2025-2026學(xué)年河南天一大聯(lián)考數(shù)學(xué)高三上期末經(jīng)典模擬試題_第1頁(yè)
2025-2026學(xué)年河南天一大聯(lián)考數(shù)學(xué)高三上期末經(jīng)典模擬試題_第2頁(yè)
2025-2026學(xué)年河南天一大聯(lián)考數(shù)學(xué)高三上期末經(jīng)典模擬試題_第3頁(yè)
2025-2026學(xué)年河南天一大聯(lián)考數(shù)學(xué)高三上期末經(jīng)典模擬試題_第4頁(yè)
2025-2026學(xué)年河南天一大聯(lián)考數(shù)學(xué)高三上期末經(jīng)典模擬試題_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025-2026學(xué)年河南天一大聯(lián)考數(shù)學(xué)高三上期末經(jīng)典模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.C. D.2.用一個(gè)平面去截正方體,則截面不可能是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形3.已知曲線且過定點(diǎn),若且,則的最小值為().A. B.9 C.5 D.4.是邊長(zhǎng)為的等邊三角形,、分別為、的中點(diǎn),沿把折起,使點(diǎn)翻折到點(diǎn)的位置,連接、,當(dāng)四棱錐的外接球的表面積最小時(shí),四棱錐的體積為()A. B. C. D.5.已知函數(shù),,若,對(duì)任意恒有,在區(qū)間上有且只有一個(gè)使,則的最大值為()A. B. C. D.6.已知平面向量滿足,且,則所夾的銳角為()A. B. C. D.07.已知函數(shù)與的圖象有一個(gè)橫坐標(biāo)為的交點(diǎn),若函數(shù)的圖象的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼谋逗?,得到的函?shù)在有且僅有5個(gè)零點(diǎn),則的取值范圍是()A. B.C. D.8.函數(shù)的定義域?yàn)椋ǎ〢. B. C. D.9.若P是的充分不必要條件,則p是q的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件10.對(duì)于定義在上的函數(shù),若下列說法中有且僅有一個(gè)是錯(cuò)誤的,則錯(cuò)誤的一個(gè)是()A.在上是減函數(shù) B.在上是增函數(shù)C.不是函數(shù)的最小值 D.對(duì)于,都有11.已知角的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊與軸的非負(fù)半軸重合,終邊上有一點(diǎn),則().A. B. C. D.12.已知f(x)=ax2+bx是定義在[a–1,2a]上的偶函數(shù),那么a+b的值是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某校為了解家長(zhǎng)對(duì)學(xué)校食堂的滿意情況,分別從高一、高二年級(jí)隨機(jī)抽取了20位家長(zhǎng)的滿意度評(píng)分,其頻數(shù)分布表如下:滿意度評(píng)分分組合計(jì)高一1366420高二2655220根據(jù)評(píng)分,將家長(zhǎng)的滿意度從低到高分為三個(gè)等級(jí):滿意度評(píng)分評(píng)分70分70評(píng)分90評(píng)分90分滿意度等級(jí)不滿意滿意非常滿意假設(shè)兩個(gè)年級(jí)家長(zhǎng)的評(píng)價(jià)結(jié)果相互獨(dú)立,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率.現(xiàn)從高一、高二年級(jí)各隨機(jī)抽取1名家長(zhǎng),記事件:“高一家長(zhǎng)的滿意度等級(jí)高于高二家長(zhǎng)的滿意度等級(jí)”,則事件發(fā)生的概率為__________.14.從甲、乙、丙、丁、戊五人中任選兩名代表,甲被選中的概率為__________.15.在正奇數(shù)非減數(shù)列中,每個(gè)正奇數(shù)出現(xiàn)次.已知存在整數(shù)、、,對(duì)所有的整數(shù)滿足,其中表示不超過的最大整數(shù).則等于______.16.已知雙曲線(a>0,b>0)的一條漸近線方程為,則該雙曲線的離心率為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓,直線不過原點(diǎn)且不平行于坐標(biāo)軸,與有兩個(gè)交點(diǎn),,線段的中點(diǎn)為.(Ⅰ)證明:直線的斜率與的斜率的乘積為定值;(Ⅱ)若過點(diǎn),延長(zhǎng)線段與交于點(diǎn),四邊形能否為平行四邊形?若能,求此時(shí)的斜率,若不能,說明理由.18.(12分)某省新課改后某校為預(yù)測(cè)2020屆高三畢業(yè)班的本科上線情況,從該校上一屆高三(1)班到高三(5)班隨機(jī)抽取50人,得到各班抽取的人數(shù)和其中本科上線人數(shù),并將抽取數(shù)據(jù)制成下面的條形統(tǒng)計(jì)圖.(1)根據(jù)條形統(tǒng)計(jì)圖,估計(jì)本屆高三學(xué)生本科上線率.(2)已知該省甲市2020屆高考考生人數(shù)為4萬(wàn),假設(shè)以(1)中的本科上線率作為甲市每個(gè)考生本科上線的概率.(i)若從甲市隨機(jī)抽取10名高三學(xué)生,求恰有8名學(xué)生達(dá)到本科線的概率(結(jié)果精確到0.01);(ii)已知該省乙市2020屆高考考生人數(shù)為3.6萬(wàn),假設(shè)該市每個(gè)考生本科上線率均為,若2020屆高考本科上線人數(shù)乙市的均值不低于甲市,求p的取值范圍.可能用到的參考數(shù)據(jù):取,.19.(12分)已知數(shù)列滿足且(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.20.(12分)已知函數(shù).(1)若,證明:當(dāng)時(shí),;(2)若在只有一個(gè)零點(diǎn),求的值.21.(12分)已知直線與拋物線交于兩點(diǎn).(1)當(dāng)點(diǎn)的橫坐標(biāo)之和為4時(shí),求直線的斜率;(2)已知點(diǎn),直線過點(diǎn),記直線的斜率分別為,當(dāng)取最大值時(shí),求直線的方程.22.(10分)在平面直角坐標(biāo)系xoy中,曲線C的方程為.以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.(1)寫出曲線C的極坐標(biāo)方程,并求出直線l與曲線C的交點(diǎn)M,N的極坐標(biāo);(2)設(shè)P是橢圓上的動(dòng)點(diǎn),求面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】

