版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
一、解答題1.在平面直角坐標系中描出下列兩組點,分別將每組里的點用線段依次連接起來.第一組:、;第二組:、.(1)線段與線段的位置關(guān)系是;(2)在(1)的條件下,線段、分別與軸交于點,.若點為射線上一動點(不與點,重合).①當點在線段上運動時,連接、,補全圖形,用等式表示、、之間的數(shù)量關(guān)系,并證明.②當與面積相等時,求點的坐標.2.已知,如圖:射線分別與直線、相交于、兩點,的角平分線與直線相交于點,射線交于點,設,且.(1)________,________;直線與的位置關(guān)系是______;(2)如圖,若點是射線上任意一點,且,試找出與之間存在一個什么確定的數(shù)量關(guān)系?并證明你的結(jié)論.(3)若將圖中的射線繞著端點逆時針方向旋轉(zhuǎn)(如圖)分別與、相交于點和點時,作的角平分線與射線相交于點,問在旋轉(zhuǎn)的過程中的值變不變?若不變,請求出其值;若變化,請說明理由.3.已知:直線AB∥CD,M,N分別在直線AB,CD上,H為平面內(nèi)一點,連HM,HN.(1)如圖1,延長HN至G,∠BMH和∠GND的角平分線相交于點E.求證:2∠MEN﹣∠MHN=180°;(2)如圖2,∠BMH和∠HND的角平分線相交于點E.①請直接寫出∠MEN與∠MHN的數(shù)量關(guān)系:;②作MP平分∠AMH,NQ∥MP交ME的延長線于點Q,若∠H=140°,求∠ENQ的度數(shù).(可直接運用①中的結(jié)論)4.如圖,∠EBF=50°,點C是∠EBF的邊BF上一點.動點A從點B出發(fā)在∠EBF的邊BE上,沿BE方向運動,在動點A運動的過程中,始終有過點A的射線AD∥BC.(1)在動點A運動的過程中,(填“是”或“否”)存在某一時刻,使得AD平分∠EAC?(2)假設存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之間有何數(shù)量關(guān)系?并請說明理由;(3)當AC⊥BC時,直接寫出∠BAC的度數(shù)和此時AD與AC之間的位置關(guān)系.5.如圖1,已知直線m∥n,AB是一個平面鏡,光線從直線m上的點O射出,在平面鏡AB上經(jīng)點P反射后,到達直線n上的點Q.我們稱OP為入射光線,PQ為反射光線,鏡面反射有如下性質(zhì):入射光線與平面鏡的夾角等于反射光線與平面鏡的夾角,即∠OPA=∠QPB.(1)如圖1,若∠OPQ=82°,求∠OPA的度數(shù);(2)如圖2,若∠AOP=43°,∠BQP=49°,求∠OPA的度數(shù);(3)如圖3,再放置3塊平面鏡,其中兩塊平面鏡在直線m和n上,另一塊在兩直線之間,四塊平面鏡構(gòu)成四邊形ABCD,光線從點O以適當?shù)慕嵌壬涑龊?,其傳播路徑為O→P→Q→R→O→P→…試判斷∠OPQ和∠ORQ的數(shù)量關(guān)系,并說明理由.6.(1)如圖①,若∠B+∠D=∠E,則直線AB與CD有什么位置關(guān)系?請證明(不需要注明理由).(2)如圖②中,AB//CD,又能得出什么結(jié)論?請直接寫出結(jié)論.(3)如圖③,已知AB//CD,則∠1+∠2+…+∠n-1+∠n的度數(shù)為.7.我們知道,正整數(shù)按照能否被2整除可以分成兩類:正奇數(shù)和正偶數(shù),小華受此啟發(fā),按照一個正整數(shù)被3除的余數(shù)把正整數(shù)分成了三類:如果一個正整數(shù)被3除余數(shù)為1,則這個正整數(shù)屬于A類,例如1,4,7等;如果一個正整數(shù)被3除余數(shù)為2,則這個正整數(shù)屬于B類,例如2,5,8等;如果一個正整數(shù)被3整除,則這個正整數(shù)屬于C類,例如3,6,9等.(1)2020屬于類(填A,B或C);(2)①從A類數(shù)中任取兩個數(shù),則它們的和屬于類(填A,B或C);②從A、B類數(shù)中任取一數(shù),則它們的和屬于類(填A,B或C);③從A類數(shù)中任意取出8個數(shù),從B類數(shù)中任意取出9個數(shù),從C類數(shù)中任意取出10個數(shù),把它們都加起來,則最后的結(jié)果屬于類(填A,B或C);(3)從A類數(shù)中任意取出m個數(shù),從B類數(shù)中任意取出n個數(shù),把它們都加起來,若最后的結(jié)果屬于C類,則下列關(guān)于m,n的敘述中正確的是(填序號).①屬于C類;②屬于A類;③,屬于同一類.8.對數(shù)運算是高中常用的一種重要運算,它的定義為:如果ax=N(a>0,且a≠1),那么數(shù)x叫做以a為底N的對數(shù),記作:x=logaN,例如:32=9,則log39=2,其中a=10的對數(shù)叫做常用對數(shù),此時log10N可記為lgN.當a>0,且a≠1,M>0,N>0時,loga(M?N)=logaM+logaN.(I)解方程:logx4=2;(Ⅱ)log28=(Ⅲ)計算:(lg2)2+lg2?1g5+1g5﹣2018=(直接寫答案)9.閱讀下面的文字,解答問題:大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部寫出來,而<2于是可用來表示的小數(shù)部分.請解答下列問題:(1)的整數(shù)部分是_______,小數(shù)部分是_________;(2)如果的小數(shù)部分為的整數(shù)部分為求的值;(3)已知:其中是整數(shù),且求的平方根.10.觀察下列兩個等式:,給出定義如下:我們稱使等式成立的一對有理數(shù)為“白馬有理數(shù)對”,記為,如:數(shù)對都是“白馬有理數(shù)對”.(1)數(shù)對中是“白馬有理數(shù)對”的是_________;(2)若是“白馬有理數(shù)對”,求的值;(3)若是“白馬有理數(shù)對”,則是“白馬有理數(shù)對”嗎?請說明理由.(4)請再寫出一對符合條件的“白馬有理數(shù)對”_________(注意:不能與題目中已有的“白馬有理數(shù)對”重復)11.閱讀材料:求的值.解:設①,將等式①的兩邊同乘以2,得②,用②-①得,即.即.請仿照此法計算:(1)請直接填寫的值為______;(2)求值;(3)請直接寫出的值.12.我們知道,正整數(shù)按照能否被2整除可以分成兩類:正奇數(shù)和正偶數(shù),小華受此啟發(fā),按照一個正整數(shù)被3除的余數(shù)把正整數(shù)分成了三類:如果一個正整數(shù)被3除余數(shù)為1,則這個正整數(shù)屬于A類,例如1,4,7等;如果一個正整數(shù)被3除余數(shù)為2,則這個正整數(shù)屬于B類,例如2,5,8等;如果一個正整數(shù)被3整除,則這個正整數(shù)屬于C類,例如3,6,9等.