版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
青島版8年級數(shù)學(xué)下冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、下列各數(shù)是無理數(shù)的是(
)A.﹣ B.﹣1 C.﹣ D.02、下列計算正確的是()A. B. C. D.3、二次根式有意義,則x滿足的條件是()A.x<2 B.x>2 C.x≥2 D.x≤24、如圖,在等腰直角三角形ABC中,∠BAC=90°,等邊三角形ADE的頂點D在BC邊上,連接CE,已知∠DCE=90°,CD=,則AB的長為(
)A. B. C. D.5、數(shù)學(xué)世界中充滿了許多美妙的幾何圖形,等待著你去發(fā)現(xiàn),如圖是張老師用幾何畫板畫出的四個圖形,其中既是軸對稱圖形又是中心對稱圖形的是(
)A.①勾股樹 B.②分形樹C.③謝爾賓斯三角形 D.④雪花6、若一個三角形的兩邊長分別為7和9,則該三角形的周長可能是(
)A.16 B.18 C.24 D.337、設(shè)面積為3的正方形的邊長為x,那么關(guān)于x的說法正確的是(
)A.x是有理數(shù) B.x取0和1之間的實數(shù)C.x不存在 D.x取1和2之間的實數(shù)8、一個等腰三角形一邊長為2,另一邊長為,那么這個等腰三角形的周長是(
)A. B. C.或 D.以上都不對第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、請寫出一個y隨x的增大而減小的函數(shù)解析式_____.2、若+(y﹣1)2=0,則(x+y)2021等于_____.3、如果單項式3xmy和﹣5x3yn是同類項,那么______(填“>”“<”或“=”)(2021m﹣n)0.4、已知直線,點A與原點O關(guān)于直線l對稱,則線段的最大值是_________.5、如圖,直線y=﹣x+8與坐標(biāo)軸分別交于A、B兩點,P是AB的中點,則OP的長為_____.6、計算:﹣3﹣1=_____.7、已知關(guān)于x的不等式組為,則這個不等式組的解集為_____.三、解答題(7小題,每小題10分,共計70分)1、如圖1,在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分線,DE⊥AB于E.(1)發(fā)現(xiàn):如圖1,連接CE,則△BCE的形狀是_______________,∠CDB=____________°;(2)探索:如圖2,點P為線段AC上一個動點,當(dāng)點P在CD之間運動時,連接BP,作∠BPQ=60°,PQ交射線DE于Q,連接BQ,即△BPQ是等邊三角形;思路:在線段BD上截取點H,使DH=DP,得等邊△DPH,由∠DPQ=∠HPB,PD=PH,∠QDP=∠BHP,易證△PDQ≌△PHB(ASA),得PQ=PB,即△BPQ是等邊三角形.試判斷線段DQ、DP、AD之間的關(guān)系,并說明理由;(3)類比:如圖3,當(dāng)點P在AD之間運動時連接BP,作∠BPQ=60°,PQ交射線DE于Q,連接BQ.①試判斷△BPQ的形狀,并說明理由;②若AD=2,設(shè)AP=x,DQ=y,請直接寫出y與x之間的函數(shù)關(guān)系式.2、定義:如圖,點、把線段分割成、和,若以、、為邊的三角形是一個直角三角形,則稱點、是線段的勾股分割點.已知點、是線段的勾股分割點,若,,求的長.3、如圖,直線與軸交于點,與軸交于點,點的坐標(biāo)是,為直線上的動點,連接,,.(1)求,兩點的坐標(biāo).(2)求證:為直角三角形.(3)當(dāng)與面積相等時,求點的坐標(biāo).4、如圖1,直線yx+m與坐標(biāo)軸交于點A,B,點C(a,0)在線段OA上由O向A運動,CD⊥OA交AB于D,△A′DC與△ADC關(guān)于直線CD成軸對稱,設(shè)△A′DC與△AOB重合部分的面積為S,S關(guān)于a的圖象如圖2所示,部分被污染.(1)寫出圖1中的點A的坐標(biāo),并求出m的值.(2)求點A′與坐標(biāo)原點O重合時,點D的坐標(biāo).