComparedtootherAfricancities,thisstilllooksrelativelymodest:50minutesonewayinSouthAfrica(ShahandSturzenegger,2022),74minutesinDaresSalaam(WorldBank,2016),and
100minutesdailyinAccra(Carmichaeletal.,2024).
Ingeneral,theriskofoverestimatingjobaccessibilityisevidentwhenusingthereport-
basedcommutetimemeasure,especiallyiftherearemanypeoplewhodonotworkorworkathomeorneartheirresidences,therefore,reportingminimalorzerocommutetime.Among
OECDcountries,wherepublictransportationispresumablymoreefficientandavailablethanrapidlygrowingdevelopingcitiessuchasAntananarivo,theaveragecommutetimeisabout28minutes(33minutesformenand22minutesforwomen)(LeBarbanchonetal.,2021).IntheUnitedStates,forinstance,theaverageone-waycommutetimeisabout26minutes(BurrowsandBurd,2024).Theaveragetransitcommutetimeis49.3minutes(Barkleyetal.,2018).Itisessentialtocarefullyinterpretshortcommutetimesindevelopingcities.
3Theseaveragesarecalculatedwithallavailabledata,someofwhicharenotusedinthefollowingregressionanalyses.
-8-
Similarly,reportedcommutingcostsinAntananarivoarealsosignificantlyzero-inflated.
Thesimpleaverageone-waycommutecostisabout117Malagasyariary(Figure4).Whilemen
spendonaverage162ariary,womenspend83ariary.Buthalfofthosesurveyedreportedzero
commutingcosts.Morewomenwalktoworkthanmen(Figure5).Whenthosewhowalkordo
notspendmoneyoncommutingareexcluded,theaveragecommutecostisabout500ariaryforbothmenandwomen.Theseinflatedzerovaluesincommutetimeorcostsmaycausebiaswhenexaminingtheeffectonemployment.Zerotimeorcostcouldindicateverylimitedaccessibilityratherthangoodaccess.Thefollowingsectionswillcastlightonthisproblembyexamininghowthesemeasuresbehaveinrelationwithlabormarketoutcomes.
Figure1.Urbanpopulationinmajorcities
Figure2.AccessibilitytoCBDandbusoperations
Source:UN-Habitat(2016).
-9-
Figure3.Commutetimesreported
Figure4.Commutingcostsreported
0.01.02.03.04.05
05.0e-04.001.0015.002
Density
Density
050100150200
010002000300040005000
Commutetimeoneway(minutes)
Commutingcostsoneway(Ariary)
Figure5.Modalshares
020406080100
Modalsharetogotoaworkplace
(%,multipleanswers)
36.6
...
43.4
2.67.22.9
57.7
43.9
Female
Car
BicycleMinibus
MaleWalk
Microbus&Taxi
Second,theproximitytopublictransportationismeasuredusingspatialsoftware.Unlikedevelopedcountrieswithhighcardependency,privatecarownershipisstilllimitedin
Madagascar.Themostimportantmeansoftransportareminibusesandcitybuses(seeFigure2above).AmonghouseholdsincludedintheMULSsurvey,theaveragegeographicdistanceto
nearestbusrouteisabout225metersora3-minutewalk,assumingawalkingspeedof4km/h(Figure6).Notethatthisdistanceismeasuredfromthebusroutesratherthanbusstops,astherearenostrictlydesignatedbusstopsintheMalagasyminibussystem.Practically,passengerscanembarkanddisembarkatanypointalongtheroutes.
Themeasureddistancevariessignificantly,rangingfromnearlyzerotoover2km,becausetransitaccessibilitybecomesextremelypoorasonemovesoutfromthecitycenter.Thefindingisconsistentwiththeliterature(e.g.,Ermagun,2021),highlightingthatthosewholiveoutside
-10-
thereachofcurrentminibusoperationsarelikelytofacesubstantiallimitationsinjob
accessibilityinAntananarivo.Recallthataglobalnormforproximitytopublictransportistypically500to1,000meters(e.g.,Wasfietal.,2013;Tennoyetal.,2022;LachapelleandBoisjoly,2023).
Figure6.Distancetothenearestbusroute
0.001.002.003.004
Density
0100020003000
Distancetothenearestbusroute(meter)
Third,theCBD-basedtraveltimeiscomputedbasedontheassumptionoftime-minimizingcommutingbehavior.LakeAnosyisusedasthecentralpointoftheCBDforthiscalculation.
