【世界銀行】衡量工作可及性:不同方法和新數(shù)據(jù)-2025.8_第1頁
【世界銀行】衡量工作可及性:不同方法和新數(shù)據(jù)-2025.8_第2頁
【世界銀行】衡量工作可及性:不同方法和新數(shù)據(jù)-2025.8_第3頁
【世界銀行】衡量工作可及性:不同方法和新數(shù)據(jù)-2025.8_第4頁
【世界銀行】衡量工作可及性:不同方法和新數(shù)據(jù)-2025.8_第5頁
已閱讀5頁,還剩57頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

PublicDisclosureAuthorizedPublicDisclosureAuthorized

PolicyResearchWorkingPaper11181

MeasuringJobAccessibilityDifferentMethodsandNewData

AtsushiIimi

WORLDBANKGROUP

TransportGlobalDepartmentAugust2025

Averifiedreproducibilitypackageforthispaperisavailableat

,click

here

fordirectaccess.

ProducedbytheResearchSupportTeam

PolicyResearchWorkingPaper11181

Abstract

ThepaperreexamineshowtomeasurejobaccessibilityinenvironmentswithlimiteddataavailabilityandappliesdifferentmethodstoAntananarivo,thecapitalofMada-gascar.Jobcreationandaccessibilityareattractingrenewedinterestindevelopingcountries,whereunemploymentratesremainpersistentlyhigh.Thepaperfindstwotypesofjobaccessibilitymeasuresthatparticularlyimpactemploy-ment:proximitytopublictransportandaveragetraveltime

weightedbyavailablejobopportunities.Forthelatter,thepaperalsofindsthatnewopen-sourcedata,suchastheOpenBuildingsdataset,areeffectiveinidentifyingexistingjobopportunities.Usingthemeasuredresults,themarginalimpactofjobaccessibilityonemploymentisestimatedatabout?0.05to?0.06afterthepotentialendogeneityofaccessibilitymeasuresiscontrolled.

ThispaperisaproductoftheTransportGlobalDepartment.ItispartofalargereffortbytheWorldBanktoprovideopenaccesstoitsresearchandmakeacontributiontodevelopmentpolicydiscussionsaroundtheworld.PolicyResearchWorkingPapersarealsopostedontheWebat

/prwp.Theauthormaybecontactedat

aiimi@.Averifiedreproducibilitypackageforthispaperisavailableat

http://reproducibility.worldbank.

org

,click

here

fordirectaccess.

Y

C

I

A

E

RES

L

O

P

H

C

R

S

TRANSPARENT

P

E

R

W

O

R

K

I

ANALYSIS

A

NGP

ThePolicyResearchWorkingPaperSeriesdisseminatesthefindingsofworkinprogresstoencouragetheexchangeofideasaboutdevelopmentissues.Anobjectiveoftheseriesistogetthefindingsoutquickly,evenifthepresentationsarelessthanfullypolished.Thepaperscarrythenamesoftheauthorsandshouldbecitedaccordingly.Thefindings,interpretations,andconclusionsexpressedinthispaperareentirelythoseoftheauthors.TheydonotnecessarilyrepresenttheviewsoftheInternationalBankforReconstructionandDevelopment/WorldBankanditsaffiliatedorganizations,orthoseoftheExecutiveDirectorsoftheWorldBankorthegovernmentstheyrepresent.

MeasuringJobAccessibility:DifferentMethodsandNewData

AtsushiIimi

?

EasternandSouthernAfrica

TransportGlobalPractice

WorldBank

Keywords:Accesstojobs;Jobcreation;Probitmodel.

JELclassification:C25,J08;O14;O18

?Correspondingauthor.

