版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
一、解答題1.在平面直角坐標(biāo)系中,已知長(zhǎng)方形,點(diǎn),.(1)如圖,有一動(dòng)點(diǎn)在第二象限的角平分線(xiàn)上,若,求的度數(shù);(2)若把長(zhǎng)方形向上平移,得到長(zhǎng)方形.①在運(yùn)動(dòng)過(guò)程中,求的面積與的面積之間的數(shù)量關(guān)系;②若,求的面積與的面積之比.2.已知:如圖,直線(xiàn)AB//CD,直線(xiàn)EF交AB,CD于P,Q兩點(diǎn),點(diǎn)M,點(diǎn)N分別是直線(xiàn)CD,EF上一點(diǎn)(不與P,Q重合),連接PM,MN.(1)點(diǎn)M,N分別在射線(xiàn)QC,QF上(不與點(diǎn)Q重合),當(dāng)∠APM+∠QMN=90°時(shí),①試判斷PM與MN的位置關(guān)系,并說(shuō)明理由;②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度數(shù).(提示:過(guò)N點(diǎn)作AB的平行線(xiàn))(2)點(diǎn)M,N分別在直線(xiàn)CD,EF上時(shí),請(qǐng)你在備用圖中畫(huà)出滿(mǎn)足PM⊥MN條件的圖形,并直接寫(xiě)出此時(shí)∠APM與∠QMN的關(guān)系.(注:此題說(shuō)理時(shí)不能使用沒(méi)有學(xué)過(guò)的定理)3.已知,AB∥CD.點(diǎn)M在AB上,點(diǎn)N在CD上.(1)如圖1中,∠BME、∠E、∠END的數(shù)量關(guān)系為:;(不需要證明)如圖2中,∠BMF、∠F、∠FND的數(shù)量關(guān)系為:;(不需要證明)(2)如圖3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度數(shù);(3)如圖4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,則∠FEQ的大小是否發(fā)生變化,若變化,請(qǐng)說(shuō)明理由,若不變化,求出∠FEQ的度數(shù).4.如圖1,MN∥PQ,點(diǎn)C、B分別在直線(xiàn)MN、PQ上,點(diǎn)A在直線(xiàn)MN、PQ之間.(1)求證:∠CAB=∠MCA+∠PBA;(2)如圖2,CD∥AB,點(diǎn)E在PQ上,∠ECN=∠CAB,求證:∠MCA=∠DCE;(3)如圖3,BF平分∠ABP,CG平分∠ACN,AF∥CG.若∠CAB=60°,求∠AFB的度數(shù).5.如圖1,已AB∥CD,∠C=∠A.(1)求證:AD∥BC;(2)如圖2,若點(diǎn)E是在平行線(xiàn)AB,CD內(nèi),AD右側(cè)的任意一點(diǎn),探究∠BAE,∠CDE,∠E之間的數(shù)量關(guān)系,并證明.(3)如圖3,若∠C=90°,且點(diǎn)E在線(xiàn)段BC上,DF平分∠EDC,射線(xiàn)DF在∠EDC的內(nèi)部,且交BC于點(diǎn)M,交AE延長(zhǎng)線(xiàn)于點(diǎn)F,∠AED+∠AEC=180°,①直接寫(xiě)出∠AED與∠FDC的數(shù)量關(guān)系:.②點(diǎn)P在射線(xiàn)DA上,且滿(mǎn)足∠DEP=2∠F,∠DEA﹣∠PEA=∠DEB,補(bǔ)全圖形后,求∠EPD的度數(shù)6.如圖,直線(xiàn)HDGE,點(diǎn)A在直線(xiàn)HD上,點(diǎn)C在直線(xiàn)GE上,點(diǎn)B在直線(xiàn)HD、GE之間,∠DAB=120°.(1)如圖1,若∠BCG=40°,求∠ABC的度數(shù);(2)如圖2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比較∠B,∠F的大小;(3)如圖3,點(diǎn)P是線(xiàn)段AB上一點(diǎn),PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的數(shù)量關(guān)系,并說(shuō)明理由.7.規(guī)定兩數(shù)a,b之間的一種運(yùn)算,記作(a,b):如果,那么(a,b)=c.例如:因?yàn)?3=8,所以(2,8)=3.(1)根據(jù)上述規(guī)定,填空:(3,27)=_______,(5,1)=_______,(2,)=_______.(2)小明在研究這種運(yùn)算時(shí)發(fā)現(xiàn)一個(gè)現(xiàn)象:(3n,4n)=(3,4)小明給出了如下的證明:設(shè)(3n,4n)=x,則(3n)x=4n,即(3x)n=4n所以3x=4,即(3,4)=x,所以(3n,4n)=(3,4).請(qǐng)你嘗試運(yùn)用上述這種方法說(shuō)明下面這個(gè)等式成立的理由:(4,5)+(4,6)=(4,30)8.觀察下列兩個(gè)等式:,給出定義如下:我們稱(chēng)使等式成立的一對(duì)有理數(shù)為“白馬有理數(shù)對(duì)”,記為,如:數(shù)對(duì)都是“白馬有理數(shù)對(duì)”.(1)數(shù)對(duì)中是“白馬有理數(shù)對(duì)”的是_________;(2)若是“白馬有理數(shù)對(duì)”,求的值;(3)若是“白馬有理數(shù)對(duì)”,則是“白馬有理數(shù)對(duì)”嗎?請(qǐng)說(shuō)明理由.(4)請(qǐng)?jiān)賹?xiě)出一對(duì)符合條件的“白馬有理數(shù)對(duì)”_________(注意:不能與題目中已有的“白馬有理數(shù)對(duì)”重復(fù))9.規(guī)定:求若干個(gè)相同的有理數(shù)(均不等于0)的除法運(yùn)算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,類(lèi)比有理數(shù)的乘方,我們把2÷2÷2記作2③,讀作“2的圈3次方,”(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)記作(﹣3)④,讀作:“(﹣3)的圈4次方”.一般地,把個(gè)記作a?,讀作“a的圈n次方”(初步探究)(1)直接寫(xiě)出計(jì)算結(jié)果:2③,(﹣)③.(深入思考)2④我們知道,有理數(shù)的減法運(yùn)算可以轉(zhuǎn)化為加法運(yùn)算,除法運(yùn)算可以轉(zhuǎn)化為乘法運(yùn)算,有理數(shù)的除方運(yùn)算如何轉(zhuǎn)化為乘方運(yùn)算呢?(2)試一試,仿照上面的算式,將下列運(yùn)算結(jié)果直接寫(xiě)成冪的形式.5⑥;(﹣)⑩.(3)猜想:有理數(shù)a(a≠0)的圈n(n≥3)次方寫(xiě)成冪的形式等于多少.(4)應(yīng)用:求(-3)8×(-3)⑨-(﹣)9×(﹣)⑧10.閱讀理解:一個(gè)多位數(shù),如果根據(jù)它的位數(shù),可以從左到右分成左、中、右三個(gè)數(shù)位相同的整數(shù),其中a代表這個(gè)整數(shù)分出來(lái)的左邊數(shù),b代表的這個(gè)整數(shù)分出來(lái)的中間數(shù),c代表這個(gè)整數(shù)分出來(lái)的右邊數(shù),其中a,b,c數(shù)位相同,若b﹣a=c﹣b,我們稱(chēng)這個(gè)多位數(shù)為等差數(shù).例如:357分成了三個(gè)數(shù)3,5,7,并且滿(mǎn)足:5﹣3=7﹣5;413223分成三個(gè)數(shù)41,32,23,并且滿(mǎn)足:32﹣41=23﹣32;所以:357和413223都是等差數(shù).(1)判斷:148等差數(shù),514335等差數(shù);(用“是”或“不是”填空)(2)若一個(gè)三位數(shù)是等差數(shù),試說(shuō)明它一定能被3整除;(3)若一個(gè)三位數(shù)T是等差數(shù),且T是24的倍數(shù),求該等差數(shù)T.11.