(1)2020屬于類(填A,B或C);(2)①從A類數(shù)中任取兩個數(shù),則它們的和屬于類(填A,B或C);②從A、B類數(shù)中任取一數(shù),則它們的和屬于類(填A,B或C);③從A類數(shù)中任意取出8個數(shù),從B類數(shù)中任意取出9個數(shù),從C類數(shù)中任意取出10個數(shù),把它們都加起來,則最后的結(jié)果屬于類(填A,B或C);(3)從A類數(shù)中任意取出m個數(shù),從B類數(shù)中任意取出n個數(shù),把它們都加起來,若最后的結(jié)果屬于C類,則下列關(guān)于m,n的敘述中正確的是(填序號).①屬于C類;②屬于A類;③,屬于同一類.13.如圖,在長方形中,為平面直角坐標系的原點,點的坐標為,點的坐標為且、滿足,點在第一象限內(nèi),點從原點出發(fā),以每秒2個單位長度的速度沿著的線路移動.(1)點的坐標為___________;當點移動5秒時,點的坐標為___________;(2)在移動過程中,當點到軸的距離為4個單位長度時,求點移動的時間;(3)在的線路移動過程中,是否存在點使的面積是20,若存在直接寫出點移動的時間;若不存在,請說明理由.14.已知點C在射線OA上.(1)如圖①,CDOE,若∠AOB=90°,∠OCD=120°,求∠BOE的度數(shù);(2)在①中,將射線OE沿射線OB平移得O′E'(如圖②),若∠AOB=α,探究∠OCD與∠BO′E′的關(guān)系(用含α的代數(shù)式表示)(3)在②中,過點O′作OB的垂線,與∠OCD的平分線交于點P(如圖③),若∠CPO′=90°,探究∠AOB與∠BO′E′的關(guān)系.15.如圖1,點是第二象限內(nèi)一點,軸于,且是軸正半軸上一點,是x軸負半軸上一點,且.(1)(),()(2)如圖2,設為線段上一動點,當時,的角平分線與的角平分線的反向延長線交于點,求的度數(shù):(注:三角形三個內(nèi)角的和為)(3)如圖3,當點在線段上運動時,作交于的平分線交于,當點在運動的過程中,的大小是否變化?若不變,求出其值;若變化,請說明理由.16.在平面直角坐標系中,對于任意兩點,,如果,則稱與互為“距點”.例如:點,點,由,可得點與互為“距點”.(1)在點,,中,原點的“距點”是_____(填字母);(2)已知點,點,過點作平行于軸的直線.①當時,直線上點的“距點”的坐標為_____;②若直線上存在點的“點”,求的取值范圍.(3)已知點,,,的半徑為,若在線段上存在點,在上存在點,使得點與點互為“距點”,直接寫出的取值范圍.17.如圖,在平面直角坐標系xOy中,對于任意兩點A(x1,y1)與B(x2,y2)的“非常距離”,給出如下定義:若|x1﹣x2|≥|y1﹣y2|,則點A與點B的“非常距離”為|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,則點A與點B的“非常距離”為|y1﹣y2|.(1)填空:已知點A(3,6)與點B(5,2),則點A與點B的“非常距離”為;(2)已知點C(﹣1,2),點D為y軸上的一個動點.①若點C與點D的“非常距離”為2,求點D的坐標;②直接寫出點C與點D的“非常距離”的最小值.18.如圖1,在直角坐標系中直線與、軸的交點分別為,,且滿足.(1)求、的值;(2)若點的坐標為且,求的值;(3)如圖2,點坐標是,若以2個單位/秒的速度向下平移,同時點以1個單位/秒的速度向左平移,平移時間是秒,若點落在內(nèi)部(不包含三角形的邊),求的取值范圍.19.先閱讀下面材料,再完成任務:有些關(guān)于方程組的問題,欲求的結(jié)果不是每一個未知數(shù)的值,而是關(guān)于未知數(shù)的代數(shù)式的值,如以下問題:已知實數(shù),滿足,……①,,……②,求和的值.本題常規(guī)思路是將①②兩式聯(lián)立組成方程組,解得,的值再代入欲求值的代數(shù)式得到答案,常規(guī)思路運算量比較大.其實,仔細觀察兩個方程未知數(shù)的系數(shù)之間的關(guān)系,本題還可以通過適當變形整體求得代數(shù)式的值,如由①-②可得,由①+②×2可得,這樣的解題思想就是通常所說的“整體思想”解決問題:(1)已知二元一次方程組,則______,______;(2)某班級組織活動購買小獎品,買20支鉛筆、3塊橡皮、2本日記本共需32元,買39支鉛筆、5塊橡皮、3本日記木共需58元,則購買5支鉛筆、5塊橡皮、5本日記本共需多少元?(3)對于實數(shù),,定義新運算:,其中,,是常數(shù),等式右邊是通常的加法和乘法運算.已知,,那么______.20.(閱讀感悟)一些關(guān)于方程組的問題,若求的結(jié)果不是每一個未知數(shù)的值,而是關(guān)于未知數(shù)的式子的值,如以下問題:已知實數(shù),滿足①,②,求和的值.本題的常規(guī)思路是將①②兩式聯(lián)立組成方程組,解得,的值再代入欲求值的式子得到答案,常規(guī)思路運算量比較大.其實,仔細觀察兩個方程未知數(shù)的系數(shù)之間的關(guān)系,本題還可以通過適當變形整體求得式子的值,如由①-②可得,由①+②×2可得.這樣的解題思想就是通常所說的“整體思想”.(解決問題)(1)已知二元一次方程組,則,.(2)某班開展安全教育知識競賽需購買獎品,買5支鉛筆、3塊橡皮、2本日記本共需32元,買9支鉛筆、5塊橡皮、3本日記本共需58元,則購買20支鉛筆、20塊橡皮、20本日記本共需多少元?(3)對于實數(shù),,定義新運算:,其中,,是常數(shù),等式右邊是通常的加法和乘法運算.已知,,求的值.21.我國傳統(tǒng)數(shù)學名著《九章算術(shù)》記載:“今有牛五、羊二,直金十九兩;牛二、羊五,直金十六兩.問牛、羊各直金幾何?”譯文:“假設有5頭牛、2只羊,值19兩銀子;2頭牛、5只羊,值16兩銀子.問每頭牛、每只羊分別值銀子多少兩?”根據(jù)以上譯文,提出以下兩個問題:(1)求每頭牛、每只羊各值多少兩銀子?(2)若某商人準備用20兩銀子買牛和羊(要求既有牛也有羊,且銀兩須全部用完),請問商人有幾種購買方法?列出所有的可能.22.一列快車長70米,慢車長80米,若兩車同向而行,快車從追上慢車到完全離開慢車,所用時間為20秒.若兩車相向而行,則兩車從相遇到離開時間為4秒,求兩車每秒鐘各行多少米?23.一個四位正整數(shù),若其千位上與百位上的數(shù)字之和等于十位上與個位上的數(shù)字之和,都等于k,那么稱這個四位正整數(shù)為“k類誠勤數(shù)”,例如:2534,因為,所以2534是“7類誠勤數(shù)”.(1)請判斷7441和5436是否為“誠勤數(shù)”并說明理由;(2)若一個四位正整數(shù)A為“5類誠勤數(shù)”且能被13整除,請求出的所有可能取值.24.如圖,平面直角坐標系中,已知點A(a,0),B(0,b),其中a,b滿足.將點B向右平移24個單位長度得到點C.