根據(jù)題意,可得幾何體,利用體積計(jì)算即可.【詳解】由題意,該幾何體如圖所示:該幾何體的體積.故選:A.本題考查了常見幾何體的三視圖和體積計(jì)算,屬于基礎(chǔ)題.2.C【解析】試題分析:畫出截面圖形如圖顯然A正三角形,B正方形:D正六邊形,可以畫出五邊形但不是正五邊形;故選C.考點(diǎn):平面的基本性質(zhì)及推論.3.A【解析】

根據(jù)指數(shù)型函數(shù)所過的定點(diǎn),確定,再根據(jù)條件,利用基本不等式求的最小值.【詳解】定點(diǎn)為,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,即時(shí)取得最小值.故選:A本題考查指數(shù)型函數(shù)的性質(zhì),以及基本不等式求最值,意在考查轉(zhuǎn)化與變形,基本計(jì)算能力,屬于基礎(chǔ)題型.4.D【解析】

首先由題意得,當(dāng)梯形的外接圓圓心為四棱錐的外接球球心時(shí),外接球的半徑最小,通過圖形發(fā)現(xiàn),的中點(diǎn)即為梯形的外接圓圓心,也即四棱錐的外接球球心,則可得到,進(jìn)而可根據(jù)四棱錐的體積公式求出體積.【詳解】如圖,四邊形為等腰梯形,則其必有外接圓,設(shè)為梯形的外接圓圓心,當(dāng)也為四棱錐的外接球球心時(shí),外接球的半徑最小,也就使得外接球的表面積最小,過作的垂線交于點(diǎn),交于點(diǎn),連接,點(diǎn)必在上,、分別為、的中點(diǎn),則必有,,即為直角三角形.對(duì)于等腰梯形,如圖:因?yàn)槭堑冗吶切?,、、分別為、、的中點(diǎn),必有,所以點(diǎn)為等腰梯形的外接圓圓心,即點(diǎn)與點(diǎn)重合,如圖,,所以四棱錐底面的高為,.故選:D.本題考查四棱錐的外接球及體積問題,關(guān)鍵是要找到外接球球心的位置,這個(gè)是一個(gè)難點(diǎn),考查了學(xué)生空間想象能力和分析能力,是一道難度較大的題目.5.C【解析】