新定義:對(duì)非負(fù)數(shù)x“四舍五入”到個(gè)位的值記為<x>,即當(dāng)n為非負(fù)數(shù)時(shí),若,則<x>=n.例如<0>=<0.49>=0,<0.5>=<(1)49>=1,<2>=2,<(3)5>=<(4)23>=4,…試回答下列問(wèn)題:(1)填空:<9.6>=_________;如果<x>=2,實(shí)數(shù)x的取值范圍是________________.(2)若關(guān)于x的不等式組的整數(shù)解恰有4個(gè),求<m>的值;(3)求滿(mǎn)足的所有非負(fù)實(shí)數(shù)x的值.12.觀察下來(lái)等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,……在上面的等式中,等式兩邊的數(shù)字分別是對(duì)稱(chēng)的,且每個(gè)等式中組成兩位數(shù)與三位數(shù)的數(shù)字之間具有相同規(guī)律,我們稱(chēng)這類(lèi)等式為“數(shù)字對(duì)稱(chēng)等式”.(1)根據(jù)以上各等式反映的規(guī)律,使下面等式成為“數(shù)字對(duì)稱(chēng)等式”:52×_____=______×25;(2)設(shè)這類(lèi)等式左邊的兩位數(shù)中,個(gè)位數(shù)字為a,十位數(shù)字為b,且2≤a+b≤9,則用含a,b的式子表示這類(lèi)“數(shù)字對(duì)稱(chēng)等式”的規(guī)律是_______.13.如圖①,在平面直角坐標(biāo)系中,點(diǎn),,其中,是16的算術(shù)平方根,,線(xiàn)段由線(xiàn)段平移所得,并且點(diǎn)與點(diǎn)A對(duì)應(yīng),點(diǎn)與點(diǎn)對(duì)應(yīng).(1)點(diǎn)A的坐標(biāo)為;點(diǎn)的坐標(biāo)為;點(diǎn)的坐標(biāo)為;(2)如圖②,是線(xiàn)段上不同于的任意一點(diǎn),求證:;(3)如圖③,若點(diǎn)滿(mǎn)足,點(diǎn)是線(xiàn)段OA上一動(dòng)點(diǎn)(與點(diǎn)、A不重合),連交于點(diǎn),在點(diǎn)運(yùn)動(dòng)的過(guò)程中,是否總成立?請(qǐng)說(shuō)明理由.14.如圖1,//,點(diǎn)、分別在、上,點(diǎn)在直線(xiàn)、之間,且.(1)求的值;(2)如圖2,直線(xiàn)分別交、的角平分線(xiàn)于點(diǎn)、,直接寫(xiě)出的值;(3)如圖3,在內(nèi),;在內(nèi),,直線(xiàn)分別交、分別于點(diǎn)、,且,直接寫(xiě)出的值.15.如圖,在平面直角坐標(biāo)系中,已知△ABC,點(diǎn)A的坐標(biāo)是(4,0),點(diǎn)B的坐標(biāo)是(2,3),點(diǎn)C在x軸的負(fù)半軸上,且AC=6.(1)直接寫(xiě)出點(diǎn)C的坐標(biāo).(2)在y軸上是否存在點(diǎn)P,使得S△POB=S△ABC若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(3)把點(diǎn)C往上平移3個(gè)單位得到點(diǎn)H,作射線(xiàn)CH,連接BH,點(diǎn)M在射線(xiàn)CH上運(yùn)動(dòng)(不與點(diǎn)C、H重合).試探究∠HBM,∠BMA,∠MAC之間的數(shù)量關(guān)系,并證明你的結(jié)論.16.已知關(guān)于x、y的二元一次方程(1)若方程組的解x、y滿(mǎn)足,求a的取值范圍;(2)求代數(shù)式的值.17.對(duì)于平面直角坐標(biāo)系xOy中的圖形G和圖形G上的任意點(diǎn)P(x,y),給出如下定義:將點(diǎn)P(x,y)平移到P'(x+t,y﹣t)稱(chēng)為將點(diǎn)P進(jìn)行“t型平移”,點(diǎn)P'稱(chēng)為將點(diǎn)P進(jìn)行“t型平移”的對(duì)應(yīng)點(diǎn);將圖形G上的所有點(diǎn)進(jìn)行“t型平移”稱(chēng)為將圖形G進(jìn)行“t型平移”.例如,將點(diǎn)P(x,y)平移到P'(x+1,y﹣1)稱(chēng)為將點(diǎn)P進(jìn)行“l(fā)型平移”,將點(diǎn)P(x,y)平移到P'(x﹣1,y+1)稱(chēng)為將點(diǎn)P進(jìn)行“﹣l型平移”.已知點(diǎn)A(2,1)和點(diǎn)B(4,1).(1)將點(diǎn)A(2,1)進(jìn)行“l(fā)型平移”后的對(duì)應(yīng)點(diǎn)A'的坐標(biāo)為.(2)①將線(xiàn)段AB進(jìn)行“﹣l型平移”后得到線(xiàn)段A'B',點(diǎn)P1(1.5,2),P2(2,3),P3(3,0)中,在線(xiàn)段A′B′上的點(diǎn)是.②若線(xiàn)段AB進(jìn)行“t型平移”后與坐標(biāo)軸有公共點(diǎn),則t的取值范圍是.(3)已知點(diǎn)C(6,1),D(8,﹣1),點(diǎn)M是線(xiàn)段CD上的一個(gè)動(dòng)點(diǎn),將點(diǎn)B進(jìn)行“t型平移”后得到的對(duì)應(yīng)點(diǎn)為B',當(dāng)t的取值范圍是時(shí),B'M的最小值保持不變.18.如圖,在平面直角坐標(biāo)系中,直線(xiàn)與x軸交于點(diǎn),與y軸交于點(diǎn),且(1)求;(2)若為直線(xiàn)上一點(diǎn).①的面積不大于面積的,求P點(diǎn)橫坐標(biāo)x的取值范圍;②請(qǐng)直接寫(xiě)出用含x的式子表示y.(3)已知點(diǎn),若的面積為6,請(qǐng)直接寫(xiě)出m的值.19.(閱讀感悟)一些關(guān)于方程組的問(wèn)題,若求的結(jié)果不是每一個(gè)未知數(shù)的值,而是關(guān)于未知數(shù)的式子的值,如以下問(wèn)題:已知實(shí)數(shù),滿(mǎn)足①,②,求和的值.本題的常規(guī)思路是將①②兩式聯(lián)立組成方程組,解得,的值再代入欲求值的式子得到答案,常規(guī)思路運(yùn)算量比較大.其實(shí),仔細(xì)觀察兩個(gè)方程未知數(shù)的系數(shù)之間的關(guān)系,本題還可以通過(guò)適當(dāng)變形整體求得式子的值,如由①-②可得,由①+②×2可得.這樣的解題思想就是通常所說(shuō)的“整體思想”.(解決問(wèn)題)(1)已知二元一次方程組,則,.(2)某班開(kāi)展安全教育知識(shí)競(jìng)賽需購(gòu)買(mǎi)獎(jiǎng)品,買(mǎi)5支鉛筆、3塊橡皮、2本日記本共需32元,買(mǎi)9支鉛筆、5塊橡皮、3本日記本共需58元,則購(gòu)買(mǎi)20支鉛筆、20塊橡皮、20本日記本共需多少元?(3)對(duì)于實(shí)數(shù),,定義新運(yùn)算:,其中,,是常數(shù),等式右邊是通常的加法和乘法運(yùn)算.已知,,求的值.20.判斷下面方程組的解法是否正確,如果全部正確,判斷即可;如果有錯(cuò)誤,請(qǐng)寫(xiě)出正確的解題過(guò)程.解:①×2-②×3,得,解得,把代入方程①,得,解得.∴原方程組的解為21.某校規(guī)劃在一塊長(zhǎng)AD為18m、寬AB為13m的長(zhǎng)方形場(chǎng)地ABCD上,設(shè)計(jì)分別與AD,AB平行的橫向通道和縱向通道,其余部分鋪上草皮,如圖所示,若設(shè)計(jì)三條通道,一條橫向,兩條縱向,且它們的寬度相等,其余六塊草坪相同,其中一塊草坪兩邊之比AM∶AN=8∶9,問(wèn)通道的寬是多少?22.在平面直角坐標(biāo)系中,點(diǎn)、在坐標(biāo)軸上,其中、滿(mǎn)足.