點D,E分別為線段BC,OA上一動點,點D從點C以2個單位長度/秒的速度向點B運動,同時點E從點O以3個單位長度/秒的速度向點A運動,在D,E運動的過程中,DE交四邊形BOAC的對角線OC于點F.設運動的時間為t秒(0<t<10),四邊形BOED的面積記為S四邊形BOED(以下面積的表示方式相同).(1)求點A和點C的坐標;(2)若S四邊形BOED≥S四邊形ACDE,求t的取值范圍;(3)求證:在D,E運動的過程中,S△OEF>S△DCF總成立.25.如圖,在平面直角坐標系中,軸,軸,且,動點從點出發(fā),以每秒的速度,沿路線向點運動;動點從點出發(fā),以每秒的速度,沿路線向點運動.若兩點同時出發(fā),其中一點到達終點時,運動停止.(Ⅰ)直接寫出三個點的坐標;(Ⅱ)設兩點運動的時間為秒,用含的式子表示運動過程中三角形的面積;(Ⅲ)當三角形的面積的范圍小于16時,求運動的時間的范圍.26.對、定義了一種新運算T,規(guī)定(其中,均為非零常數(shù)),這里等式右邊是通常的四則運算,例如:,已知,.(1)求,的值;(2)求.(3)若關(guān)于的不等式組恰好有4個整數(shù)解,求的取值范圍.27.如圖①,在平直角坐標系中,△ABO的三個頂點為A(a,b),B(﹣a,3b),O(0,0),且滿足|b﹣2|=0,線段AB與y軸交于點C.(1)求出A,B兩點的坐標;(2)求出△ABO的面積;(3)如圖②,將線段AB平移至B點的對應點落在x軸的正半軸上時,此時A點的對應點為,記△的面積為S,若24<S<32,求點的橫坐標的取值范圍.28.若關(guān)于x的方程ax+b=0(a≠0)的解與關(guān)于y的方程cy+d=0(c≠0)的解滿足﹣1≤x﹣y≤1,則稱方程ax+b=0(a≠0)與方程cy+d=0(c≠0)是“友好方程”.例如:方程2x﹣1=0的解是x=0.5,方程y﹣1=0的解是y=1,因為﹣1≤x﹣y≤1,方程2x﹣1=0與方程y﹣1=0是“友好方程”.(1)請通過計算判斷方程2x﹣9=5x﹣2與方程5(y﹣1)﹣2(1﹣y)=﹣34﹣2y是不是“友好方程”.(2)若關(guān)于x的方程3x﹣3+4(x﹣1)=0與關(guān)于y的方程+y=2k+1是“友好方程”,請你求出k的最大值和最小值.29.閱讀下列材料:問題:已知x﹣y=2,且x>1,y<0解:∵x﹣y=2.∴x=y(tǒng)+2,又∵x>1∴y+2>1∴y>﹣1又∵y<0∴﹣1<y<0①∴﹣1+2<y+2<0+2即1<x<2②①+②得﹣1+1<x+y<0+2∴x+y的取值范圍是0<x+y<2請按照上述方法,完成下列問題:(1)已知x﹣y=3,且x>﹣1,y<0,則x的取值范圍是;x+y的取值范圍是;(2)已知x﹣y=a,且x<﹣b,y>2b,根據(jù)上述做法得到-2<3x-y<10,求a、b的值.30.如圖,以直角三角形AOC的直角頂點O為原點,以OC、OA所在直線為x軸和y軸建立平面直角坐標系,點A(0,a),C(b,0)滿足+|b﹣2|=0,D為線段AC的中點.在平面直角坐標系中,以任意兩點P(x1,y1)、Q(x2,y2)為端點的線段中點坐標為(,).(1)則A點的坐標為;點C的坐標為,D點的坐標為.(2)已知坐標軸上有兩動點P、Q同時出發(fā),P點從C點出發(fā)沿x軸負方向以1個單位長度每秒的速度勻速移動,Q點從O點出發(fā)以2個單位長度每秒的速度沿y軸正方向移動,點Q到達A點整個運動隨之結(jié)束.設運動時間為t(t>0)秒.問:是否存在這樣的t,使S△ODP=S△ODQ,若存在,請求出t的值;若不存在,請說明理由.(3)點F是線段AC上一點,滿足∠FOC=∠FCO,點G是第二象限中一點,連OG,使得∠AOG=∠AOF.點E是線段OA上一動點,連CE交OF于點H,當點E在線段OA上運動的過程中,請確定∠OHC,∠ACE和∠OEC的數(shù)量關(guān)系,并說明理由.【參考答案】***試卷處理標記,請不要刪除一、解答題1.(1)AC∥DE;(2)①∠CAM+∠MDE=∠AMD,證明見解析;②點M的坐標為(0,)或(0,).【分析】(1)根據(jù)兩點的縱坐標相等,連線平行x軸進行判斷即可;(2)①過點M作MN∥AC,運用平行線的判定和性質(zhì)即可;②設M(0,m),分兩種情況:(i)當點M在線段OB上時,(ii)當點M在線段OB的延長線上時,分別運用三角形面積公式進行計算即可.【詳解】解:(1)∵A(?3,3)、C(4,3),∴AC∥x軸,∵D(?2,?1)、E(2,?1),∴DE∥x軸,∴AC∥DE;(2)①如圖,∠CAM+∠MDE=∠AMD.理由如下:過點M作MN∥AC,∵MN∥AC(作圖),∴∠CAM=∠AMN(兩直線平行,內(nèi)錯角相等),∵AC∥DE(已知),∴MN∥DE(平行公理推論),∴∠MDE=∠NMD(兩直線平行,內(nèi)錯角相等),∴∠CAM+∠MDE=∠AMN+∠NMD=∠AMD(等量代換).②由題意,得:AC=7,DE=4,設M(0,m),(i)當點M在線段OB上時,BM=3?m,F(xiàn)M=m+1,∴S△ACM=AC?BM=×7×(3?m)=,S△DEM=DE?FM=×4×(m+1)=2m+2,∵S△ACM=S△DEM,∴=2m+2,解得:m=,∴M(0,);(ii)當點M在線段OB的延長線上時,BM=m?3,F(xiàn)M=m+1,∴S△ACM=AC?BM=×7×(m?3)=,S△DEM=DE?FM=×4×(m+1)=2m+2,∵S△ACM=S△DEM,∴=2m+2,解得:m=,∴M(0,);綜上所述,點M的坐標為(0,)或(0,).【點睛】本題考查了三角形面積,平行坐標軸的直線上的點的坐標的特征,平行線的判定和性質(zhì)等,解題關(guān)鍵是運用數(shù)形結(jié)合思想和分類討論思想.2.(1)35,35,平行;(2)∠FMN+∠GHF=180°,證明見解析;(3)不變,2【分析】(1)根據(jù)(α-35)2+|β-α|=0,即可計算α和β的值,再根據(jù)內(nèi)錯角相等可證AB∥CD;(2)先根據(jù)內(nèi)錯角相等證GH∥PN,再根據(jù)同旁內(nèi)角互補和等量代換得出∠FMN+∠GHF=180°;(3)作∠PEM1的平分線交M1Q的延長線于R,先根據(jù)同位角相等證ER∥FQ,得∠FQM1=∠R,設∠PER=∠REB=x,∠PM1R=∠RM1B=y,得出∠EPM1=2∠R,即可得=2.【詳解】解:(1)∵(α-35)2+|β-α|=0,∴α=β=35,∴∠PFM=∠MFN=35°,∠EMF=35°,∴∠EMF=∠MFN,∴AB∥CD;(2)∠FMN+∠GHF=180°;理由:由(1)得AB∥CD,∴∠MNF=∠PME,∵∠MGH=∠MNF,∴∠PME=∠MGH,∴GH∥PN,∴∠GHM=∠FMN,∵∠GHF+∠GHM=180°,∴∠FMN+∠GHF=180°;(3)的值不變,為2,理由:如圖3中,作∠PEM1的平分線交M1Q的延長線于R,∵AB∥CD,∴∠PEM1=∠PFN,∵∠PER=∠PEM1,∠PFQ=∠PFN,∴∠PER=∠PFQ,∴ER∥FQ,∴∠FQM1=∠R,設∠PER=∠REB=x,∠PM1R=∠RM1B=y,則有:,可得∠EPM1=2∠R,∴∠EPM1=2∠FQM1,∴==2.