(3)寫出當(dāng)點A′在線段AO上時,S關(guān)于a的函數(shù)表達(dá)式.(4)求S時,所有符合條件的a的值.5、如圖1,在平面直角坐標(biāo)系中,已知直線l:y=kx+b與x軸交于點A,與y軸交于點B,與直線CD相交于點D,其中AC=14,C(﹣6,0),D(2,8).(1)求直線l的函數(shù)解析式;(2)如圖2,點P為線段CD延長線上的一點,連接PB,當(dāng)△PBD的面積為7時,將線段BP沿著y軸方向平移,使得點P落在直線AB上的P'處,求點P′到直線CD的距離;(3)若點E為直線CD上的一點,則在平面直角坐標(biāo)系中是否存在點F,使以點A,D,E,F(xiàn)為頂點的四邊形為菱形?若存在,求出所有滿足條件的點F的坐標(biāo);若不存在,請說明理由.6、在平面直角坐標(biāo)系中,將兩塊分別含45°和30°的直角三角板按如圖放置(∠C=30°,AC=2AB),BC=.(1)點A坐標(biāo)為____________,點B坐標(biāo)為______________,點C坐標(biāo)為________________;(2)平面內(nèi)存在點D(與點A不重合),使得△DBC與△ABC全等,請你直接寫出點D的坐標(biāo).7、某學(xué)校為進一步做好疫情防控工作,計劃購進A,B兩種口罩.已知每箱A種口罩比每箱B種口罩多10包,每箱A種口罩和每箱B種口罩的價格分別是630元和600元,而每包A種口罩和每包B種口罩的價格分別是這一批口罩平均每包價格的0.9倍和1.2倍.(1)求這一批口罩平均每包的價格是多少元.(2)如果購進A,B兩種口罩共5500包,最多購進3500包A種口罩,為了使總費用最低,應(yīng)購進A種口罩和B種口罩各多少包?總費用最低是多少元?-參考答案-一、單選題1、A【解析】【分析】根據(jù)無理數(shù)的定義,“無限不循環(huán)的小數(shù)是無理數(shù)”逐個分析判斷即可.【詳解】解:A.﹣是無理數(shù),符合題意,
B.﹣1是有理數(shù),不符合題意,
C.﹣是有理數(shù),不符合題意,D.0是有理數(shù),不符合題意,故選A【點睛】本題考查了無理數(shù),解答本題的關(guān)鍵掌握無理數(shù)的三種形式:①開方開不盡的數(shù),②無限不循環(huán)小數(shù),③含有的數(shù).2、D【解析】【分析】根據(jù)二次根式運算法則,逐項計算即可.【詳解】解:A.不是同類二次根式,不能合并,不符合題意;B.,不符合題意;C.,不符合題意;D.,符合題意;故選:D.【點睛】本題考查了二次根式的運算,解題關(guān)鍵是熟練運用二次根式運算法則進行計算.3、B【解析】【分析】根據(jù)二次根式的性質(zhì)和分式的意義,被開方數(shù)大于等于0,分母不等于0,列不等式求解.【詳解】解:根據(jù)題意得:x﹣2>0,解得,x>2.故選:B.【點睛】主要考查了二次根式的意義和性質(zhì).概念:式子(a≥0)叫二次根式.性質(zhì):二次根式中的被開方數(shù)必須是非負(fù)數(shù),否則二次根式無意義.當(dāng)二次根式在分母上時還要考慮分母不等于零,此時被開方數(shù)大于0.4、B【解析】【分析】證得AC平分∠DCE,由全等三角形的判定和性質(zhì)推出AC平分∠DCE,DC=EC=,由等腰直角三角形的性質(zhì)以及勾股定理即可求解.【詳解】解:∵△ABC為等腰直角三角形,△ADE為等邊三角形,∴∠BAC=90°,∠B=∠ACB=45°,AB=AC,∠DAE=∠ADE=∠AED=60°,AD=AE=DE,又∵∠DCE=90°,∴∠ACE=∠ACB=45°,即AC平分∠DCE,又∵△ADE為等邊三角形,AC平分∠DCE,∴AC平分∠DAE,即∠DAC=∠EAC=30°,在△ADC和△AEC中,,∴△ADC≌△AEC,∴DC=EC,又∵AC平分∠DCE,∴AC⊥DE,DF=FE,∵CD=,∴DC=EC=,∴DE=2,則AD=AE=DE=2,∴DF=FE=CF=1,∴AF=AD2∴AB=AC=,故選:B..