(1)求、兩點(diǎn)的坐標(biāo);(2)將線(xiàn)段平移到,點(diǎn)的對(duì)應(yīng)點(diǎn)為,如圖1所示,若三角形的面積為,求點(diǎn)的坐標(biāo);(3)平移線(xiàn)段到,若點(diǎn)、也在坐標(biāo)軸上,如圖2所示.為線(xiàn)段上的一動(dòng)點(diǎn)(不與、重合),連接、平分,.求證:.23.新定義,若關(guān)于,的二元一次方程組①的解是,關(guān)于,的二元一次方程組②的解是,且滿(mǎn)足,,則稱(chēng)方程組②的解是方程組①的模糊解.關(guān)于,的二元一次方程組的解是方程組的模糊解,則的取值范圍是________.24.如圖,在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,其中是二元一次方程組的解,過(guò)點(diǎn)作軸的平行線(xiàn)交軸于點(diǎn).(1)求點(diǎn)的坐標(biāo);(2)動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度沿射線(xiàn)的方向運(yùn)動(dòng),連接,設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為秒,三角形的面積為,請(qǐng)用含的式子表示(不用寫(xiě)出相應(yīng)的的取值范圍);(3)在(2)的條件下,在動(dòng)點(diǎn)從點(diǎn)出發(fā)的同時(shí),動(dòng)點(diǎn)從點(diǎn)出發(fā)以每秒個(gè)單位長(zhǎng)度的速度沿線(xiàn)段的方向運(yùn)動(dòng).過(guò)點(diǎn)作直線(xiàn)的垂線(xiàn),點(diǎn)為垂足;過(guò)點(diǎn)作直線(xiàn)的垂線(xiàn),點(diǎn)為垂足.當(dāng)時(shí),求的值.25.如圖,正方形ABCD的邊長(zhǎng)是2厘米,E為CD的中點(diǎn),Q為正方形ABCD邊上的一個(gè)動(dòng)點(diǎn),動(dòng)點(diǎn)Q以每秒1厘米的速度從A出發(fā)沿運(yùn)動(dòng),最終到達(dá)點(diǎn)D,若點(diǎn)Q運(yùn)動(dòng)時(shí)間為秒.(1)當(dāng)時(shí),平方厘米;當(dāng)時(shí),平方厘米;(2)在點(diǎn)Q的運(yùn)動(dòng)路線(xiàn)上,當(dāng)點(diǎn)Q與點(diǎn)E相距的路程不超過(guò)厘米時(shí),求的取值范圍;(3)若的面積為平方厘米,直接寫(xiě)出值.26.某體育拓展中心的門(mén)票每張10元,一次性使用考慮到人們的不同需求,也為了吸引更多的顧客,該拓展中心除保留原來(lái)的售票方法外,還推出了一種“購(gòu)買(mǎi)個(gè)人年票”(個(gè)人年票從購(gòu)買(mǎi)日起,可供持票者使用一年)的售票方法.年票分A、B兩類(lèi):A類(lèi)年票每張120元,持票者可不限次進(jìn)入中心,且無(wú)需再購(gòu)買(mǎi)門(mén)票;B類(lèi)年票每張60元,持票者進(jìn)入中心時(shí),需再購(gòu)買(mǎi)門(mén)票,每次2元.(1)小麗計(jì)劃在一年中花費(fèi)80元在該中心的門(mén)票上,如果只能選擇一種購(gòu)買(mǎi)門(mén)票的方式,她怎樣購(gòu)票比較合算?(2)小亮每年進(jìn)入該中心的次數(shù)約20次,他采取哪種購(gòu)票方式比較合算?(3)小明根據(jù)自己進(jìn)入拓展中心的次數(shù),購(gòu)買(mǎi)了A類(lèi)年票,請(qǐng)問(wèn)他一年中進(jìn)入該中心不低于多少次?27.對(duì)、定義了一種新運(yùn)算T,規(guī)定(其中,均為非零常數(shù)),這里等式右邊是通常的四則運(yùn)算,例如:,已知,.(1)求,的值;(2)求.(3)若關(guān)于的不等式組恰好有4個(gè)整數(shù)解,求的取值范圍.28.我們把關(guān)于x的一個(gè)一元一次方程和一個(gè)一元一次不等式組合成一種特殊組合,且當(dāng)一元一次方程的解正好也是一元一次不等式的解時(shí),我們把這種組合叫做“有緣組合”;當(dāng)一元一次方程的解不是一元一次不等式的解時(shí),我們把這種組合叫做“無(wú)緣組合”.(1)請(qǐng)判斷下列組合是“有緣組合”還是“無(wú)緣組合”,并說(shuō)明理由;①;②.(2)若關(guān)于x的組合是“有緣組合”,求a的取值范圍;(3)若關(guān)于x的組合是“無(wú)緣組合”;求a的取值范圍.29.使方程(組)與不等式(組)同時(shí)成立的末知數(shù)的值稱(chēng)為此方程(組)和不等式(組)的“理想解”.例:已知方程2x﹣3=1與不等式x+3>0,當(dāng)x=2時(shí),2x﹣3=2×2﹣3=1,x+3=2+3=5>0同時(shí)成立,則稱(chēng)x=2是方程2x﹣3=1與不等式x+3>0的“理想解”.(1)已知①,②2(x+3)<4,③<3,試判斷方程2x+3=1的解是否是它們中某個(gè)不等式的“理想解”,寫(xiě)出過(guò)程;(2)若是方程x﹣2y=4與不等式的“理想解”,求x0+2y0的取值范圍.30.如圖,在平面直角坐標(biāo)系中,已知,,,,滿(mǎn)足.平移線(xiàn)段得到線(xiàn)段,使點(diǎn)與點(diǎn)對(duì)應(yīng),點(diǎn)與點(diǎn)對(duì)應(yīng),連接,.(1)求,的值,并直接寫(xiě)出點(diǎn)的坐標(biāo);(2)點(diǎn)在射線(xiàn)(不與點(diǎn),重合)上,連接,.①若三角形的面積是三角形的面積的2倍,求點(diǎn)的坐標(biāo);②設(shè),,.求,,滿(mǎn)足的關(guān)系式.【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、解答題1.(1)55°或35°;(2)①;②.【解析】【分析】(1)分兩種情況:①在Rt△FEC中,求出∠FEC=90°-10°=80°,然后根據(jù)點(diǎn)在第二象限的角平分線(xiàn)上,得出∠POE=45°,對(duì)頂角相等,即可得出∠CPO=180°-80°-45°=55°;②由已知條件,得出∠CEO=45°,又根據(jù)∠CEO=∠CPE+∠PCB,得出∠CPO;(2)①首先設(shè)長(zhǎng)方形向上平移個(gè)單位長(zhǎng),得到長(zhǎng)方形,然后列出和的面積,即可得出兩者的數(shù)量關(guān)系;②首先根據(jù)已知條件判定四邊形是平行四邊形,經(jīng)過(guò)等量轉(zhuǎn)化,即可得出和的面積,進(jìn)而得出其面積之比.【詳解】(1)分兩種情況:①令PC交x軸于點(diǎn)E,延長(zhǎng)CB至x軸,交于點(diǎn)F,如圖所示:由已知得,,∠CFE=90°∴∠FEC=90°-10°=80°,又∵點(diǎn)在第二象限的角平分線(xiàn)上,∴∠POE=45°又∵∠FEC=∠PEO=80°∴∠CPO=180°-80°-45°=55°②延長(zhǎng)CB,交直線(xiàn)l于點(diǎn)E,由已知得,,∵點(diǎn)在第二象限的角平分線(xiàn)上,∴∠CEO=45°∴∠CEO=∠CPE+∠PCB∴∠CPO=45°-10°=35°.故答案為55°或35°.(2)如圖,①設(shè)長(zhǎng)方形向上平移個(gè)單位長(zhǎng),得到長(zhǎng)方形∴②∵長(zhǎng)方形,∴∵,令交于E,則四邊形是平行四邊形,∴∴又∵由①得知,∴∴.【點(diǎn)睛】此題主要考查等量轉(zhuǎn)換和平行四邊形的判定以及性質(zhì),熟練掌握,即可解題.2.(1)①PM⊥MN,理由見(jiàn)解析;②∠EPB的度數(shù)為125°;(2)∠APM+∠QMN=90°或∠APM-∠QMN=90°.