【點睛】本題主要考查平行線的判定與性質(zhì),熟練掌握內(nèi)錯角相等證平行,平行線同旁內(nèi)角互補等知識是解題的關(guān)鍵.3.(1)見解析;(2)①2∠MEN+∠MHN=360°;②20°【分析】(1)過點E作EP∥AB交MH于點Q,利用平行線的性質(zhì)、角平分線性質(zhì)、鄰補角和為180°,角與角之間的基本運算、等量代換等即可得證.(2)①過點H作GI∥AB,利用(1)中結(jié)論2∠MEN﹣∠MHN=180°,利用平行線的性質(zhì)、角平分線性質(zhì)、鄰補角和為180°,角與角之間的基本運算、等量代換等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),進而用等量代換得出2∠MEN+∠MHN=360°.②過點H作HT∥MP,由①的結(jié)論得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行線性質(zhì)得∠ENQ+∠ENH+∠NHT=180°,由角平分線性質(zhì)及鄰補角可得∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.繼續(xù)使用等量代換可得∠ENQ度數(shù).【詳解】解:(1)證明:過點E作EP∥AB交MH于點Q.如答圖1∵EP∥AB且ME平分∠BMH,∴∠MEQ=∠BME=∠BMH.∵EP∥AB,AB∥CD,∴EP∥CD,又NE平分∠GND,∴∠QEN=∠DNE=∠GND.(兩直線平行,內(nèi)錯角相等)∴∠MEN=∠MEQ+∠QEN=∠BMH+∠GND=(∠BMH+∠GND).∴2∠MEN=∠BMH+∠GND.∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.∴∠DHN=∠BMH﹣∠MHN.∴∠GND+∠BMH﹣∠MHN=180°,即2∠MEN﹣∠MHN=180°.(2)①:過點H作GI∥AB.如答圖2由(1)可得∠MEN=(∠BMH+∠HND),由圖可知∠MHN=∠MHI+∠NHI,∵GI∥AB,∴∠AMH=∠MHI=180°﹣∠BMH,∵GI∥AB,AB∥CD,∴GI∥CD.∴∠HNC=∠NHI=180°﹣∠HND.∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,∴∠BMH+∠HND=360°﹣∠MHN.即2∠MEN+∠MHN=360°.故答案為:2∠MEN+∠MHN=360°.②:由①的結(jié)論得2∠MEN+∠MHN=360°,∵∠H=∠MHN=140°,∴2∠MEN=360°﹣140°=220°.∴∠MEN=110°.過點H作HT∥MP.如答圖2∵MP∥NQ,∴HT∥NQ.∴∠ENQ+∠ENH+∠NHT=180°(兩直線平行,同旁內(nèi)角互補).∵MP平分∠AMH,∴∠PMH=∠AMH=(180°﹣∠BMH).∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.∴∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.∵∠ENH=∠HND.∴∠ENQ+∠HND+140°﹣90°+∠BMH=180°.∴∠ENQ+(HND+∠BMH)=130°.∴∠ENQ+∠MEN=130°.∴∠ENQ=130°﹣110°=20°.【點睛】本題考查了平行線的性質(zhì),角平分線的性質(zhì),鄰補角,等量代換,角之間的數(shù)量關(guān)系運算,輔助線的作法,正確作出輔助線是解題的關(guān)鍵,本題綜合性較強.4.(1)是;(2)∠B=∠ACB,證明見解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當∠ACB=∠B時,有AD平分∠EAC;(2)根據(jù)角平分線可得∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則有∠ACB=∠B;(3)由AC⊥BC,有∠ACB=90°,則可求∠BAC=40°,由平行線的性質(zhì)可得AC⊥AD.【詳解】解:(1)是,理由如下:要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質(zhì)可得∠B=∠EAD,∠ACB=∠CAD,則當∠ACB=∠B時,有AD平分∠EAC;故答案為:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【點睛】此題考查了角平分線和平行線的性質(zhì),熟練掌握角平分線和平行線的有關(guān)性質(zhì)是解題的關(guān)鍵.5.(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根據(jù)∠OPA=∠QPB.可求出∠OPA的度數(shù);(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度數(shù),轉(zhuǎn)化為(1)來解決問題;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,從而∠OPQ=∠ORQ.【詳解】解:(1)∵∠OPA=∠QPB,∠OPQ=82°,∴∠OPA=(180°-∠OPQ)×=(180°-82°)×=49°,(2)作PC∥m,∵m∥n,∴m∥PC∥n,∴∠AOP=∠OPC=43°,∠BQP=∠QPC=49°,∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,∴∠OPA=(180°-∠OPQ)×=(180°-92°)×44°,(3)∠OPQ=∠ORQ.理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,∵入射光線與平面鏡的夾角等于反射光線與平面鏡的夾角,∴∠AOP=∠DOR,∠BQP=∠RQC,∴∠OPQ=∠ORQ.【點睛】本題主要考查了平行線的性質(zhì)和入射角等于反射角的規(guī)定,解決本題的關(guān)鍵是注意問題的設置環(huán)環(huán)相扣、前為后用的設置目的.6.(1)AB//CD,證明見解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)(n-1)?180°【分析】(1)過點E作EF//AB,利用平行線的性質(zhì)則可得出∠B=∠BEF,再由已知及平行線的判定即可得出AB∥CD;(2)如圖,過點E作EM∥AB,過點F作FN∥AB,過點G作GH∥AB,根據(jù)探究(1)的證明過程及方法,可推出∠E+∠G=∠B+∠F+∠D,則可由此得出規(guī)律,并得出∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)如圖,過點M作EF∥AB,過點N作GH∥AB,則可由平行線的性質(zhì)得出∠1+∠2+∠MNG=180°×2,依此即可得出此題結(jié)論.