根據(jù)的零點(diǎn)和最值點(diǎn)列方程組,求得的表達(dá)式(用表示),根據(jù)在上有且只有一個(gè)最大值,求得的取值范圍,求得對(duì)應(yīng)的取值范圍,由為整數(shù)對(duì)的取值進(jìn)行驗(yàn)證,由此求得的最大值.【詳解】由題意知,則其中,.又在上有且只有一個(gè)最大值,所以,得,即,所以,又,因此.①當(dāng)時(shí),,此時(shí)取可使成立,當(dāng)時(shí),,所以當(dāng)或時(shí),都成立,舍去;②當(dāng)時(shí),,此時(shí)取可使成立,當(dāng)時(shí),,所以當(dāng)或時(shí),都成立,舍去;③當(dāng)時(shí),,此時(shí)取可使成立,當(dāng)時(shí),,所以當(dāng)時(shí),成立;綜上所得的最大值為.故選:C本小題主要考查三角函數(shù)的零點(diǎn)和最值,考查三角函數(shù)的性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.6.B【解析】

根據(jù)題意可得,利用向量的數(shù)量積即可求解夾角.【詳解】因?yàn)榧炊詩(shī)A角為故選:B本題考查了向量數(shù)量積求夾角,需掌握向量數(shù)量積的定義求法,屬于基礎(chǔ)題.7.A【解析】

根據(jù)題意,,求出,所以,根據(jù)三角函數(shù)圖像平移伸縮,即可求出的取值范圍.【詳解】已知與的圖象有一個(gè)橫坐標(biāo)為的交點(diǎn),則,,,,,若函數(shù)圖象的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼谋?,則,所以當(dāng)時(shí),,在有且僅有5個(gè)零點(diǎn),,.故選:A.本題考查三角函數(shù)圖象的性質(zhì)、三角函數(shù)的平移伸縮以及零點(diǎn)個(gè)數(shù)問題,考查轉(zhuǎn)化思想和計(jì)算能力.8.C【解析】

函數(shù)的定義域應(yīng)滿足故選C.9.B【解析】

試題分析:通過逆否命題的同真同假,結(jié)合充要條件的判斷方法判定即可.由p是的充分不必要條件知“若p則”為真,“若則p”為假,根據(jù)互為逆否命題的等價(jià)性知,“若q則”為真,“若則q”為假,故選B.考點(diǎn):邏輯命題10.B【解析】

根據(jù)函數(shù)對(duì)稱性和單調(diào)性的關(guān)系,進(jìn)行判斷即可.【詳解】由得關(guān)于對(duì)稱,若關(guān)于對(duì)稱,則函數(shù)在上不可能是單調(diào)的,故錯(cuò)誤的可能是或者是,若錯(cuò)誤,則在,上是減函數(shù),在在上是增函數(shù),則為函數(shù)的最小值,與矛盾,此時(shí)也錯(cuò)誤,不滿足條件.故錯(cuò)誤的是,故選:.本題主要考查函數(shù)性質(zhì)的綜合應(yīng)用,結(jié)合對(duì)稱性和單調(diào)性的關(guān)系是解決本題的關(guān)鍵.11.B【解析】

根據(jù)角終邊上的點(diǎn)坐標(biāo),求得,代入二倍角公式即可求得的值.【詳解】因?yàn)榻K邊上有一點(diǎn),所以,故選:B此題考查二倍角公式,熟練記憶公式即可解決,屬于簡(jiǎn)單題目.12.B【解析】