-2-

I.INTRODUCTION

Thispaperaimstoreconsiderjobaccessibilitybycomparingdifferentmeasuresusedintheliteratureandexamininghowtheybehaveinconnectionwithlabormarketoutcomes,especiallywithinthecontextofdevelopingcountries.Inrecentyears,employmenthasbeenincreasingly

discussedinthedevelopingworld(e.g.,ILO,2022a,2022b,2024;BanerjeeandSequeira,2023;CarranzaandMcKenzie,2024).However,howtomeasurejobaccessibilityremainsrelatively

understudied.Variousmethodsandconceptsarediscussedintheliterature.Thepaperreviews

theprosandconsofexistingmethodsandproposesanewapproachusinganovelglobaldataset,OpenBuildings2.5DTemporalDataset(Sirkoetal.,2021),whichisapplicableevenindata-

scarceenvironments.Thepapertheninvestigateswhichaccessibilitymeasurementisthemosteffectivetoevaluateitspotentialimpactonlabormarketoutcomes,suchaslaborforce

participation.

Whiletheunderlyingbasicconceptislargelysimilar,jobaccessibilityisdefineddifferentlyacrossexistingstudies.Forinstance,ShahandSturzenegger(2022)estimatethatSouthAfricansspendabout60percentoftheirincomeontransportcosts.Inthiscontext,jobaccessibilityis

simplymeasuredbycommutingtimeandcosts.BanerjeeandSequeira(2023)alsodiscussthe

effectivenessofpublictransportsubsidiestosupportjobsearches.Proximitytopublictransportisanothermeasureoftenusedtoexamineitsimpactonemployment(e.g.,Holzeretal.,2003;

MayerandTrevien,2017;Tyndall,2017).Incar-dependentcountries,suchastheUnitedStates,congestionanddrivingtimeonhighwaysmaybemorerelevant(e.g.,GoodwinandNoland,

2003;BurrowsandBurd,2024).

BaradaranandRamjerdi(2001)discusstheperformanceofdifferentjobaccessibility

measures,classifyingthemintofivegroups:travelcost,gravity,timeconstraint-based,utility-based,andcompositeapproaches.Whilethetravelcostapproachismoststraightforward,the

gravityapproachexaminespotentialopportunities.Thetimeconstraint-basedapproachcanalsoaccountforpeople’stimelimitationsforotherdailyactivitiesthatrequiretransportation.The

utility-basedapproachismoredataintensiveasittakesintoaccountpeople’spreferencesoverdifferenttransportoptions.Thecompositeapproachisevenmorecomplex,combiningthe

-3-

constraint-andutility-basedmethods.MerlinandHu(2017)emphasizetheeffectofcompetitionforjobs,classifyingmethodsslightlydifferentlyintofourgroups:cumulativeopportunity,

gravity,Shen’smodel,andinversebalancingfactorapproaches.Mostrecently,MazzullaandPirrone(2024)provideacomprehensivereviewofaccessibilitymeasures,developinga

systematicclassificationframework.

Despitedifferentclassifications,allmeasuresfocusontheavailabilityofopportunitiesandtransportationbarriersacrossdifferentlocations,differingmainlyinhowtheseimpedimentsandopportunitiesarequantifiedandaggregatedintoonemeasurementundertheoreticalassumptionsanddataconstraints.Thereareseveralmethodsthatarerelativelysimplemethodsandapplicableeventodevelopingcountrieswheredataavailabilityisoftenlimited.Insuchcountries,detailedorigin-destination(OD)dataarenotavailable,firmregistrydataareincomplete,anddataon

existingtransitsystemsareoftenlargelymissing.

Thefirstmethodinvolvestraditionaltravelcostortime-basedmeasures.Thistypeofdataisconceptuallyunderstandableandcanberelativelyeasilycollected.Soetal.(2001)examinetherelationshipbetweenwagesandcommutetimeobservedinthecensusdatafortheUnited

States.Ruppertetal.(2009)andLeBarbanchonetal.(2021)analyzeasimilarissueinFrance.

Commutetimeandcostsmaybeavailableinstandardhouseholdsurveysevenindeveloping

countries.AccordingtothenationaltravelsurveydatainSouthAfrica,averagecommutingtimeisabout50minutesoneway(ShahandSturzenegger,2022).Usinghouseholdsurveydata,

Lozano-GraciaandYoung,2014)showthatmedianhouseholdexpenditureontransportationnormallyrangesfrom2to8percentofincome.