【詳解】解:(1)過點E作EF//AB,∴∠B=∠BEF.∵∠BEF+∠FED=∠BED,∴∠B+∠FED=∠BED.∵∠B+∠D=∠E(已知),∴∠FED=∠D.∴CD//EF(內(nèi)錯角相等,兩直線平行).∴AB//CD.(2)過點E作EM∥AB,過點F作FN∥AB,過點G作GH∥AB,∵AB∥CD,∴AB∥EM∥FN∥GH∥CD,∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D,∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D,即∠E+∠G=∠B+∠F+∠D.由此可得:開口朝左的所有角度之和與開口朝右的所有角度之和相等,∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.故答案為:∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.(3)如圖,過點M作EF∥AB,過點N作GH∥AB,∴∠APM+∠PME=180°,∵EF∥AB,GH∥AB,∴EF∥GH,∴∠EMN+∠MNG=180°,∴∠1+∠2+∠MNG=180°×2,依次類推:∠1+∠2+…+∠n-1+∠n=(n-1)?180°.故答案為:(n-1)?180°.【點睛】本題考查了平行線的性質(zhì)與判定,屬于基礎(chǔ)題,關(guān)鍵是過E點作AB(或CD)的平行線,把復雜的圖形化歸為基本圖形.7.(1)A;(2)①B;②C;③B;(3)①③.【分析】(1)計算,結(jié)合計算結(jié)果即可進行判斷;(2)①從A類數(shù)中任取兩個數(shù)進行計算,即可求解;②從A、B兩類數(shù)中任取兩個數(shù)進行計算,即可求解;③根據(jù)題意,從A類數(shù)中任意取出8個數(shù),從B類數(shù)中任意取出9個數(shù),從C類數(shù)中任意取出10個數(shù),把它們的余數(shù)相加,再除以3,即可得到答案;(3)根據(jù)m,n的余數(shù)之和,舉例,觀察即可判斷.【詳解】解:(1)根據(jù)題意,∵,∴2020被3除余數(shù)為1,屬于A類;故答案為:A.(2)①從A類數(shù)中任取兩個數(shù),如:(1+4)÷3=1…2,(4+7)÷3=3…2,……∴兩個A類數(shù)的和被3除余數(shù)為2,則它們的和屬于B類;②從A、B類數(shù)中任取一數(shù),與①同理,如:(1+2)÷3=1,(1+5)÷3=2,(4+5)÷3=3,……∴從A、B類數(shù)中任取一數(shù),則它們的和屬于C類;③從A類數(shù)中任意取出8個數(shù),從B類數(shù)中任意取出9個數(shù),從C類數(shù)中任意取出10個數(shù),把它們的余數(shù)相加,則,∴,∴余數(shù)為2,屬于B類;故答案為:①B;②C;③B.(3)從A類數(shù)中任意取出m個數(shù),從B類數(shù)中任意取出n個數(shù),余數(shù)之和為:m×1+n×2=m+2n,∵最后的結(jié)果屬于C類,∴m+2n能被3整除,即m+2n屬于C類,①正確;②若m=1,n=1,則|mn|=0,不屬于B類,②錯誤;③觀察可發(fā)現(xiàn)若m+2n屬于C類,m,n必須是同一類,③正確;綜上,①③正確.故答案為:①③.【點睛】本題考查了新定義的應用和有理數(shù)的除法,解題的關(guān)鍵是熟練掌握新定義進行解答.8.(I)x=2;(Ⅱ)3;(Ⅲ)-2017.【分析】(I)根據(jù)對數(shù)的定義,得出x2=4,求解即可;(Ⅱ)根據(jù)對數(shù)的定義求解即;;(Ⅲ)根據(jù)loga(M?N)=logaM+logaN求解即可.【詳解】(I)解:∵logx4=2,∴x2=4,∴x=2或x=-2(舍去)(Ⅱ)解:∵8=23,∴l(xiāng)og28=3,故答案為3;(Ⅲ)解:(lg2)2+lg2?1g5+1g5﹣2018=lg2?(lg2+1g5)+1g5﹣2018=lg2+1g5﹣2018=1-2018=-2017故答案為-2017.【點睛】本題主要考查同底數(shù)冪的乘法,有理數(shù)的乘方,是一道關(guān)于新定義運算的題目,解答本題的關(guān)鍵是理解給出的對數(shù)的定義.9.(1)4,-4;(2)1;(2)±12.【分析】(1)先估算出的范圍,即可得出答案;(2)先估算出、的范圍,求出a、b的值,再代入求出即可;(3)先估算出的范圍,求出x、y的值,再代入求出即可.【詳解】解:(1)∵4<<5,∴的整數(shù)部分是4,小數(shù)部分是-4,故答案為4,-4;(2)∵2<<3,∴a=-2,∵3<<4,∴b=3,∴a+b-=-2+3-=1;(3)∵100<110<121,∴10<<11,∴110<100+<111,∵100+=x+y,其中x是整數(shù),且0<y<1,∴x=110,y=100+-110=-10,∴x++24-y=110++24-+10=144,x++24-y的平方根是±12.【點睛】本題考查了估算無理數(shù)的大小,能估算出、、、的范圍是解此題的關(guān)鍵.10.(1);(2)2;(3)不是;(4)(6,)【分析】(1)根據(jù)“白馬有理數(shù)對”的定義,把數(shù)對分別代入計算即可判斷;(2)根據(jù)“白馬有理數(shù)對”的定義,構(gòu)建方程即可解決問題;(3)根據(jù)“白馬有理數(shù)對”的定義即可判斷;(4)根據(jù)“白馬有理數(shù)對”的定義即可解決問題.【詳解】(1)∵-2+1=-1,而-2×1-1=-3,∴-2+1-3,∴(-2,1)不是“白馬有理數(shù)對”,∵5+=,5×-1=,∴5+=5×-1,∴是“白馬有理數(shù)對”,故答案為:;(2)若是“白馬有理數(shù)對”,則a+3=3a-1,解得:a=2,故答案為:2;(3)若是“白馬有理數(shù)對”,則m+n=mn-1,那么-n+(-m)=-(m+n)=-(mn-1)=-mn+1,∵-mn+1mn-1∴(-n,-m)不是“白馬有理數(shù)對”,故答案為:不是;(4)取m=6,則6+x=6x-1,∴x=,∴(6,)是“白馬有理數(shù)對”,故答案為:(6,).【點睛】本題考查了“白馬有理數(shù)對”的定義,有理數(shù)的加減運算,一次方程的列式求解,理解“白馬有理數(shù)對”的定義是解題的關(guān)鍵.11.(1)15;(2);(3).【分析】(1)先計算乘方,即可求出答案;(2)根據(jù)題目中的運算法則進行計算,即可求出答案;(3)根據(jù)題目中的運算法則進行計算,即可求出答案;【詳解】解:(1);故答案為:15;(2)設①,把等式①兩邊同時乘以5,得②,由②①,得:,∴,∴;(3)設①,把等式①乘以10,得:②,把①+②,得:,∴,∴,∴.