【點睛】本題考查了等腰直角三角形的性質(zhì),等邊三角形的性質(zhì),勾股定理的應(yīng)用,熟記各圖形的性質(zhì)并準(zhǔn)確識圖是解題的關(guān)鍵.5、D【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念,對各選項分析判斷即可得解.把一個圖形繞某一點旋轉(zhuǎn),如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形;如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.【詳解】解:A、①既不是軸對稱圖形,也不是中心對稱圖形,故本選項不符合題意;B、②是軸對稱圖形,不是中心對稱圖形,故本選項不符合題意;C、③是軸對稱圖形,不是中心對稱圖形,故本選項不符合題意;D、④既是軸對稱圖形,又是中心對稱圖形,故本選項符合題意.故選:D.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.6、C【解析】【分析】先根據(jù)三角形三條邊的關(guān)系求出第三條邊的取值范圍,進而求出周長的取值范圍,從而可的求出符合題意的選項.【詳解】解:∵三角形的兩邊長分別為7和9,∴第三條邊,∴三角形的周長,即三角形的周長,故選:C.【點睛】本題考查了三角形三條邊的關(guān)系及等式的性質(zhì),熟練掌握運用三角形三邊關(guān)系是解題關(guān)鍵.7、D【解析】【分析】由于正方形的面積為3,利用正方形的面積公式即可計算其邊長,然后估算即可求解.【詳解】解:∵面積為3的正方形的邊長為x,∴x=,∵1<<2,∴x是1和2之間的實數(shù).故選:D.【點睛】本題主要考查了估算無理數(shù)的大小,解題關(guān)鍵是理解邊長的實際含義,即邊長沒有負(fù)數(shù).8、C【解析】【分析】題目給出等腰三角形有兩條邊長為2和,而沒有明確腰、底分別是多少,所以要進行討論,還要應(yīng)用三角形的三邊關(guān)系驗證能否組成三角形.【詳解】解:分兩種情況:當(dāng)腰為2時,2+2>,所以能構(gòu)成三角形,周長是:2+2+=4+;當(dāng)腰為時,2+>,所以能構(gòu)成三角形,周長是:2++=2+2.所以這個等腰三角形的周長是4+或2+2,故選:C.【點睛】本題考查了等腰三角形的性質(zhì)和三角形的三邊關(guān)系;已知沒有明確腰和底邊的題目一定要想到兩種情況,分類進行討論,還應(yīng)驗證各種情況是否能構(gòu)成三角形進行解答,這點非常重要,也是解題的關(guān)鍵.二、填空題1、答案不唯一,y=-x.【解析】【分析】根據(jù)函數(shù)的增減性,去選擇函數(shù).【詳解】根據(jù)題意,得y=-x,故答案為:y=-x.【點睛】本題考查了函數(shù)的增減性,熟練掌握函數(shù)的增減性是解題的關(guān)鍵.2、-1【解析】【分析】利用非負(fù)數(shù)的性質(zhì)求出x與y的值,代入原式計算即可求出值.【詳解】解:∵+(y﹣1)2=0,∴x+2=0,y-1=0,解得:x=-2,y=1,則原式=(-2+1)2021=(-1)2021=-1.故答案為:-1.【點睛】此題考查了非負(fù)數(shù)的性質(zhì):算術(shù)平方根,以及偶次方,熟練掌握各自的性質(zhì)是解本題的關(guān)鍵.3、>【解析】【分析】根據(jù)同類項的定義列出方程,解方程求得m、n的值,再代入計算即可得到答案.【詳解】解:因為單項式和是同類項,所以,,代入得,因為任何不等于0的數(shù)的0次冪都等于1,且,所以,,故答案為:.【點睛】本題考查了算術(shù)平方根、零指數(shù)冪、同類項的概念.所含字母相同,并且相同字母的指數(shù)也相同,這樣的項叫做同類項.4、【解析】【分析】如圖,對于一次函數(shù)y=k(x?1)+3,過定點B(1,3).O、A關(guān)于直線y=k(x?1)+3對稱,可得OB=AB=,再根據(jù)OA≤OB+AB=2,可得結(jié)論.【詳解】解:如圖,對于一次函數(shù)y=k(x?1)+3,過定點B(1,3).∵O、A關(guān)于直線y=k(x?1)+3對稱,∴OB=AB=,∵OA≤OB+AB=2,∴OA的最大值為2.故答案為:2.