Theshortesttriptimeisestimatedwithroadclassandtrafficspeeddatatakenintoaccount.Foreachroadsection,averagedrivingspeedisassumedtobe20kmperhourforNationalRoadsinthecityofAntananarivo,40kmperhourforNationalRoadsinsuburbanareas,and20kmperhourforotherroads.Inaddition,trafficspeedisassumedtobereducedbyhalfifthereare500minibusesoperatingonagivenroute.Thisisbecauseminibusescausetrafficcongestionin
Antananarivo.
ThemeasuredaccessibilitytotheCBDlooksmoreevenlydistributed,capturingpotential
jobopportunitiesbetter(Figure7).Byconstruction,thereisnozero-valueforthisvariablecreatedregardlessofwhethertheyactuallycommuteornot.Theaveragetraveltimeisestimatedatabout28minutesamonghouseholdscoveredbytheMULSsurvey.Importantly,thismeasureof
accessibilitycanpresentdetailedspatialgranularityofaccessibility(Figure8).ItisclearthattheaccessibilitytotheCBDisparticularlyhighwithina5-kmradiusoftheCBD.Accessibility
dropssharplybeyonda10-kmradius.Ingeneral,traveltime-basedaccessibilityisnot
necessarilyassociatedwithdistance-basedmeasurements.InAntananarivo,however,thetwo
-11-
metricsseemhighlycorrelatedbecauseofitsclassic,monocentriccitystructure.AllmajorroadsconvergearoundLakeAnosy,wheremanyminibusoperationsareconcentrated,attractingmorepeopleandfirms.
Figure7.EstimatedtraveltimetotheCBD
0.01.02.03
Density
020406080
TraveltimetoCBD(minute)
Figure8.SpatialdistributionoftraveltimetotheCBD
Finally,despitethehighconcentrationoffirmsandjobsaroundtheCBD,severalnew
businesscentersarealsoemerginginAntananarivo.Toaddressthispolycentric,thegravity
approachispredominantlyusedintheliterature(e.g.,DeMontisetal.,2011;JinandPaulsen,2018;Dixonetal.,2019;Huang,2020).Thispaperconsidersthesimplestversionofgravity-basedaccessibilitymeasure:
Thisrepresentstheaveragetriptimefromindividualitojoblocationm,weightedbythesizeofpotentialjobopportunitiesatm.Whiledimistransportdeterrencebetweeniandm,Ymrepresentsthesizeofjobopportunitiesexistingatlocationm.Thus,ym/Σmymcanbeinterpretedasthe
relativeimportanceofjobsizeatlocationmoraweight.Unlikeexistingstudieswhichoften
-12-
calculatetheaveragenumberofopportunitiesinverselyweightedbytraveldeterrence,
4
weusethisweightedaveragecommutetimetoreachpotentialjobopportunities.Althoughthetwo
formulasareessentiallyequivalentbutshowtheoppositedirections,thetime-basedmatricismoreusefulforcomparisonwithothermeasuresdiscussedinthispaper.
Anempiricalchallengeariseswhenmeasuringthesizeofjobopportunities,Y,inadata-
scarceenvironment.Twodatasourcesareusedhere.First,acity’slandusemapisusedto
quantifythesizeoflandareasdedicatedtoadministrative,commercialandindustrialzones,
culturalfacilities,hotelbuildings,marketareas,andofficebuildings.Thistypeofdata,though
notalwaysavailableindevelopingcountries,isconsideredasidealforidentifyinglocationsofpotentialjobopportunities,especiallyintheformalsector.Atotalof1,094landparcelswere
identified,rangingfrom0.007hato37ha(Figure9).Usingtheavailableadministrativefirmdataatacommunelevel,itwasconfirmedthatthesemeasuredlandareasarehighlycorrelatedwiththenumberofregisteredbusinessesinthesamearea.Theconnectivitydeterrencedimisagain
measuredbytheshortesttriptimebetweenlocationianddestinationm.