【點睛】本題考查了數(shù)字的變化規(guī)律,熟練掌握運算法則,熟練運用有理數(shù)乘法,以及運用消項的思想是解題的關(guān)鍵.12.(1)A;(2)①B;②C;③B;(3)①③.【分析】(1)計算,結(jié)合計算結(jié)果即可進行判斷;(2)①從A類數(shù)中任取兩個數(shù)進行計算,即可求解;②從A、B兩類數(shù)中任取兩個數(shù)進行計算,即可求解;③根據(jù)題意,從A類數(shù)中任意取出8個數(shù),從B類數(shù)中任意取出9個數(shù),從C類數(shù)中任意取出10個數(shù),把它們的余數(shù)相加,再除以3,即可得到答案;(3)根據(jù)m,n的余數(shù)之和,舉例,觀察即可判斷.【詳解】解:(1)根據(jù)題意,∵,∴2020被3除余數(shù)為1,屬于A類;故答案為:A.(2)①從A類數(shù)中任取兩個數(shù),如:(1+4)÷3=1…2,(4+7)÷3=3…2,……∴兩個A類數(shù)的和被3除余數(shù)為2,則它們的和屬于B類;②從A、B類數(shù)中任取一數(shù),與①同理,如:(1+2)÷3=1,(1+5)÷3=2,(4+5)÷3=3,……∴從A、B類數(shù)中任取一數(shù),則它們的和屬于C類;③從A類數(shù)中任意取出8個數(shù),從B類數(shù)中任意取出9個數(shù),從C類數(shù)中任意取出10個數(shù),把它們的余數(shù)相加,則,∴,∴余數(shù)為2,屬于B類;故答案為:①B;②C;③B.(3)從A類數(shù)中任意取出m個數(shù),從B類數(shù)中任意取出n個數(shù),余數(shù)之和為:m×1+n×2=m+2n,∵最后的結(jié)果屬于C類,∴m+2n能被3整除,即m+2n屬于C類,①正確;②若m=1,n=1,則|mn|=0,不屬于B類,②錯誤;③觀察可發(fā)現(xiàn)若m+2n屬于C類,m,n必須是同一類,③正確;綜上,①③正確.故答案為:①③.【點睛】本題考查了新定義的應用和有理數(shù)的除法,解題的關(guān)鍵是熟練掌握新定義進行解答.13.(1)(8,12),(0,10);(2)2秒或14秒;(3)存在,t=2.5s或【分析】(1)由非負數(shù)的性質(zhì)可得a、b的值,據(jù)此可得點B的坐標;由點P運動速度和時間可得其運動5秒的路程,得到OP=10,從而得出其坐標;(2)先根據(jù)點P運動11秒判斷出點P的位置,再根據(jù)三角形的面積公式求解可得;(3)分為點P在OC、BC上分類計算即可.【詳解】解:(1)∵a,b滿足,∴a=8,b=12,∴點B(8,12);當點P移動5秒時,其運動路程為5×2=10,∴OP=10,則點P坐標為(0,10),故答案為:(8,12)、(0,10);(2)由題意可得,第一種情況,當點P在OC上時,點P移動的時間是:4÷2=2秒,第二種情況,當點P在BA上時.點P移動的時間是:(12+8+8)÷2=14秒,所以在移動過程中,當點P到x軸的距離為4個單位長度時,點P移動的時間是2秒或14秒.(3)如圖1所示:∵△OBP的面積=20,∴OP?BC=20,即×8×OP=20.解得:OP=5.∴此時t=2.5s如圖2所示;∵△OBP的面積=20,∴PB?OC=20,即×12×PB=20.解得:BP=.∴CP=.∴此時t=,綜上所述,滿足條件的時間t=2.5s或【點睛】本題考查矩形的性質(zhì),三角形的面積,坐標與圖形的性質(zhì),解題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答問題.14.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根據(jù)平行線的性質(zhì)得到∠AOE的度數(shù),再根據(jù)直角、周角的定義即可求得∠BOE的度數(shù);(2)如圖②,過O點作OF∥CD,根據(jù)平行線的判定和性質(zhì)可得∠OCD、∠BO′E′的數(shù)量關(guān)系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,結(jié)合角平分線的定義可推出∠OCD=2∠PCO=360°-2∠AOB,根據(jù)(2)∠OCD+∠BO′E′=360°-∠AOB,進而推出∠AOB=∠BO′E′.【詳解】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;(2)∠OCD+∠BO′E′=360°-α.證明:如圖②,過O點作OF∥CD,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′.證明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP∥OB,∴∠PCO+∠AOB=180°,∴2∠PCO=360°-2∠AOB,∵CP是∠OCD的平分線,∴∠OCD=2∠PCO=360°-2∠AOB,∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB,∴360°-2∠AOB+∠BO′E′=360°-∠AOB,∴∠AOB=∠BO′E′.【點睛】此題考查了平行線的判定和性質(zhì),平移的性質(zhì),直角的定義,角平分線的定義,正確作出輔助線是解決問題的關(guān)鍵.15.(1)A(-2,0)、B(0,3);(2)∠APD=90°;(3)∠N的大小不變,∠N=45°【分析】(1)利用非負數(shù)的和為零,各項分別為零,求出a,b的值;(2)如圖,作DM∥x軸,結(jié)合題意可設∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,根據(jù)平角的定義可知∠OAD=90°-2y,由平行線的性質(zhì)可得∠OAD+∠ADM=180°,即90-2y+2x+90°=180°,進而可得出x=y,再結(jié)合圖形即可得出∠APD的度數(shù);(3)∠N的大小不變,∠N=45°,如圖,過D作DE∥BC,過N作NF∥BC,根據(jù)平行線的性質(zhì)可知∠BMD+∠OAD=∠ADM=90°,然后根據(jù)角平分線的定義和平行線的性質(zhì),可得∠ANM=∠BMD+∠OAD,據(jù)此即可得到結(jié)論.【詳解】(1)由,可得和,解得∴A的坐標是(-2,0)、B的坐標是(0,3);(2)如圖,作DM∥x軸根據(jù)題意,設∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,∵∠CAD=90°,∴∠CAE+∠OAD=90°,∴2y+∠OAD=90°,∴∠OAD=90°-2y,∵DM∥x軸,∴∠OAD+∠ADM=180°,∴90-2y+2x+90°=180°,∴x=y,∴∠APD=180°-(∠PAD+∠ADP)=180°-(y+90°-2y+x)=180°-90°=90°(3)∠N的大小不變,∠N=45°理由:如圖,過D作DE∥BC,過N作NF∥BC.