Apotentialempiricalchallengeinusingthesemeasuresisthepartialobservabilityofdata.Inparticularindevelopingcountries,informalityisveryhigh(Dodmanetal.,2017;ILO2017;

Lalletal.,2017;OECD,2022).Over90percentofthetotalworkforceisengagedininformal

jobsorself-employment(ILO,2023).Inaddition,manyAfricanswalktowork.InAntananarivo,Madagascar,halfofthecityresidentssimplywalktotheirworkplaces(Iimi,2023).Thus,the

traditionalassumptionontime-minimizingtravelbehavior,giventheavailabilityof

transportationoptions,maynothold.Observedcommutetimesandcostsareinherentlytruncated

-4-

atzero.Thiscensoredregressorproblem,thoughoftenignored,maycausesignificantbiasifnongenuinezeroobservationsaredroppedorassumedtobezero(RigobonandStoker,2007).

Second,theempiricalliteraturealsousestheproximitytotransportinfrastructureand

servicestomeasurejobaccessibility.Unliketheabovetraveltimeorcostapproach,thismeasureisobservableforallindividualswithknownresidences.Ithasbecomemorepracticalwiththe

increasingavailabilityofspatialdataandtoolsevenindevelopingcountries.Thechoiceofthisapproachdependsontheassumptionthatpeopleusethesetransportpublicservicestoaccess

jobs.Thismayormaynotbethecaseindevelopingcountriesbecausepeoplemaynotuseanytransportmeans.However,thismethodcanbeusefulifitismeasuredwithinformalpublic

transportincluded,whichisadominanttransportmeansinmanydevelopingcities(e.g.,ShimazakiandRahman,1996;CDIA,2011;Iimi,2023).

Theliteraturecommonlyusesa500to1,000-meterdistancefrompublictransportto

identifypotentialbeneficiaries(e.g.,Wasfietal.,2013;LachapelleandBoisjoly,2023).Tennoyetal.(2022)examinewalkingdistancestopublictransportinNorway,supportingaconventionalthresholdof500metersora4to6-minutewalktopromotepublictransportusage.Scholletal.

(2018)usealongerdistanceof1.5kmtodefinepotentialBRTcommutersinLima.

Theavailableevidencegenerallysupportsapositiveemploymentimpactofproximityto

publictransport(e.g.,seeBastiaanssenetal.(2020)forameta-analysis).Holzeretal.(2003)

findapositiveemploymenteffectofreversecommutetosuburbanareascausedbyanextendedmetrolineinSanFrancisco.Similarly,MayerandTrevien(2017)showthattheprogressive

developmentofRegionalExpressRailaroundParisledtoincreasedemployment.ProximitytoanewBRTinLimaalsohasapositiveimpactonemployment(Scholletal.,2018).Usingquasi-experimentalnaturalevents,Tyndall(2017)showsthatmetroservicedisruptionscausedby

HurricaneSandyincreasedunemploymentintheaffectedareasofNewYork.Anegative

correlationbetweenemploymentandhouseholddistancefromthenearestrailstationisalsofoundinMumbai,India(Alametal.,2021).

-5-

Third,thedistanceortraveltimetoworkplaces,namely,thecentralbusinessdistrict

(CBD),isanotherstraightforwardmeasureofjobaccessibility.Theaboveapproachmeasuringaccesstotransitmerelyrepresentspartofoverallaccessibility.Bycontrast,thismeasureis

potentiallycompleteandalignswellwithurbaneconomics.TraditionalurbanstudiescenteronaccessibilitytotheCBD,highlightingatradeoffbetweencommutingcostsandhousingcosts.

Forinstance,Levinson(1998)showsthatjob(andhousing)accessibilitydecreaseswithdistancefromtheCBDinWashington,DC.Similarly,Weber(2003)findsthatinPortland,Oregon,thedistancefromtheCBDisimportanttodeterminethenumberofopportunitiesandpeople’s

mobility.ThisinverserelationshipbetweenjobaccessibilityanddistancefromtheCBDisconfirmedinmostmajorU.S.cities(Ermagun,2021).