【分析】(1)①利用平行線(xiàn)的性質(zhì)得到∠APM=∠PMQ,再根據(jù)已知條件可得到PM⊥MN;②過(guò)點(diǎn)N作NH∥CD,利用角平分線(xiàn)的定義以及平行線(xiàn)的性質(zhì)求得∠MNH=35°,即可求解;(2)分三種情況討論,利用平行線(xiàn)的性質(zhì)即可解決.【詳解】解:(1)①PM⊥MN,理由見(jiàn)解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ+∠QMN=90°,∴PM⊥MN;②過(guò)點(diǎn)N作NH∥CD,∵AB//CD,∴AB//NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA+∠MNH=90°,即∠ENH+∠MNH=90°,∴∠MNQ+∠MNH+∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ+∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度數(shù)為125°;(2)當(dāng)點(diǎn)M,N分別在射線(xiàn)QC,QF上時(shí),如圖:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM=∠PMQ,∴∠APM+∠QMN=90°;當(dāng)點(diǎn)M,N分別在射線(xiàn)QC,線(xiàn)段PQ上時(shí),如圖:∵PM⊥MN,AB//CD,∴∠PMN=90°,∠APM=∠PMQ,∴∠PMQ-∠QMN=90°,∴∠APM-∠QMN=90°;當(dāng)點(diǎn)M,N分別在射線(xiàn)QD,QF上時(shí),如圖:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM+∠PMQ=180°,∴∠APM+90°-∠QMN=180°,∴∠APM-∠QMN=90°;綜上,∠APM+∠QMN=90°或∠APM-∠QMN=90°.【點(diǎn)睛】本題主要考查了平行線(xiàn)的判定與性質(zhì),熟練掌握兩直線(xiàn)平行,內(nèi)錯(cuò)角相等;兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ);兩直線(xiàn)平行,同位角相等等知識(shí)是解題的關(guān)鍵.3.(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不變,30°【分析】(1)過(guò)E作EH∥AB,易得EH∥AB∥CD,根據(jù)平行線(xiàn)的性質(zhì)可求解;過(guò)F作FH∥AB,易得FH∥AB∥CD,根據(jù)平行線(xiàn)的性質(zhì)可求解;(2)根據(jù)(1)的結(jié)論及角平分線(xiàn)的定義可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,進(jìn)而可求解;(3)根據(jù)平行線(xiàn)的性質(zhì)及角平分線(xiàn)的定義可推知∠FEQ=∠BME,進(jìn)而可求解.【詳解】解:(1)過(guò)E作EH∥AB,如圖1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如圖2,過(guò)F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒(méi)發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點(diǎn)睛】本題主要考查平行線(xiàn)的性質(zhì)及角平分線(xiàn)的定義,作平行線(xiàn)的輔助線(xiàn)是解題的關(guān)鍵.4.(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)120°.【分析】(1)過(guò)點(diǎn)A作AD∥MN,根據(jù)兩直線(xiàn)平行,內(nèi)錯(cuò)角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根據(jù)角的和差等量代換即可得解;(2)由兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ)得到∴、∠CAB+∠ACD=180°,由鄰補(bǔ)角定義得到∠ECM+∠ECN=180°,再等量代換即可得解;(3)由平行線(xiàn)的性質(zhì)得到,∠FAB=120°﹣∠GCA,再由角平分線(xiàn)的定義及平行線(xiàn)的性質(zhì)得到∠GCA﹣∠ABF=60°,最后根據(jù)三角形的內(nèi)角和是180°即可求解.【詳解】解:(1)證明:如圖1,過(guò)點(diǎn)A作AD∥MN,∵M(jìn)N∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠CAB=∠MCA+∠PBA;(2)如圖2,∵CD∥AB,∴∠CAB+∠ACD=180°,∵∠ECM+∠ECN=180°,∵∠ECN=∠CAB∴∠ECM=∠ACD,即∠MCA+∠ACE=∠DCE+∠ACE,∴∠MCA=∠DCE;(3)∵AF∥CG,∴∠GCA+∠FAC=180°,∵∠CAB=60°即∠GCA+∠CAB+∠FAB=180°,∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA,由(1)可知,∠CAB=∠MCA+∠ABP,∵BF平分∠ABP,CG平分∠ACN,∴∠ACN=2∠GCA,∠ABP=2∠ABF,又∵∠MCA=180°﹣∠ACN,∴∠CAB=180°﹣2∠GCA+2∠ABF=60°,∴∠GCA﹣∠ABF=60°,∵∠AFB+∠ABF+∠FAB=180°,∴∠AFB=180°﹣∠FAB﹣∠FBA=180°﹣(120°﹣∠GCA)﹣∠ABF=180°﹣120°+∠GCA﹣∠ABF=120°.【點(diǎn)睛】本題主要考查了平行線(xiàn)的性質(zhì),線(xiàn)段、角、相交線(xiàn)與平行線(xiàn),準(zhǔn)確的推導(dǎo)是解決本題的關(guān)鍵.5.(1)見(jiàn)解析;(2)∠BAE+∠CDE=∠AED,證明見(jiàn)解析;(3)①∠AED-∠FDC=45°,理由見(jiàn)解析;②50°【分析】(1)根據(jù)平行線(xiàn)的性質(zhì)及判定可得結(jié)論;(2)過(guò)點(diǎn)E作EF∥AB,根據(jù)平行線(xiàn)的性質(zhì)得AB∥CD∥EF,然后由兩直線(xiàn)平行內(nèi)錯(cuò)角相等可得結(jié)論;(3)①根據(jù)∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可導(dǎo)出角的關(guān)系;②先根據(jù)∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根據(jù)∠DEA-∠PEA=∠DEB,求出∠AED=50°,即可得出∠EPD的度數(shù).【詳解】解:(1)證明:AB∥CD,∴∠A+∠D=180°,∵∠C=∠A,∴∠C+∠D=180°,∴AD∥BC;(2)∠BAE+∠CDE=∠AED,理由如下:如圖2,過(guò)點(diǎn)E作EF∥AB,∵AB∥CD∴AB∥CD∥EF∴∠BAE=∠AEF,∠CDE=∠DEF即∠FEA+∠FED=∠CDE+∠BAE∴∠BAE+∠CDE=∠AED;(3)①∠AED-∠FDC=45°;∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,∴∠AEC=∠DEC+∠AEB,∴∠AED=∠AEB,∵DF平分∠EDC∠DEC=2∠FDC∴∠DEC=90°-2∠FDC,∴2∠AED+(90°-2∠FDC)=180°,∴∠AED-∠FDC=45°,故答案為:∠AED-∠FDC=45°;②如圖3,∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,∴∠F=45°,∴∠DEP=2∠F=90°,∵∠DEA-∠PEA=∠DEB=∠DEA,∴∠PEA=∠AED,∴∠DEP=∠PEA+∠AED=∠AED=90°,∴∠AED=70°,∵∠AED+∠AEC=180°,∴∠DEC+2∠AED=180°,∴∠DEC=40°,∵AD∥BC,∴∠ADE=∠DEC=40°,在△PDE中,∠EPD=180°-∠DEP-∠AED=50°,即∠EPD=50°.