∵BC∥x軸,∴DE∥BC∥x軸,NF∥BC∥x軸,∴∠EDM=∠BMD,∠EDA=∠OAD,∵DM⊥AD,∴∠ADM=90°,∴∠BMD+∠OAD=∠EDM+∠EDA=∠ADM=90°,∵MN平分∠BMD,AN平分∠DAO,∴∠BMN=∠BMD,∠OAN=∠OAD,∴∠ANM=∠BMN+∠OAN=∠BMD+∠OAD=×90°=45°.【點睛】本題考查了坐標與圖形性質(zhì):利用點的坐標計算出相應的線段的長和判斷線段與坐標軸的位置關(guān)系.也考查了三角形內(nèi)角和定理和三角形外角性質(zhì).16.(1);(2)①;②;(3).【分析】(1)根據(jù)定義判斷即可;(2)①設直線上與點的“距點”的點的坐標為(a,3),根據(jù)定義列出關(guān)于a的方程,解方程即可;②點坐標為,直線上點的縱坐標為b,由題意得,轉(zhuǎn)化為不等式組,解不等式組即可.(3)分類討論,分別取P與點M重合、P與點N重合討論。當點P與點M重合時,設⊙C左側(cè)與x軸交于點Q,則點Q的坐標是(m-,0),根據(jù)定義列出關(guān)于m的絕對值方程,解方程,取較小的值;當點P與點N重合時,設⊙C右側(cè)與x軸交于點Q,則點Q的坐標是(m+,0),根據(jù)定義列出關(guān)于m的絕對值方程,解方程,取較大的值,問題得解.【詳解】解:(1)∵,O(0,0),∴,∴點D與原點互為“距點”;∵,O(0,0),∴,所以點D與原點互為“距點”;∵,O(0,0),∴,所以點D與原點互為“距點”;故答案為:;(2)①設直線上與點的“距點”的點的坐標為(a,3),則,解得a=2故答案為(2,3);②如圖,點坐標為,直線上點的縱坐標為b,設直線上點的坐標為(c,b)則:,∴,∴,∴,即的取值范圍是;(3)如圖(1),當點P與點M重合時,設⊙C左側(cè)與x軸交于點Q,則點Q的坐標是(m-,0),∵點P與點Q互為“5-距點",P(1,2),∴,解得:,;∵,∴?。旤cP與點N重合時,設⊙C右側(cè)與x軸交于點Q,則點Q的坐標是(m+,0),∵點P與點Q互為“5-距點",則P(3,2),∴,解得:,,∵∴取∴.【點睛】本題為新定義題型,關(guān)鍵要讀懂題目中給出的新概念,建立模型,并結(jié)合所學知識解決即可.17.(1)4;(2)①或;②1.【分析】(1)依照題意,分別求出和,比較大小,得出答案,(2)點在軸上所以橫坐標為0,,所以點和點的縱坐標差的絕對值應為2,可得點坐標,(3)已知點和點的橫坐標差的絕對值恒等于1,縱坐標差的絕對是個動點問題,取值范圍和1比較,可得出最小值為1.【詳解】解:(1),,,,點與點的“非常距離”為4.故答案為:4.(2)①點在軸上所以橫坐標為0,點和點的縱坐標差的絕對值應為2,設點的縱坐標為,,解得或,點的坐標為或,故點的坐標為或;②最小值為1,理由為已知點和點的橫坐標差的絕對值恒等于1,,設點的縱坐標為,當時,,可得點與點的“非常距離”為1,當或時,,可得點與點的“非常距離”為.,點與點的“非常距離”的最小值為1,故點與點的“非常距離”的最小值為1.【點睛】本題考查了直角坐標系坐標結(jié)合絕對值的應用,是新定義問題,難點在于第三問的動點位置取值范圍討論,需要學生根據(jù)題意正確討論.18.(1),;(2)或;(3)【分析】(1)根據(jù)非負數(shù)和為0,則每一個非負數(shù)都是0,即可求出a,b的值;(2)設直線AB與直線x=1交于點N,可得N(1,5),根據(jù)S△ABM=S△AMN?S△BMN,即可表示出S△ABM,從而列出m的方程.(3)根據(jù)題意知,臨界狀態(tài)是點P落在OA和AB上,分別求出此時t的值,即可得出范圍.【詳解】(1)∵,,∴,解得:,(2)設直線與直線交于,設∵a=?4,b=4,∴A(?4,0),B(0,4),設直線AB的函數(shù)解析式為:y=kx+b,代入得,解得∴直線AB的函數(shù)解析式為:y=x+4,代入x=1得∵∴=×5×|5?m|?×1×|5?m|=2|5?m|,∵∴∴或解得:或,(3)當點P在OA邊上時,則2t=2,∴t=1,當點P在AB邊上時,如圖,過點P作PKx軸,AK⊥x軸交于K,則KP'=3?t,KA'=2t?2,∴3?t=2t?2,∴綜上所述:.【點睛】本題主要考查了平移的性質(zhì)、一般三角形面積的和差表示、以及非負數(shù)的性質(zhì)等知識點,第(2)問中用絕對值來表示動點構(gòu)成的線段長度是正確解題的關(guān)鍵.19.(1)-1;1;(2)30元;(3)-11【分析】(1)①+②,可得出的值,①-②,得的值;(2)設購買1支鉛筆、1塊橡皮、1本日記本分別使用元、元、元,根據(jù)“買20支鉛筆、3塊橡皮、2本日記本共需32元,買39支鉛筆、5塊橡皮、3本日記木共需58元”列出方程組,再根據(jù)方程組的特征求出,進一步可求出;(3)根據(jù)新定義,將數(shù)值代入新定義里,列方程組求解即可得出答案.【詳解】(1)解:①+②,得;①-②,得;故答案為:-1,1;(2)設購買1支鉛筆、1塊橡皮、1本日記本分別使用元、元、元,根據(jù)題意,得:①×②-②得∴(元)答:5本日記本共需30元.(3)①②得∴.【點睛】本題考查了三元一次方程組的應用,熟練讀懂題干中的“整體思想”是解題的關(guān)鍵.20.(1)-4,4;(2)購買20支鉛筆、20塊橡皮、20本日記本共需120元;(3)1【分析】(1)由①-②得2x-2y=-8,則x-y=-4,再由①+②得4x+4y=16,則x+y=4;(2)設1支鉛筆x元,1塊橡皮y元,1本日記本z元,由題意:買5支鉛筆、3塊橡皮、2本日記本共需32元,買9支鉛筆、5塊橡皮、3本日記本共需58元,列出方程組,再由整體思想”求出x+y+z=6,即可求解;(3)由定義新運算:x※y=ax+by+c得1※4=a+4b+c=16①,1※5=a+5b+c=21②,求出a+b+c=1,即可求解.【詳解】解:(1),①-②得:2x-2y=-8,∴x-y=-4,①+②得:4x+4y=16,∴x+y=4,故答案為:-4,4;(2)設1支鉛筆x元,1塊橡皮y元,1本日記本z元,由題意得:,①×2-②得:x+y+z=6,∴20x+20y+20z=20(x+y+z)=20×6=120,即購買20支鉛筆、20塊橡皮、20本日記本共需120元;(3)∵x※y=ax+by+c,∴1※4=a+4b+c=16①,1※5=a+5b+c=21②,②-①得:b=5,∴a+c=16-4b=-4,∴a+b+c=1,∴1※1=a+b+c=1.【點睛】本題考查了二元一次方程組的應用、整體思想以及新運算等知識;熟練掌握整體思想和新運算,找準等量關(guān)系,列出方程組是解題的關(guān)鍵.21.