TheCBD-basedapproachassumesmobilitypatternswithintheframeworkofthe

monocentricurbanmodel,whichmayremainapplicabletomanyAfricancities.Primacyratesofthelargestcityindevelopingcountriesaregenerallyhigh.Unlikeotherregions,the

transformationfrommonocentrictopolycentricurbanstructuresisstilllimitedinAfricathoughsomesecondarycitiesareemerging(e.g.,Agyemangetal.,2019;OECD2022).InmanyAfricancities,theCBDcanbedefinedrelativelystraightforwardly.Thisisastrongadvantagefromtheempiricalpointofview.

Finally,thegravityapproachisperhapsthemostcommonmethodtomeasurejob

accessibilityintheliterature,withvariousextensionsdeveloped(e.g.,BaradaranandRamjerdi,2001;MerlinandHu,2017;JinandPaulsen,2018;Huang,2020;MazzullaandPirrone,2024).Itcantakeintoaccountpotentialopportunitiesacrossmultiplelocationsandweighsthem

negativelybytransporttime,costsorotherimpediments.Datarequirementsincrease

considerablywithgranularityinanalysis.Indevelopingcountries,itmaynotbeeasytoobtainhighlydisaggregatedspatialdataonhouseholds,employment,orfirms.

Thispaperaimsatcontributingtoidentifyingareliableandpracticaljobaccessibility

measureinthecontextofdevelopingcountries,especiallyinrelationshipwithemployment

outcomes.Usingvarioussourcesofdata,thepapercomparesdifferentmeasuresofjob

accessibility,usinguniquedatafromAntananarivo,thecapitalofMadagascar.Itnotonlyusesa

-6-

detailedlandusemaptoidentifyjoblocationsbutalsotestsanovelglobaldatasettoproxyjobopportunities.TheevidenceindicatesthatthejobaccessibilitymeasurederivedfromtheOpenBuildings2.5DTemporalDataset(Sirkoetal.,2021)ispromising.Thisisthefirstcontributionofthepaper.

Inaddition,thepaperalsocontributestodemonstratingapracticalwayofcontrollingforendogeneityofjobaccessibility.Aspredictedbytheory(e.g.,Rupertetal.,2009),commutingvariablesorjobaccessibilityarelikelyendogenousinthecontextoflaborforceparticipation.

Thispaperemploystheinstrumentalvariable(IV)techniqueusingsimpletopographicandmeteorologicaldata,withtheirempiricalvalidityreaffirmedbyconventionalHansen’sJ

statisticsandGuevara’sRefutabilityteststatistics(Guevara,2018).

Therestofthepaperisorganizedasfollows:SectionIIbrieflyexplainsthecountrycontextandmeasuresjobaccessibilitybydifferentmethods.SectionIIIdevelopsourempiricalstrategy.SectionIVdescribesthedata.SectionVpresentsthemainresults.SectionVIconcludes.

II.MEASURINGJOBACCESSIBILITYINANTANANARIVO

MadagascarisoneoftheleastdevelopedcountriesinAfrica,withaGDPpercapitaof

approximatelyUS$520.About21millionMalagasypeople,orroughly80percentofthe

population,livebelowthepovertyline.LikemanyotherAfricannations,Madagascarhasbeenexperiencingrapidurbanizationinrecentyears.Thetotalpopulationstandsataround26

million,

1

with3.3millionresidinginGreaterAntananarivo,thecapital.

2

Antananarivoisthe

fourthlargestcityintheEasternandSouthernAfricanregion,followingDaresSalaam,Nairobi,andAddisAbaba(Figure1).Othersecondarycities,suchasToamasinaandMahajanga,arealsoexperiencinggrowth.However,GreaterAntananarivoremainstheprimaryeconomichub.

Antananarivoexperiencessignificantcongestion,duetolimitedlandallocatedfortransportinfrastructure,historicbuildingsdatingbacktotheearly1600s,andsurroundinghillymountains.

1Accordingtothelatestnationalcensusdata(INSTAT2018).

2AccordingtotheUNHabitatestimate(UNESA2018).

-7-

Thecity’smainpublictransportservices,knownastaxi-be,areinefficientandunreliable.Over6,000minibusesoperateonabout130routes,manyofwhichareduplicatedandfragmented.