依照偶函數(shù)的定義,對(duì)定義域內(nèi)的任意實(shí)數(shù),f(﹣x)=f(x),且定義域關(guān)于原點(diǎn)對(duì)稱,a﹣1=﹣2a,即可得解.【詳解】根據(jù)偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱,且f(x)是定義在[a–1,2a]上的偶函數(shù),得a–1=–2a,解得a=,又f(–x)=f(x),∴b=0,∴a+b=.故選B.本題考查偶函數(shù)的定義,對(duì)定義域內(nèi)的任意實(shí)數(shù),f(﹣x)=f(x);奇函數(shù)和偶函數(shù)的定義域必然關(guān)于原點(diǎn)對(duì)稱,定義域區(qū)間兩個(gè)端點(diǎn)互為相反數(shù).二、填空題:本題共4小題,每小題5分,共20分。13.0.42【解析】

高一家長(zhǎng)的滿意度等級(jí)高于高二家長(zhǎng)的滿意度等級(jí)有三種情況,分別求出三種情況的概率,再利用加法公式即可.【詳解】由已知,高一家長(zhǎng)滿意等級(jí)為不滿意的概率為,滿意的概率為,非常滿意的概率為,高二家長(zhǎng)滿意等級(jí)為不滿意的概率為,滿意的概率為,非常滿意的概率為,高一家長(zhǎng)的滿意度等級(jí)高于高二家長(zhǎng)的滿意度等級(jí)有三種情況:1.高一家長(zhǎng)滿意,高二家長(zhǎng)不滿意,其概率為;2.高一家長(zhǎng)非常滿意,高二家長(zhǎng)不滿意,其概率為;3.高一家長(zhǎng)非常滿意,高二家長(zhǎng)滿意,其概率為.由加法公式,知事件發(fā)生的概率為.故答案為:本題考查獨(dú)立事件的概率,涉及到概率的加法公式,是一道中檔題.14.【解析】

甲被選中,只需從乙、丙、丁、戊中,再選一人即有種方法,從甲、乙、丙、丁、戊五人中任選兩名共有種方法,根據(jù)公式即可求得概率.【詳解】甲被選中,只需從乙、丙、丁、戊中,再選一人即有種方法,從甲、乙、丙、丁、戊五人中任選兩名共有種方法,.故答案為:.本題考查古典概型的概率的計(jì)算,考查學(xué)生分析問題的能力,難度容易.15.2【解析】

將已知數(shù)列分組為(1),,共個(gè)組.設(shè)在第組,,則有,即.注意到,解得.所以,.因此,.故.16.【解析】

根據(jù)題意,由雙曲線的漸近線方程可得,即a=2b,進(jìn)而由雙曲線的幾何性質(zhì)可得cb,由雙曲線的離心率公式計(jì)算可得答案.【詳解】根據(jù)題意,雙曲線的漸近線方程為y=±x,又由該雙曲線的一條漸近線方程為x﹣2y=0,即yx,則有,即a=2b,則cb,則該雙曲線的離心率e;故答案為:.本題考查雙曲線的幾何性質(zhì),關(guān)鍵是分析a、b之間的關(guān)系,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ)詳見解析;(Ⅱ)能,或.【解析】試題分析:(1)設(shè)直線,直線方程與橢圓方程聯(lián)立,根據(jù)韋達(dá)定理求根與系數(shù)的關(guān)系,并表示直線的斜率,再表示;(2)第一步由(Ⅰ)得的方程為.設(shè)點(diǎn)的橫坐標(biāo)為,直線與橢圓方程聯(lián)立求點(diǎn)的坐標(biāo),第二步再整理點(diǎn)的坐標(biāo),如果能構(gòu)成平行四邊形,只需,如果有值,并且滿足,的條件就說明存在,否則不存在.試題解析:解:(1)設(shè)直線,,,.∴由得,∴,.∴直線的斜率,即.即直線的斜率與的斜率的乘積為定值.(2)四邊形能為平行四邊形.∵直線過點(diǎn),∴不過原點(diǎn)且與有兩個(gè)交點(diǎn)的充要條件是,由(Ⅰ)得的方程為.設(shè)點(diǎn)的橫坐標(biāo)為.∴由得,即將點(diǎn)的坐標(biāo)代入直線的方程得,因此.四邊形為平行四邊形當(dāng)且僅當(dāng)線段與線段互相平分,即∴.解得,.∵,,,∴當(dāng)?shù)男甭蕿榛驎r(shí),四邊形為平行四邊形.考點(diǎn):直線與橢圓的位置關(guān)系的綜合應(yīng)用【一題多解】第一問涉及中點(diǎn)弦,當(dāng)直線與圓錐曲線相交時(shí),點(diǎn)是弦的中點(diǎn),(1)知道中點(diǎn)坐標(biāo),求直線的斜率,或知道直線斜率求中點(diǎn)坐標(biāo)的關(guān)系,或知道求直線斜率與直線斜率的關(guān)系時(shí),也可以選擇點(diǎn)差法,設(shè),,代入橢圓方程,兩式相減,化簡(jiǎn)為,兩邊同時(shí)除以得,而,,即得到結(jié)果,(2)對(duì)于用坐標(biāo)法來解決幾何性質(zhì)問題,那么就要求首先看出幾何關(guān)系滿足什么條件,其次用坐標(biāo)表示這些幾何關(guān)系,本題的關(guān)鍵就是如果是平行四邊形那么對(duì)角線互相平分,即,分別用方程聯(lián)立求兩個(gè)坐標(biāo),最后求斜率.18.(1)60%;(2)(i)0.12(ii)【解析】