(1)每頭牛3兩銀子,每頭羊2兩銀子;(2)共有三種購買方法:方案一:購買2頭牛,7頭羊;方案二:購買4頭牛,4頭羊;方案三:購買6頭牛,1頭羊【分析】(1)設每頭牛值x兩銀子,每只羊值y兩銀子,根據(jù)“5頭牛、2只羊,值19兩銀子;2頭牛、5只羊,值16兩銀子”,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;(2)設購買a頭牛,b只羊,利用總價=單價×數(shù)量,即可得出關(guān)于a,b的二元一次方程,結(jié)合a,b均為正整數(shù),即可得出各購買方案.【詳解】解:(1)設每頭牛x兩銀子,每頭羊y兩銀子,根據(jù)題意,得解得答:每頭牛3兩銀子,每頭羊2兩銀子.(含設)(2)設該商人購買了a頭牛,b頭羊,根據(jù)題意,得∵a、b均為正整數(shù)∴該方程的解為或或所以共有三種購買方法:方案一:購買2頭牛,7頭羊;方案二:購買4頭牛,4頭羊;方案三:購買6頭牛,1頭羊.【點睛】本題考查了二元一次方程組的應用、數(shù)學常識以及二元一次方程的應用,解題的關(guān)鍵是:(1)找準等量關(guān)系,正確列出二元一次方程組;(2)找準等量關(guān)系,正確列出二元一次方程.22.快車每秒行米,慢車每秒行米.【分析】設快車每秒行米,慢車每秒行米,根據(jù)若兩車同向而行,快車從追上慢車到完全離開慢車,所用時間為20秒.若兩車相向而行,則兩車從相遇到離開時間為4秒,列出方程組,解方程組即可求得.【詳解】設快車每秒行米,慢車每秒行米,根據(jù)題意得,解得答:快車每秒行米,慢車每秒行米.【點睛】本題考查了二元一次方程組的應用,根據(jù)題意列出方程組是解題的關(guān)鍵.23.(1)7441不是“誠勤數(shù)”;5463是“誠勤數(shù)”;(2)滿足條件的A為:2314或5005或3250.【分析】(1)直接利用定義進行驗證,即可得到答案;(2)由題意,設這個四位數(shù)的十位數(shù)是a,千位數(shù)是b,則個位數(shù)為(5a),百位數(shù)為(5b),然后根據(jù)13的倍數(shù)關(guān)系,以及“5類誠勤數(shù)”的定義,利用分類討論的進行分析,即可得到答案.【詳解】解:(1)在7441中,7+4=11,4+1=5,∵115,∴7441不是“誠勤數(shù)”;在5436中,∵5+4=6+3=9,∴5463是“誠勤數(shù)”;(2)根據(jù)題意,設這個四位數(shù)的十位數(shù)是a,千位數(shù)是b,則個位數(shù)為(5a),百位數(shù)為(5b),且,,∴這個四位數(shù)為:,∵,,∴,∵這個四位數(shù)是13的倍數(shù),∴必須是13的倍數(shù);∵,,∴在時,取到最大值60,∴可以為:2、15、28、41、54,∵,則是3的倍數(shù),∴或,∴或;①當時,,∵,且a為非負整數(shù),∴或,∴或,若,則,此時;若,則,此時;②當時,,∵,且a為非負整數(shù),∴是3的倍數(shù),且,∴,∴,則,∴;綜合上述,滿足條件的A為:2314或5005或3250.【點睛】本題考查了二元一次方程,新定義的運算法則,解題的關(guān)鍵是熟練掌握題意,正確列出二元一次方程,結(jié)合新定義,利用分類討論的思想進行解題.24.(1)A(30,0),C(24,7);(2)≤t<10;(3)見解析【分析】(1)利用非負數(shù)的性質(zhì)求出a=30,b=7,得出A,B的坐標,由平移的性質(zhì)可得出答案;(2)由題意得出CD=2t,則BD=24﹣2t,OE=3t,根據(jù)梯形的面積公式得出S四邊形BOED=×(24﹣2t+3t)×7,S四邊形ACDE=×7×(2t+30﹣3t),則可得出關(guān)于t的不等式,解不等式可得出答案;(3)由題意可得出S△OEF﹣S△DCF=3.5t,根據(jù)t>0則可得出結(jié)論.【詳解】(1)解:∵∴=0,|2a﹣3b﹣39|=0.∴a﹣b﹣23=0,2a﹣3b﹣39=0,解得,a=30,b=7.∴A(30,0),B(0,7),∵點B向右平移24個單位長度得到點C,∴C(24,7).(2)解:由題意得,CD=2t,則BD=24﹣2t,OE=3t,∴S四邊形BOED=×(24﹣2t+3t)×7,S四邊形ACDE=×7×(2t+30﹣3t),∵S四邊形BOED≥S四邊形ACDE,∴×(24﹣2t+3t)×7≥××7×(2t+30﹣3t),解得t≥,∵0<t<10,∴≤t<10.(3)證明:∵S△OEF﹣S△DCF=S四邊形BOED﹣S△OBC=×(24﹣2t+3t)×7﹣×24×7,∴S△OEF﹣S△DCF=3.5t,∵0<t<10,∴3.5t>0,∴S△OEF﹣S△DCF>0,∴S△OEF>S△DCF.【點睛】本題是四邊形綜合題,考查了非負數(shù)的性質(zhì),平移的性質(zhì),坐標與圖形的性質(zhì),梯形的面積,解一元一次不等式,解二元一次方程組,解題的關(guān)鍵學會利用參數(shù)解決問題,屬于中考??碱}型.25.(Ⅰ);(Ⅱ)當時,三角形的面積為;當時,三角形的面積為;(Ⅲ)或.【分析】(Ⅰ)先求出的長,再根據(jù)的長即可得;(Ⅱ)先分別求出點運動到點所需時間、點運動到點所需時間,從而可得,再分和兩種情況,分別利用三角形的面積公式、梯形的面積公式即可得;(Ⅲ)根據(jù)(Ⅱ)的結(jié)論,分和兩種情況,分別建立不等式,解不等式即可得.【詳解】解:(Ⅰ)軸,,,軸,,;(Ⅱ)∵點運動的路徑長為,所用時間為7秒;點運動的路徑長為,所用時間為秒,∴根據(jù)其中一點到達終點時運動停止可知,運動時間的取值范圍為,點運動到點所用時間為4秒,點運動到點所用時間為,因此,分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 培訓學校上下班規(guī)章制度
- 培訓班財會管理制度
- 外來人員培訓考核制度
- 文稿起草培訓制度
- 勞動局培訓管理制度
- 培訓機構(gòu)課堂點名制度
- 培訓機構(gòu)滿勤制度
- 內(nèi)部培訓激勵規(guī)則制度
- 實行崗前培訓制度
- 爆破人員培訓制度
- 廣西2025年高等職業(yè)教育考試全區(qū)模擬測試 能源動力與材料 大類試題及逐題答案解說
- 2026江蘇省公務員考試公安機關(guān)公務員(人民警察)歷年真題匯編附答案解析
- 孕婦貧血教學課件
- 超市冷庫應急預案(3篇)
- 5年(2021-2025)山東高考生物真題分類匯編:專題17 基因工程(解析版)
- 2025年10月自考00610高級日語(二)試題及答案
- 新華資產(chǎn)招聘筆試題庫2025
- 2025年中國潛孔鉆機行業(yè)細分市場研究及重點企業(yè)深度調(diào)查分析報告
- 食品經(jīng)營場所及設施設備清洗消毒和維修保養(yǎng)制度
- 2026年遼寧軌道交通職業(yè)學院單招職業(yè)技能測試題庫必考題
- 沙子石子采購合同范本
評論
0/150
提交評論