Minibusservicesareconcentratedalongmajornationalcorridorswithhighdemand,all

convergingtowardsthecitycenteraroundLakeAnosy.ThisareahistoricallyconstitutestheCBD,hostingmanyjobs(Figure2).

Inthispaper,fourmetricsareconsideredtomeasurejobaccessibility.First,dataon

reportedcommutingtimeorcostcanbeused.Arecentcity-levelhouseholdsurvey,MeasuringUrbanLivingStandards(MULS)inAntananarivocarriedoutin2016,includedabout9,300

individualsfromabout2,300households.Accordingtothisdata,peopleinthecityspendan

averageofabout15minutescommutingtowork(Figure3).

3

Onaverage,menspend21minutesforcommuting,whilewomenspend11minutes.Notably,however,asignificantnumberof

peopleeitherdonotworkorworkathome.Whenexcludingzerocommutetimes,theaveragecommutingdurationisabout29minutes(32minutesformenand25minutesforwomen).

ComparedtootherAfricancities,thisstilllooksrelativelymodest:50minutesonewayinSouthAfrica(ShahandSturzenegger,2022),74minutesinDaresSalaam(WorldBank,2016),and

100minutesdailyinAccra(Carmichaeletal.,2024).

Ingeneral,theriskofoverestimatingjobaccessibilityisevidentwhenusingthereport-

basedcommutetimemeasure,especiallyiftherearemanypeoplewhodonotworkorworkathomeorneartheirresidences,therefore,reportingminimalorzerocommutetime.Among

OECDcountries,wherepublictransportationispresumablymoreefficientandavailablethanrapidlygrowingdevelopingcitiessuchasAntananarivo,theaveragecommutetimeisabout28minutes(33minutesformenand22minutesforwomen)(LeBarbanchonetal.,2021).IntheUnitedStates,forinstance,theaverageone-waycommutetimeisabout26minutes(BurrowsandBurd,2024).Theaveragetransitcommutetimeis49.3minutes(Barkleyetal.,2018).Itisessentialtocarefullyinterpretshortcommutetimesindevelopingcities.

3Theseaveragesarecalculatedwithallavailabledata,someofwhicharenotusedinthefollowingregressionanalyses.

-8-

Similarly,reportedcommutingcostsinAntananarivoarealsosignificantlyzero-inflated.

Thesimpleaverageone-waycommutecostisabout117Malagasyariary(Figure4).Whilemen

spendonaverage162ariary,womenspend83ariary.Buthalfofthosesurveyedreportedzero

commutingcosts.Morewomenwalktoworkthanmen(Figure5).Whenthosewhowalkordo

notspendmoneyoncommutingareexcluded,theaveragecommutecostisabout500ariaryforbothmenandwomen.Theseinflatedzerovaluesincommutetimeorcostsmaycausebiaswhenexaminingtheeffectonemployment.Zerotimeorcostcouldindicateverylimitedaccessibilityratherthangoodaccess.Thefollowingsectionswillcastlightonthisproblembyexamininghowthesemeasuresbehaveinrelationwithlabormarketoutcomes.

Figure1.Urbanpopulationinmajorcities

Figure2.AccessibilitytoCBDandbusoperations

Source:UN-Habitat(2016).

-9-

Figure3.Commutetimesreported

Figure4.Commutingcostsreported

0.01.02.03.04.05

05.0e-04.001.0015.002

Density

Density

050100150200

010002000300040005000

Commutetimeoneway(minutes)

Commutingcostsoneway(Ariary)

Figure5.Modalshares

020406080100

Modalsharetogotoaworkplace

(%,multipleanswers)

36.6

...

43.4

2.67.22.9

57.7

43.9

Female

Car

BicycleMinibus

MaleWalk

Microbus&Taxi

Second,theproximitytopublictransportationismeasuredusingspatialsoftware.Unlikedevelopedcountrieswithhighcardependency,privatecarownershipisstilllimitedin

Madagascar.Themostimportantmeansoftransportareminibusesandcitybuses(seeFigure2above).AmonghouseholdsincludedintheMULSsurvey,theaveragegeographicdistanceto

nearestbusrouteisabout225metersora3-minutewalk,assumingawalkingspeedof4km/h(Figure6).Notethatthisdistanceismeasuredfromthebusroutesratherthanbusstops,astherearenostrictlydesignatedbusstopsintheMalagasyminibussystem.Practically,passengerscanembarkanddisembarkatanypointalongtheroutes.