【點(diǎn)睛】本題主要考查平行線(xiàn)的判定和性質(zhì),熟練掌握平行線(xiàn)的判定和性質(zhì),角平分線(xiàn)的性質(zhì)等知識(shí)點(diǎn)是解題的關(guān)鍵.6.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由見(jiàn)解析.【分析】(1)過(guò)點(diǎn)B作BMHD,則HDGEBM,根據(jù)平行線(xiàn)的性質(zhì)求得∠ABM與∠CBM,便可求得最后結(jié)果;(2)過(guò)B作BPHDGE,過(guò)F作FQHDGE,由平行線(xiàn)的性質(zhì)得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分線(xiàn)的性質(zhì)和已知角的度數(shù)分別求得∠HAF,∠FCG,最后便可求得結(jié)果;(3)過(guò)P作PKHDGE,先由平行線(xiàn)的性質(zhì)證明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根據(jù)角平分線(xiàn)求得∠NPC與∠PCN,由后由三角形內(nèi)角和定理便可求得結(jié)果.【詳解】解:(1)過(guò)點(diǎn)B作BMHD,則HDGEBM,如圖1,∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,∵∠DAB=120°,∠BCG=40°,∴∠ABM=60°,∠CBM=40°,∴∠ABC=∠ABM+∠CBM=100°;(2)過(guò)B作BPHDGE,過(guò)F作FQHDGE,如圖2,∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,∵∠DAB=120°,∴∠HAB=180°﹣∠DAB=60°,∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,∴∠HAF=30°,∠FCG=40°,∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,∴∠ABC>∠AFC;(3)過(guò)P作PKHDGE,如圖3,∴∠APK=∠HAP,∠CPK=∠PCG,∴∠APC=∠HAP+∠PCG,∵PN平分∠APC,∴∠NPC=∠HAP+∠PCG,∵∠PCE=180°﹣∠PCG,CN平分∠PCE,∴∠PCN=90°﹣∠PCG,∵∠N+∠NPC+∠PCN=180°,∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP,即:∠N=90°﹣∠HAP.【點(diǎn)睛】本題考查了角平分線(xiàn)的定義,平行線(xiàn)性質(zhì)和判定:兩直線(xiàn)平行,同位角相等;兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ);兩直線(xiàn)平行,內(nèi)錯(cuò)角相等.此題難度適中,注意掌握輔助線(xiàn)的作法,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用,理清各角度之間的關(guān)系是解題的關(guān)鍵,也是本題的難點(diǎn).7.(1)3,0,-2(2)(4,30)【解析】分析:(1)根據(jù)閱讀材料,應(yīng)用規(guī)定的運(yùn)算方式計(jì)算即可;(2)應(yīng)用規(guī)定和同底數(shù)冪相乘的性質(zhì)逆用變形計(jì)算即可.詳解:(1)∵33=27∴(3,27)=3∵50=1∴(5,1)=1∵2-2=∴(2,)=-2(2)設(shè)(4,5)=x,(4,6)=y則,=6∴∴(4,30)=x+y∴(4,5)+(4,6)=(4,30)點(diǎn)睛:此題是一個(gè)規(guī)定計(jì)算的應(yīng)用型的題目,關(guān)鍵是靈活應(yīng)用規(guī)定的關(guān)系式計(jì)算,熟練記憶冪的相關(guān)性質(zhì).8.(1);(2)2;(3)不是;(4)(6,)【分析】(1)根據(jù)“白馬有理數(shù)對(duì)”的定義,把數(shù)對(duì)分別代入計(jì)算即可判斷;(2)根據(jù)“白馬有理數(shù)對(duì)”的定義,構(gòu)建方程即可解決問(wèn)題;(3)根據(jù)“白馬有理數(shù)對(duì)”的定義即可判斷;(4)根據(jù)“白馬有理數(shù)對(duì)”的定義即可解決問(wèn)題.【詳解】(1)∵-2+1=-1,而-2×1-1=-3,∴-2+1-3,∴(-2,1)不是“白馬有理數(shù)對(duì)”,∵5+=,5×-1=,∴5+=5×-1,∴是“白馬有理數(shù)對(duì)”,故答案為:;(2)若是“白馬有理數(shù)對(duì)”,則a+3=3a-1,解得:a=2,故答案為:2;(3)若是“白馬有理數(shù)對(duì)”,則m+n=mn-1,那么-n+(-m)=-(m+n)=-(mn-1)=-mn+1,∵-mn+1mn-1∴(-n,-m)不是“白馬有理數(shù)對(duì)”,故答案為:不是;(4)取m=6,則6+x=6x-1,∴x=,∴(6,)是“白馬有理數(shù)對(duì)”,故答案為:(6,).【點(diǎn)睛】本題考查了“白馬有理數(shù)對(duì)”的定義,有理數(shù)的加減運(yùn)算,一次方程的列式求解,理解“白馬有理數(shù)對(duì)”的定義是解題的關(guān)鍵.9.(1),-2;(2)()4,(﹣2)8;(3);(4).【分析】(1)分別按公式進(jìn)行計(jì)算即可;(2)把除法化為乘法,第一個(gè)數(shù)不變,從第二個(gè)數(shù)開(kāi)始依次變?yōu)榈箶?shù),由此分別得出結(jié)果;(3)結(jié)果前兩個(gè)數(shù)相除為1,第三個(gè)數(shù)及后面的數(shù)變?yōu)椋瑒ta?=a×()n-1;(4)將第二問(wèn)的規(guī)律代入計(jì)算,注意運(yùn)算順序.【詳解】解:(1)2③=2÷2÷2=,(﹣)③=﹣÷(﹣)÷(﹣)=﹣2;(2)5⑥=5×××××=()4,同理得;(﹣)⑩=(﹣2)8;(3)a?=a×××…×;(4)(-3)8×(-3)⑨-(﹣)9×(﹣)⑧=(-3)8×()7-(﹣)9×(-2)6=-3-(-)3=-3+=.【點(diǎn)睛】本題是有理數(shù)的混合運(yùn)算,也是一個(gè)新定義的理解與運(yùn)用;一方面考查了有理數(shù)的乘除法及乘方運(yùn)算,另一方面也考查了學(xué)生的閱讀理解能力;注意:負(fù)數(shù)的奇數(shù)次方為負(fù)數(shù),負(fù)數(shù)的偶數(shù)次方為正數(shù),同時(shí)也要注意分?jǐn)?shù)的乘方要加括號(hào),對(duì)新定義,其實(shí)就是多個(gè)數(shù)的除法運(yùn)算,要注意運(yùn)算順序.10.(1)不是,是;(2)見(jiàn)解析;(3)432或456或840或864或888【分析】(1)根據(jù)等差數(shù)的定義判定即可;(2)設(shè)這個(gè)三位數(shù)是M,,根據(jù)等差數(shù)的定義可知,進(jìn)而得出即可.(3)根據(jù)等差數(shù)的定義以及24的倍數(shù)的數(shù)的特征可先求出a的值,再根據(jù)是8的倍數(shù)可確定c的值,又因?yàn)?,所以可確定a、c為偶數(shù)時(shí)b才可取整數(shù)有意義,排除不符合條件的a、c值,再將符合條件的a、c代入求出b的值,即可求解.