(1)利用上線人數(shù)除以總?cè)藬?shù)求解;(2)(i)利用二項(xiàng)分布求解;(ii)甲、乙兩市上線人數(shù)分別記為X,Y,得,.,利用期望公式列不等式求解【詳解】(1)估計(jì)本科上線率為.(2)(i)記“恰有8名學(xué)生達(dá)到本科線”為事件A,由圖可知,甲市每個(gè)考生本科上線的概率為0.6,則.(ii)甲、乙兩市2020屆高考本科上線人數(shù)分別記為X,Y,依題意,可得,.因?yàn)?020屆高考本科上線人數(shù)乙市的均值不低于甲市,所以,即,解得,又,故p的取值范圍為.本題考查二項(xiàng)分布的綜合應(yīng)用,考查計(jì)算求解能力,注意二項(xiàng)分布與超幾何分布是易混淆的知識(shí)點(diǎn).19.(1);(2)【解析】

(1)根據(jù)已知可得數(shù)列為等比數(shù)列,即可求解;(2)由(1)可得為等比數(shù)列,根據(jù)等比數(shù)列和等差數(shù)列的前項(xiàng)和公式,即可求解.【詳解】(1)因?yàn)?,所以,又所以?shù)列為等比數(shù)列,且首項(xiàng)為,公比為.故(2)由(1)知,所以所以本題考查等比數(shù)列的定義及通項(xiàng)公式、等差數(shù)列和等比數(shù)列的前項(xiàng)和,屬于基礎(chǔ)題.20.(1)見解析;(2)【解析】

分析:(1)先構(gòu)造函數(shù),再求導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)不大于零得函數(shù)單調(diào)遞減,最后根據(jù)單調(diào)性證得不等式;(2)研究零點(diǎn),等價(jià)研究的零點(diǎn),先求導(dǎo)數(shù):,這里產(chǎn)生兩個(gè)討論點(diǎn),一個(gè)是a與零,一個(gè)是x與2,當(dāng)時(shí),,沒有零點(diǎn);當(dāng)時(shí),先減后增,從而確定只有一個(gè)零點(diǎn)的必要條件,再利用零點(diǎn)存在定理確定條件的充分性,即得a的值.詳解:(1)當(dāng)時(shí),等價(jià)于.設(shè)函數(shù),則.當(dāng)時(shí),,所以在單調(diào)遞減.而,故當(dāng)時(shí),,即.(2)設(shè)函數(shù).在只有一個(gè)零點(diǎn)當(dāng)且僅當(dāng)在只有一個(gè)零點(diǎn).(i)當(dāng)時(shí),,沒有零點(diǎn);(ii)當(dāng)時(shí),.當(dāng)時(shí),;當(dāng)時(shí),.所以在單調(diào)遞減,在單調(diào)遞增.故是在的最小值.①若,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論