Themeasureddistancevariessignificantly,rangingfromnearlyzerotoover2km,becausetransitaccessibilitybecomesextremelypoorasonemovesoutfromthecitycenter.Thefindingisconsistentwiththeliterature(e.g.,Ermagun,2021),highlightingthatthosewholiveoutside

-10-

thereachofcurrentminibusoperationsarelikelytofacesubstantiallimitationsinjob

accessibilityinAntananarivo.Recallthataglobalnormforproximitytopublictransportistypically500to1,000meters(e.g.,Wasfietal.,2013;Tennoyetal.,2022;LachapelleandBoisjoly,2023).

Figure6.Distancetothenearestbusroute

0.001.002.003.004

Density

0100020003000

Distancetothenearestbusroute(meter)

Third,theCBD-basedtraveltimeiscomputedbasedontheassumptionoftime-minimizingcommutingbehavior.LakeAnosyisusedasthecentralpointoftheCBDforthiscalculation.

Theshortesttriptimeisestimatedwithroadclassandtrafficspeeddatatakenintoaccount.Foreachroadsection,averagedrivingspeedisassumedtobe20kmperhourforNationalRoadsinthecityofAntananarivo,40kmperhourforNationalRoadsinsuburbanareas,and20kmperhourforotherroads.Inaddition,trafficspeedisassumedtobereducedbyhalfifthereare500minibusesoperatingonagivenroute.Thisisbecauseminibusescausetrafficcongestionin

Antananarivo.

ThemeasuredaccessibilitytotheCBDlooksmoreevenlydistributed,capturingpotential

jobopportunitiesbetter(Figure7).Byconstruction,thereisnozero-valueforthisvariablecreatedregardlessofwhethertheyactuallycommuteornot.Theaveragetraveltimeisestimatedatabout28minutesamonghouseholdscoveredbytheMULSsurvey.Importantly,thismeasureof

accessibilitycanpresentdetailedspatialgranularityofaccessibility(Figure8).ItisclearthattheaccessibilitytotheCBDisparticularlyhighwithina5-kmradiusoftheCBD.Accessibility

dropssharplybeyonda10-kmradius.Ingeneral,traveltime-basedaccessibilityisnot

necessarilyassociatedwithdistance-basedmeasurements.InAntananarivo,however,thetwo

-11-

metricsseemhighlycorrelatedbecauseofitsclassic,monocentriccitystructure.AllmajorroadsconvergearoundLakeAnosy,wheremanyminibusoperationsareconcentrated,attractingmorepeopleandfirms.

Figure7.EstimatedtraveltimetotheCBD

0.01.02.03

Density

020406080

TraveltimetoCBD(minute)

Figure8.SpatialdistributionoftraveltimetotheCBD

Finally,despitethehighconcentrationoffirmsandjobsaroundtheCBD,severalnew

businesscentersarealsoemerginginAntananarivo.Toaddressthispolycentric,thegravity

approachispredominantlyusedintheliterature(e.g.,DeMontisetal.,2011;JinandPaulsen,2018;Dixonetal.,2019;Huang,2020).Thispaperconsidersthesimplestversionofgravity-basedaccessibilitymeasure:

Thisrepresentstheaveragetriptimefromindividualitojoblocationm,weightedbythesizeofpotentialjobopportunitiesatm.Whiledimistransportdeterrencebetweeniandm,Ymrepresentsthesizeofjobopportunitiesexistingatlocationm.Thus,ym/Σmymcanbeinterpretedasthe

relativeimportanceofjobsizeatlocationmoraweight.Unlikeexistingstudieswhichoften

-12-

calculatetheaveragenumberofopportunitiesinverselyweightedbytraveldeterrence,

4

weusethisweightedaveragecommutetimetoreachpotentialjobopportunities.Althoughthetwo

formulasareessentiallyequivalentbutshowtheoppositedirections,thetime-basedmatricismoreusefulforcomparisonwithothermeasuresdiscussedinthispaper.