【詳解】解:(1)∵,∴148不是等差數(shù),∵,∴514335是等差數(shù);(2)設(shè)這個(gè)三位數(shù)是M,,∵,∴,∵,∴這個(gè)等差數(shù)是3的倍數(shù);(3)由(2)知,∵T是24的倍數(shù),∴是8的倍數(shù),∵2c是偶數(shù),∴只有當(dāng)35a也是偶數(shù)時(shí)才有可能是8的倍數(shù),∴或4或6或8,當(dāng)時(shí),,此時(shí)若,則,若,則,若,則,大于70又是8的倍數(shù)的最小數(shù)是72,之后是80,88當(dāng)時(shí)不符合題意;當(dāng)時(shí),,此時(shí)若,則,若,則,(144、152是8的倍數(shù)),當(dāng)時(shí),,此時(shí)若,則,若,則,(216、244是8的倍數(shù)),當(dāng)時(shí),,此時(shí)若,則,若,則,若,則,(280,288,296是8的倍數(shù)),∵,∴若a是偶數(shù),則c也是偶數(shù)時(shí)b才有意義,∴和是c是奇數(shù)均不符合題意,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,綜上,T為432或456或840或864或888.【點(diǎn)睛】本題考查新定義下的實(shí)數(shù)運(yùn)算、有理數(shù)混合運(yùn)算,整式的加減運(yùn)算,能夠結(jié)合倍數(shù)的特點(diǎn)及熟練掌握整數(shù)的奇偶性是解題關(guān)鍵.11.(1)10;(2)(3):0,1,2【詳解】分析:(1)①利用對(duì)非負(fù)數(shù)x“四舍五入”到個(gè)位的值為<x>,進(jìn)而求解即可;(2)首先將<m>看做一個(gè)字母,解不等式,進(jìn)而根據(jù)整數(shù)解的個(gè)數(shù)得出m的取值;(3)利用得出關(guān)于x的不等式,求解即可.詳解:(1)①10,②;(2)解不等式組得:由不等式組的整數(shù)解恰有4個(gè)得,,∴;(3)∵,∴,,∴,∵x為非負(fù)整數(shù),∴x的值為:0,1,(2)點(diǎn)睛:此題主要考查了理解題意的能力,關(guān)鍵是看到所得值是個(gè)位數(shù)四舍五入后的值,問(wèn)題得解.12.(1)275,572;(2)(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].【分析】(1)觀察等式,發(fā)現(xiàn)規(guī)律,等式的左邊:兩位數(shù)所乘的數(shù)是這個(gè)兩位數(shù)的個(gè)位數(shù)字變?yōu)榘傥粩?shù)字,十位數(shù)字變?yōu)閭€(gè)位數(shù)字,兩個(gè)數(shù)字的和放在十位;等式的右邊:三位數(shù)與左邊的三位數(shù)字百位與個(gè)位數(shù)字交換,兩位數(shù)與左邊的兩位數(shù)十位與個(gè)位數(shù)字交換然后相乘,根據(jù)此規(guī)律進(jìn)行填空即可;(2)按照(1)中對(duì)稱(chēng)等式的方法寫(xiě)出,然后利用多項(xiàng)式的乘法進(jìn)行寫(xiě)出即可.【詳解】解:(1)∵5+2=7,∴左邊的三位數(shù)是275,右邊的三位數(shù)是572,∴52×275=572×25,(2)左邊的兩位數(shù)是10b+a,三位數(shù)是100a+10(a+b)+b;右邊的兩位數(shù)是10a+b,三位數(shù)是100b+10(a+b)+a;“數(shù)字對(duì)稱(chēng)等式”為:(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].故答案為275,572;(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].【點(diǎn)睛】本題是對(duì)數(shù)字變化規(guī)律的考查,根據(jù)已知信息,理清利用左邊的兩位數(shù)的十位數(shù)字與個(gè)位數(shù)字變化得到其它的三個(gè)數(shù)字是解題的關(guān)鍵.13.(1),,;(2)證明見(jiàn)解析;(3)成立,理由見(jiàn)解析【分析】(1)根據(jù)算術(shù)平方根、立方根得、;再根據(jù)直角坐標(biāo)系、平移的性質(zhì)分析,即可得到答案;(2)根據(jù)平移的性質(zhì),得;根據(jù)平行線(xiàn)性質(zhì),分別推導(dǎo)得,,從而完成證明;(3)結(jié)合題意,根據(jù)平行線(xiàn)的性質(zhì),推導(dǎo)得、;結(jié)合(2)的結(jié)論,通過(guò)計(jì)算即可完成證明.【詳解】(1)連接∵是16的算術(shù)平方根∴∴∴∵∴∴∴∵線(xiàn)段由線(xiàn)段平移所得,并且點(diǎn)與點(diǎn)A對(duì)應(yīng),點(diǎn)與點(diǎn)對(duì)應(yīng)∴,∴故答案為:,,;(2)∵線(xiàn)段由線(xiàn)段平移所得∴,∴∵∴∵∴∴(3)∵∴∵∴∵∴,即∵∴∴∵∴∵,∴由(2)的結(jié)論得:,∵,∴∴∵∴∴∴在點(diǎn)運(yùn)動(dòng)的過(guò)程中,總成立.【點(diǎn)睛】本題考查了算術(shù)平方根、立方根、平行線(xiàn)、平移、直角坐標(biāo)系的知識(shí);解題的關(guān)鍵是熟練掌握直角坐標(biāo)系、平移、平行線(xiàn)的性質(zhì),從而完成求解.14.(1);(2)的值為40°;(3).【分析】(1)過(guò)點(diǎn)O作OG∥AB,可得AB∥OG∥CD,利用平行線(xiàn)的性質(zhì)可求解;(2)過(guò)點(diǎn)M作MK∥AB,過(guò)點(diǎn)N作NH∥CD,由角平分線(xiàn)的定義可設(shè)∠BEM=∠OEM=x,∠CFN=∠OFN=y,由∠BEO+∠DFO=260°可求x-y=40°,進(jìn)而求解;(3)設(shè)直線(xiàn)FK與EG交于點(diǎn)H,F(xiàn)K與AB交于點(diǎn)K,根據(jù)平行線(xiàn)的性質(zhì)即三角形外角的性質(zhì)及,可得,結(jié)合,可得即可得關(guān)于n的方程,計(jì)算可求解n值.【詳解】證明:過(guò)點(diǎn)O作OG∥AB,∵AB∥CD,∴AB∥OG∥CD,∴∴即∵∠EOF=100°,∴∠;(2)解:過(guò)點(diǎn)M作MK∥AB,過(guò)點(diǎn)N作NH∥CD,∵EM平分∠BEO,F(xiàn)N平分∠CFO,設(shè)∵∴∴x-y=40°,∵M(jìn)K∥AB,NH∥CD,AB∥CD,∴AB∥MK∥NH∥CD,∴∴=x-y=40°,的值為40°;(3)如圖,設(shè)直線(xiàn)FK與EG交于點(diǎn)H,F(xiàn)K與AB交于點(diǎn)K,∵AB∥CD,∴∵∴∵∴即∵FK在∠DFO內(nèi),∴,∵∴∴即∴解得.經(jīng)檢驗(yàn),符合題意,故答案為:.【點(diǎn)睛】本題主要考查平行線(xiàn)的性質(zhì),角平分線(xiàn)的定義,靈活運(yùn)用平行線(xiàn)的性質(zhì)是解題的關(guān)鍵.15.(1)C(-2,0);(2)點(diǎn)P坐標(biāo)為(0,6)或(0,-6);(3)∠BMA=∠MAC±∠HBM,證明見(jiàn)解析.【分析】(1)由點(diǎn)A坐標(biāo)可得OA=4,再根據(jù)C點(diǎn)x軸負(fù)半軸上,AC=6即可求得答案;(2)先求出S△ABC=9,S△BOP=OP,再根據(jù)S△POB=S△ABC,可得OP=6,即可寫(xiě)出點(diǎn)P的坐標(biāo);(3)先得到點(diǎn)H的坐標(biāo),再結(jié)合點(diǎn)B的坐標(biāo)可得到BH//AC,然后根據(jù)點(diǎn)M在射線(xiàn)CH上,分點(diǎn)M在線(xiàn)段CH上與不在線(xiàn)段CH上兩種情況分別進(jìn)行討論即可得.