Apotentialdrawbackisthatinformaljobsareprobablyignored,whicharetypically
widespreadallovertheplace.Toaddressthisissue,wealsousetherecentlydevelopedglobal
dataset,OpenBuildings2.5DTemporalDataset(Sirkoetal.,2021),whichisderivedfromthe
Sentinel-2satelliteimageryandcontainsspatialdataofbuildingpresenceandheightsatabout4-meterresolution(Figure10).Unfortunately,theclassificationofbuildingsbytypehasnotyet
beenidentified.Nonetheless,inmanyAfricancountries,buildingstypicallyhavelowerheights,andinformalemploymentiswidespreadeverywhere.Thus,allbuilt-upareasareassumedas
potentialjobplaces.Weonlyusedatawithaconfidencelevelofbuildingpresenceexceeding75percent.Forcomputationalsimplicity,thebuildingdataisspatiallyaggregatedtoa200-meter
resolution(Figure11).Eachcellisconsideredasajobplace,andthebuildingareawithineachcellisusedasaproxyofYm.AsthetruejoblocationsmightbesomewherebetweenthetwomapsshowninFigure9andFigure11,wewillcomparethetworesults.
4Thatis,Σmymf(dim)wheref()isadecayfunctionoftraveltimeorcosts.
-13-
Figure9.Commercialareasandnumberoffirms
Figure10.OpenBuildingsDataforAntananarivo
Source:OpenBuildings2.5DTemporalDataset
Figure11.DistributionofbuildingsinAntananarivo
Source:BasedonOpenBuildings2.5DTemporalDataset
-14-
Amongabout2,300householdssurveyedbytheMULS,sixjobaccessibilitymeasurementsarecomparedinTable1.
5
Asdiscussed,thereportedcommutetime,denotedbyTIMEObserved,
maybeunderestimated.Theproximitytothenearestminibusroute(TIMEBus)isonly3minutes.Thestraight-linedistancetotheCBD(KMCBD)isonaverage4.3km.Thetraveltime(TIMECBD)is28minutes.However,noteveryonecommutestotheCBD.Withothercommercialareastakenintoaccount,theweightedaveragecommutetime,denotedbyTIMEComBuild,isincreasedto41
minutes.Furthermore,includingallbuildinglocations,thecommutetime,TIMEAllBuild,isabout44minutes.
Notsurprisingly,allmeasurementsarepositivelycorrelatedwithoneanotherexceptfor
TIMEObserved(Table2).Thisisbecauseofthezero-inflatedcommutetimereportedinthe
householdsurvey.Ontheotherhand,jobaccessibilitymeasuredbasedonthelandusemap,
TIMEComBuild,showshighcorrelationwiththeonederivedfromtheOpenBuildingsdataset,
TIMEAllBuild.Thecorrelationcoefficientis0.98,suggestingthatthelatteropen-sourcedata
approachisreliableforevaluatingjobaccessibilityinAntananarivoandpotentiallyother
developingcitieswithsimilarcharacteristics.Thisisanimportantfindingofthispaper.Thereisalsoacorrelationbetweenproximitytominibusroutesandotheraccessibilitymetrics.Buttransitaccessibi
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年成人肥胖食養(yǎng)指南專題講座
- 機械制造技術(shù)基礎(chǔ) 課件 6.4 裝配工藝規(guī)程的制定
- 中國零添加調(diào)味品市場信任機制構(gòu)建研究報告
- 餐廳廚房防滑操作及事故處理
- 未來五年光網(wǎng)絡(luò)企業(yè)縣域市場拓展與下沉戰(zhàn)略分析研究報告
- 未來五年玉米根企業(yè)制定與實施新質(zhì)生產(chǎn)力戰(zhàn)略分析研究報告
- 未來五年壓電陶瓷行業(yè)跨境出海戰(zhàn)略分析研究報告
- 未來五年精煉豆油企業(yè)制定與實施新質(zhì)生產(chǎn)力戰(zhàn)略分析研究報告
- 淘寶電商產(chǎn)品需求文檔案例分析報告
- 未來五年貝類水產(chǎn)品企業(yè)制定與實施新質(zhì)生產(chǎn)力戰(zhàn)略分析研究報告
- 噴涂角度對鋁-銅接觸件冷噴涂銅防護涂層結(jié)構(gòu)形成及耐蝕性能的影響
- 2023版河北高職單招真題匯編與標準模擬-語文
- 刷白 樹干施工方案
- 空氣能熱泵中央熱水系統(tǒng)調(diào)試
- GB/T 45542-2025工業(yè)鍋爐綜合能效評價技術(shù)規(guī)范
- 下肢淋巴水腫的管理實踐
- QC提高高速公路鐓粗直螺紋鋼筋接頭驗收合格率QC成果
- JJF2085-2023低頻角加速度臺校準規(guī)范
- 北京麥田房產(chǎn)合同范本
- 《校園欺凌現(xiàn)象與學校社會工作干預(yù)的探索》14000字論文
- 交款合同范本
評論
0/150
提交評論