Anempiricalchallengeariseswhenmeasuringthesizeofjobopportunities,Y,inadata-

scarceenvironment.Twodatasourcesareusedhere.First,acity’slandusemapisusedto

quantifythesizeoflandareasdedicatedtoadministrative,commercialandindustrialzones,

culturalfacilities,hotelbuildings,marketareas,andofficebuildings.Thistypeofdata,though

notalwaysavailableindevelopingcountries,isconsideredasidealforidentifyinglocationsofpotentialjobopportunities,especiallyintheformalsector.Atotalof1,094landparcelswere

identified,rangingfrom0.007hato37ha(Figure9).Usingtheavailableadministrativefirmdataatacommunelevel,itwasconfirmedthatthesemeasuredlandareasarehighlycorrelatedwiththenumberofregisteredbusinessesinthesamearea.Theconnectivitydeterrencedimisagain

measuredbytheshortesttriptimebetweenlocationianddestinationm.

Apotentialdrawbackisthatinformaljobsareprobablyignored,whicharetypically

widespreadallovertheplace.Toaddressthisissue,wealsousetherecentlydevelopedglobal

dataset,OpenBuildings2.5DTemporalDataset(Sirkoetal.,2021),whichisderivedfromthe

Sentinel-2satelliteimageryandcontainsspatialdataofbuildingpresenceandheightsatabout4-meterresolution(Figure10).Unfortunately,theclassificationofbuildingsbytypehasnotyet

beenidentified.Nonetheless,inmanyAfricancountries,buildingstypicallyhavelowerheights,andinformalemploymentiswidespreadeverywhere.Thus,allbuilt-upareasareassumedas

potentialjobplaces.Weonlyusedatawithaconfidencelevelofbuildingpresenceexceeding75percent.Forcomputationalsimplicity,thebuildingdataisspatiallyaggregatedtoa200-meter

resolution(Figure11).Eachcellisconsideredasajobplace,andthebuildingareawithineachcellisusedasaproxyofYm.AsthetruejoblocationsmightbesomewherebetweenthetwomapsshowninFigure9andFigure11,wewillcomparethetworesults.

4Thatis,Σmymf(dim)wheref()isadecayfunctionoftraveltimeorcosts.

-13-

Figure9.Commercialareasandnumberoffirms

Figure10.OpenBuildingsDataforAntananarivo

Source:OpenBuildings2.5DTemporalDataset

Figure11.DistributionofbuildingsinAntananarivo

Source:BasedonOpenBuildings2.5DTemporalDataset

-14-

Amongabout2,300householdssurveyedbytheMULS,sixjobaccessibilitymeasurementsarecomparedinTable1.

5

Asdiscussed,thereportedcommutetime,denotedbyTIMEObserved,

maybeunderestimated.Theproximitytothenearestminibusroute(TIMEBus)isonly3minutes.Thestraight-linedistancetotheCBD(KMCBD)isonaverage4.3km.Thetraveltime(TIMECBD)is28minutes.However,noteveryonecommutestotheCBD.Withothercommercialareastakenintoaccount,theweightedaveragecommutetime,denotedbyTIMEComBuild,isincreasedto41

minutes.Furthermore,includingallbuildinglocations,thecommutetime,TIMEAllBuild,isabout44minutes.

Notsurprisingly,allmeasurementsarepositivelycorrelatedwithoneanotherexceptfor

TIMEObserved(Table2).Thisisbecauseofthezero-inflatedcommutetimereportedinthe

householdsurvey.Ontheotherhand,jobaccessibilitymeasuredbasedonthelandusemap,

TIMEComBuild,showshighcorrelationwiththeonederivedfromtheOpenBuildingsdataset,

TIMEAllBuild.Thecorrelationcoefficientis0.98,suggestingthatthelatteropen-sourcedata

approachisreliableforevaluatingjobaccessibilityinAntananarivoandpotentiallyother

developingcitieswithsimilarcharacteristics.Thisisanimportantfindingofthispaper.Thereisalsoacorrelationbetweenproximitytominibusroutesandotheraccessibilitymetrics.Buttransitaccessibi

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論