【詳解】(1)∵A(4,0),∴OA=4,∵C點(diǎn)x軸負(fù)半軸上,AC=6,∴OC=AC-OA=2,∴C(-2,0);(2)∵B(2,3),∴S△ABC=×6×3=9,S△BOP=OP×2=OP,又∵S△POB=S△ABC,∴OP=×9=6,∴點(diǎn)P坐標(biāo)為(0,6)或(0,-6);(3)∠BMA=∠MAC±∠HBM,證明如下:∵把點(diǎn)C往上平移3個(gè)單位得到點(diǎn)H,C(-2,0),∴H(-2,3),又∵B(2,3),∴BH//AC;如圖1,當(dāng)點(diǎn)M在線(xiàn)段HC上時(shí),過(guò)點(diǎn)M作MN//AC,∴∠MAC=∠AMN,MN//HB,∴∠HBM=∠BMN,∵∠BMA=∠BMN+∠AMN,∴∠BMA=∠HBM+∠MAC;如圖2,當(dāng)點(diǎn)M在射線(xiàn)CH上但不在線(xiàn)段HC上時(shí),過(guò)點(diǎn)M作MN//AC,∴∠MAC=∠AMN,MN//HB,∴∠HBM=∠BMN,∵∠BMA=∠AMN-∠BMN,∴∠BMA=∠MAC-∠HBM;綜上,∠BMA=∠MAC±∠HBM.【點(diǎn)睛】本題考查了點(diǎn)的坐標(biāo),三角形的面積,點(diǎn)的平移,平行線(xiàn)的判定與性質(zhì)等知識(shí),綜合性較強(qiáng),正確進(jìn)行分類(lèi)并準(zhǔn)確畫(huà)出圖形是解題的關(guān)鍵.16.(1);(2)-17【分析】(1)解方程組求出x、y的值,根據(jù)列不等式組求出答案;(2)將兩個(gè)方程相加,求得6x+3y=-9,即可得到答案.【詳解】解:(1)解方程組得,∵,∴,解得;(2)由①+②得2x+y=-3,∴3(2x+y)=-9,即6x+3y=-9,∴=-9-8=-17.【點(diǎn)睛】此題考查解二元一次方程組,解一元一次不等式組,已知式子的值求代數(shù)式的值,正確解方程組是解題的關(guān)鍵.17.(1)(3,0);(2)①P1;②或;(3)【分析】(1)根據(jù)“l(fā)型平移”的定義解決問(wèn)題即可.(2)①畫(huà)出線(xiàn)段A1B1即可判斷.②根據(jù)定義求出t最大值,最小值即可判斷.(3)如圖2中,觀察圖象可知,當(dāng)B′在線(xiàn)段B′B″上時(shí),B'M的最小值保持不變,最小值為.【詳解】(1)將點(diǎn)A(2,1)進(jìn)行“l(fā)型平移”后的對(duì)應(yīng)點(diǎn)A'的坐標(biāo)為(3,0),故答案為:(3,0);(2)①如圖1中,觀察圖象可知,將線(xiàn)段AB進(jìn)行“﹣l型平移”后得到線(xiàn)段A'B',點(diǎn)P1(1.5,2),P2(2,3),P3(3,0)中,在線(xiàn)段A′B′上的點(diǎn)是P1,故答案為:P1;②若線(xiàn)段AB進(jìn)行“t型平移”后與坐標(biāo)軸有公共點(diǎn),則t的取值范圍是﹣4≤t≤﹣2或t=1.故答案為:﹣4≤t≤﹣2或t=1.(3)如圖2中,觀察圖象可知,當(dāng)B′在線(xiàn)段B′B″上時(shí),B'M的最小值保持不變,最小值為,此時(shí)1≤t≤3.故答案為:1≤t≤3.【點(diǎn)睛】本題屬于幾何變換綜合題,考查了平移變換,“t型平移”的定義等知識(shí),解題的關(guān)鍵理解題意,靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,學(xué)會(huì)利用圖象法解決問(wèn)題,屬于中考創(chuàng)新題型.18.(1)4;(2)①或;②;(3)或.【分析】(1)先根據(jù)偶次方和絕對(duì)值的非負(fù)性求出的值,從而可得點(diǎn)的坐標(biāo)和的長(zhǎng),再利用直角三角形的面積公式即可得;(2)①分和兩種情況,先分別求出和的面積,再根據(jù)已知條件建立不等式,解不等式即可得;②分和兩種情況,利用、和的面積關(guān)系建立等式,化簡(jiǎn)即可得;(3)過(guò)點(diǎn)作軸的平行線(xiàn),交直線(xiàn)于點(diǎn),從而可得,再分、和三種情況,分別利用三角形的面積公式建立方程,解方程即可得.【詳解】解:(1)由題意得:,解得,,,軸軸,;(2)①的面積不大于面積的,的面積小于的面積,則分以下兩種情況:如圖,當(dāng)時(shí),則,,因此有,解得,此時(shí)的取值范圍為;如圖,當(dāng)時(shí),則,,因此有,解得,此時(shí)的取值范圍為,綜上,點(diǎn)橫坐標(biāo)的取值范圍為或;②當(dāng)時(shí),則,,由(2)①可知,,則,即;如圖,當(dāng)時(shí),則,,,,,解得,綜上,;(3)過(guò)點(diǎn)作軸的平行線(xiàn),交直線(xiàn)于點(diǎn),由(2)②可知,,則,由題意,分以下三種情況:①如圖,當(dāng)時(shí),則,,解得,不符題設(shè),舍去;②如圖,當(dāng)時(shí),則,,解得或(不符題設(shè),舍去);③如圖,當(dāng)時(shí),則,,解得,符合題設(shè),綜上,的值為或.【點(diǎn)睛】本題考查了偶次方和絕對(duì)值的非負(fù)性、坐標(biāo)與圖形等知識(shí)點(diǎn),較難的是題(3),正確分三種情況討論是解題關(guān)鍵.19.(1)-4,4;(2)購(gòu)買(mǎi)20支鉛筆、20塊橡皮、20本日記本共需120元;(3)1【分析】(1)由①-②得2x-2y=-8,則x-y=-4,再由①+②得4x+4y=16,則x+y=4;(2)設(shè)1支鉛筆x元,1塊橡皮y元,1本日記本z元,由題意:買(mǎi)5支鉛筆、3塊橡皮、2本日記本共需32元,買(mǎi)9支鉛筆、5塊橡皮、3本日記本共需58元,列出方程組,再由整體思想”求出x+y+z=6,即可求解;(3)由定義新運(yùn)算:x※y=ax+by+c得1※4=a+4b+c=16①,1※5=a+5b+c=21②,求出a+b+c=1,即可求解.【詳解】解:(1),①-②得:2x-2y=-8,∴x-y=-4,①+②得:4x+4y=16,∴x+y=4,故答案為:-4,4;(2)設(shè)1支鉛筆x元,1塊橡皮y元,1本日記本z元,由題意得:,①×2-②得:x+y+z=6,∴20x+20y+20z=20(x+y+z)=20×6=120,即購(gòu)買(mǎi)20支鉛筆、20塊橡皮、20本日記本共需120元;(3)∵x※y=ax+by+c,∴1※4=a+4b+c=16①,1※5=a+5b+c=21②,②-①得:b=5,∴a+c=16-4b=-4,∴a+b+c=1,∴1※1=a+b+c=1.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用、整體思想以及新運(yùn)算等知識(shí);熟練掌握整體思想和新運(yùn)算,找準(zhǔn)等量關(guān)系,列出方程組是解題的關(guān)鍵.20.【分析】用加減消元法解二元一次方程組,在兩個(gè)方程作差時(shí)符號(hào)出錯(cuò)了,正確為①②,得,再求解即可.【詳解】解:上述解法不正確.正確解題過(guò)程如下:①②,得,解得,把代入方程①,得,解得.原方程組的解為.【點(diǎn)睛】本題考查了二元一次方程組的解,解題的關(guān)鍵是熟練掌握加減消元法解二元一次方程組.21.1【分析】利用AM:AN=8:9,設(shè)通道的寬為xm,AM=8ym,則AN=9ym,進(jìn)而利用AD為18m,AB為13m,得出等式求出即可.【詳解】設(shè)通道的寬是xm,AM=8ym.因?yàn)锳M∶AN=8∶9,所以AN=9ym.所以解得答:通道的寬是1m.故答案為1.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用.22.(1),兩點(diǎn)的坐標(biāo)分別為,;(2)點(diǎn)的坐標(biāo)是;(3)證明見(jiàn)解析【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì)得出二元一次方程組,求解即可;(2)過(guò)點(diǎn)B作y軸的平行線(xiàn)分別與過(guò)點(diǎn)A,C作x軸的平行線(xiàn)交于點(diǎn)N,點(diǎn)M,過(guò)點(diǎn)C作y軸的平行線(xiàn)與過(guò)點(diǎn)A作x軸的平行線(xiàn)交于點(diǎn)T,根據(jù)三角形的面積長(zhǎng)方形的面積(三角形的面積三角形的面積三角形的面積)列出方程,求解得出點(diǎn)C的坐標(biāo),由平移的規(guī)律可得點(diǎn)D的坐標(biāo);(3)過(guò)點(diǎn)作,交軸于點(diǎn),過(guò)點(diǎn)作,交于點(diǎn),根據(jù)兩直線(xiàn)平行,內(nèi)錯(cuò)角相等與已知條件得出,同樣可證,由平移的性質(zhì)與平行公理的推論可得,最后根據(jù),通過(guò)等量代換進(jìn)行證明.【詳解】解:(1),又∵,,,,即,解方程組得,,兩點(diǎn)的坐標(biāo)分別為,;(2)如圖,過(guò)點(diǎn)B作y軸的平行線(xiàn)分別與過(guò)點(diǎn)A,C作x軸的平行線(xiàn)交于點(diǎn)N,點(diǎn)M,過(guò)點(diǎn)C作y軸的平行線(xiàn)與過(guò)點(diǎn)A作x軸的平行線(xiàn)交于點(diǎn)T,∴三角形的面積長(zhǎng)方形的面積(三角形的面積三角形的面積三角形的面積),根據(jù)題意得,,化簡(jiǎn),得,解得,,依題意得,,,即點(diǎn)的坐標(biāo)為,依題意可知,點(diǎn)的坐標(biāo)是由點(diǎn)的坐標(biāo)先向左平移個(gè)單位長(zhǎng)度,再向下平移個(gè)單位長(zhǎng)度得到的,從而可知,點(diǎn)的坐標(biāo)是由點(diǎn)的坐標(biāo)先向左平移個(gè)單位長(zhǎng)度,再向下平移個(gè)單位長(zhǎng)度得到的,∴點(diǎn)的坐標(biāo)是;(3)證明:過(guò)點(diǎn)作,交軸于點(diǎn),如圖所示,則,,,過(guò)點(diǎn)作,交于點(diǎn),如圖所示,則,平分,,,由平移得,,,,,,,.【點(diǎn)睛】本題綜合性較強(qiáng),考查非負(fù)數(shù)的性質(zhì),解二元一次方程組,平行線(xiàn)的性質(zhì),平移的性質(zhì),坐標(biāo)與圖形的性質(zhì),第(3)題巧作輔助線(xiàn)構(gòu)造平行線(xiàn)是解題的關(guān)鍵.23.【分析】根據(jù)已知條件,先求出兩個(gè)方程組的解,再根據(jù)“模糊解”的定義列出不等式組,解得m的取值范圍便可.【詳解】解:解方程組得:,解方程組得:,∵關(guān)于,的二元一次方程組的解是方程組的模糊解,因此有:且,化簡(jiǎn)得:,即解得:,故答案為.【點(diǎn)睛】本題主要考查了新定義,二元一次方程組的解,解絕對(duì)值不等式,考查了學(xué)生的閱讀理解能力、知識(shí)的遷移能力以及計(jì)算能力,難度適中.正確理解“模糊解”的定義是解題的關(guān)鍵.24.(1);(2);(3)或4.【分析】(1)先求出是二元一次方程組的解,然后代入A、B的坐標(biāo)即可解答;(2)先求出OC的長(zhǎng),分點(diǎn)P在線(xiàn)段OB上和OB的延長(zhǎng)線(xiàn)上兩種情況,分別利用三角形面積公式計(jì)算即可;(3)分兩種情況解答:①當(dāng)點(diǎn)P在線(xiàn)段OB上時(shí),連接PQ,過(guò)點(diǎn)M作PM⊥AC交AC的延長(zhǎng)線(xiàn)于M,可得OP=2CQ,構(gòu)建方程解答即可;②當(dāng)點(diǎn)P在BO的延長(zhǎng)線(xiàn)上時(shí),同理可解.【詳解】解:(1)解二元一次方程組,得:∴A(6,7),B(-8,0);(2)①當(dāng)點(diǎn)P在線(xiàn)段OB上時(shí),BP=4t,OP=8-4t,∴②當(dāng)點(diǎn)P在OB延長(zhǎng)線(xiàn)上時(shí),綜上所述;(3)①當(dāng)點(diǎn)P在線(xiàn)段OB上時(shí),如圖:連接PQ,過(guò)點(diǎn)M作PM⊥AC交AC的延長(zhǎng)線(xiàn)于M,又;②當(dāng)在線(xiàn)段延長(zhǎng)線(xiàn)上時(shí)同理可得:.綜上,滿(mǎn)足題意t的值為或4.【點(diǎn)睛】本題主要考查了三角形的面積、二元一次方程組等知識(shí)點(diǎn),學(xué)會(huì)用分類(lèi)討論的思想思考問(wèn)題以及利用面積法解決線(xiàn)段之間的關(guān)系成為解答本題的關(guān)鍵.25.(1)1;(2)(3)【分析】(1)根據(jù)三角形的面積公式即可求解;(2)根據(jù)題意列出不等式組故可求解;(3)分Q點(diǎn)在AB上、BC上和CD上分別列出方程即可求解.【詳解】(1)當(dāng)時(shí),=1平方厘米;當(dāng)時(shí),=平方厘米;故答案為;;(2)解:根據(jù)題意,得解得,故的取值范圍為;(3)當(dāng)Q點(diǎn)在AB上時(shí),依題意可得解得;當(dāng)Q點(diǎn)在BC上時(shí),依題意可得解得>6,不符合題意;當(dāng)Q點(diǎn)在AB上時(shí),依題意可得或解得或;∴值為.【點(diǎn)睛】此題主要考查不等式組與一元一次方程的應(yīng)用,解題的關(guān)鍵是根據(jù)題意得到方程或不等式組進(jìn)行求解.26.(1)應(yīng)該購(gòu)買(mǎi)B類(lèi)年票,理由見(jiàn)解析;(2)應(yīng)該購(gòu)買(mǎi)B類(lèi)年票,理由見(jiàn)解析;(3)小明一年中進(jìn)入拓展中心不低于30次【分析】(1)因?yàn)?0元小于120元,故無(wú)法購(gòu)買(mǎi)A類(lèi)年票,繼而分別討論直接購(gòu)票與購(gòu)買(mǎi)B類(lèi)年票,這兩種方式何者次數(shù)更多即可.(2)本題根據(jù)進(jìn)入中心的次數(shù),分別計(jì)算小亮直接購(gòu)票、購(gòu)買(mǎi)A類(lèi)年票、購(gòu)買(mǎi)B類(lèi)年票所消費(fèi)的總金額,最后比較總花費(fèi)大
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 46814-2025電站閥門(mén)技術(shù)規(guī)范
- 養(yǎng)老院入住退住規(guī)定制度
- 企業(yè)薪酬管理制度
- 會(huì)議考勤與出勤考核制度
- 2026年汽車(chē)維修技師綜合技能測(cè)試題目
- 2026年政府文件與政策法規(guī)解讀題庫(kù)
- 2026年金融投資策略金融市場(chǎng)分析面試問(wèn)題集
- 2026年新版生活廢物合同
- 2026年新版頜面贗復(fù)合同
- 人教版(2024)二年級(jí)下冊(cè)數(shù)學(xué) 第二單元《數(shù)量間的乘除關(guān)系》情境卷(含答案)
- 量子科普知識(shí)
- 2025至2030中國(guó)航空安全行業(yè)市場(chǎng)深度研究與戰(zhàn)略咨詢(xún)分析報(bào)告
- 華潤(rùn)燃?xì)?026屆校園招聘“菁英計(jì)劃·管培生”全面開(kāi)啟備考考試題庫(kù)及答案解析
- 成本管理論文開(kāi)題報(bào)告
- 華潤(rùn)集團(tuán)6S管理
- 新建粉煤灰填埋場(chǎng)施工方案
- 2025年提高缺氧耐受力食品行業(yè)分析報(bào)告及未來(lái)發(fā)展趨勢(shì)預(yù)測(cè)
- 小學(xué)三年級(jí)數(shù)學(xué)判斷題100題帶答案
- 互聯(lián)網(wǎng)運(yùn)維服務(wù)保障承諾函8篇范文
- 2025年(第十二屆)輸電技術(shù)大會(huì):基于可重構(gòu)智能表面(RIS)天線(xiàn)的相控陣無(wú)線(xiàn)通信技術(shù)及其在新型電力系統(tǒng)的應(yīng)用
- 帶壓開(kāi)倉(cāng)培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論