【點睛】本題考查軸對稱的性質(zhì),一次函數(shù)的性質(zhì),勾股定理等知識,解題的關(guān)鍵是發(fā)現(xiàn)直線過定點B(1,3),推出AB=OB=解決問題.5、5【解析】【分析】先求直線與兩軸的交點點A(6,0),點B(0,8),然后利用勾股定理求出AB,利用直角三角形斜邊中線性質(zhì)計算即可.【詳解】解:∵直線y=﹣x+8與坐標(biāo)軸分別交于A、B兩點,∴令x=0,y=8,令y=0,﹣x+8=0,解得x=6,∴點A(6,0),點B(0,8),∴OA=6,OB=8,在Rt△AOB中,根據(jù)勾股定理AB=,∵P是AB的中點,∠AOB=90°,∴OP=,故答案為:5.【點睛】本題考查一次函數(shù)與兩軸交點問題,勾股定理,直角三角形斜邊中線,掌握一次函數(shù)與兩軸交點問題,勾股定理,直角三角形斜邊中線是解題關(guān)鍵.6、-1【解析】【分析】根據(jù)立方根和負(fù)整數(shù)指數(shù)冪的計算法則求解即可.【詳解】解:,故答案為:-1.【點睛】本題主要考查了立方根和負(fù)整數(shù)指數(shù)冪,熟知相關(guān)計算法則是解題的關(guān)鍵.7、【解析】【分析】分別求出兩個不等式的解集,即可求解.【詳解】解:,解不等式①,得x≤﹣,解不等式②,得x,所以不等式組的解集是x,故答案為:x.【點睛】本題主要考查了解一元一次不等式組,熟練掌握解一元一次不等式組的基本方法是解題的關(guān)鍵.三、解答題1、(1)等邊三角形,60;(2)AD=DQ+DP,見解析;(3)①△BPQ是等邊三角形,見解析;②y=-x+4【解析】【分析】(1)根據(jù)直角三角形的兩銳角互余求得∠ABC=60°,再根據(jù)角平分線的定義求得∠ABD=∠CBD=∠A=30°,則AD=BD,根據(jù)等腰三角形的性質(zhì)證得AE=BE,再由直角三角形斜邊上的中線性質(zhì)得出CE=BE,根據(jù)等邊三角形的判定即可得出結(jié)論;(2)根據(jù)思路和全等三角形的性質(zhì)得出BH=DQ,結(jié)合AD=BD,BD=DH+BH即可解答;(3)延長BD至F,使DF=PD,連接PF,可證得△PDF是等邊三角形,則有PF=PD,∠F=∠PDF=∠DPF=60°,進而可得∠F=∠PDQ=60°,證明∠BPF=∠QPD,利用ASA證明△PBF≌△PQD,得出PB=PQ,BF=DQ,結(jié)合∠BPQ=60°和AD=BD即可得出①②的結(jié)論.(1)解:如圖1,∵在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BD是△ABC的角平分線,∴∠ABD=∠CBD=∠ABC=30°,∴∠ABD=∠A,∠CDB=90°-∠CBD=60°,∴AD=BD,又DE⊥AB,∴AE=BE=AB,又∠ACB=90°,∴CE=AB=BE,又∠ABC=60°,∴△BCE是等邊三角形,故答案為:等邊三角形,60;(2)解:AD=DQ+DP,理由為:在線段BD上截取點H,使DH=DP,如圖2,∵∠CDB=60°,∴△DPH為等邊三角形,∴DP=PH,∠DPH=∠DHP=60°,又∠BPQ=60°,∴∠DPQ+∠QPH=∠HPB+∠QPH=60°,∠BHP=120°,∴∠DPQ=∠HPB,∵∠A=30°,DE⊥AB,∴∠QDP=∠A+∠AED=30°+90°=120°,∴∠QDP=∠BHP,在△PDQ≌△PHB中,∴△PDQ≌△PHB(ASA),∴DQ=BH,PQ=PB,∵AD=BD,∠BPQ=60°,∴△BPQ為等邊三角形,AD=BD=BH+DH=DQ+DP,即AD=DQ+DP;(3)解:①△BPQ為等邊三角形,理由為:延長BD至F,使DF=DP,連接PF,設(shè)DQ和BP相交于O,如圖3,∵∠PDF=∠CDB=60°,∴△PDF為等邊三角形,∴PF=DP,∠F=∠PDF=∠DPF=60°,∵∠A=30°,DE⊥AB,
∴∠PDQ=90°-∠A=60°,∴∠F=∠PDQ=60°,∵∠DPF+∠DPB=∠BPQ+∠DPB,又∠BPQ=60°,∴∠BPF=∠QPD,在△PBF和△PQD中,,∴△PBF≌△PQD(ASA),∴PB=PQ,BF=DQ,又∠BPQ=60°,∴△BPQ為等邊三角形;②∵DF=DP,BF=DQ,AD=BD,∴DQ=BF=BD+DF=AD+DP,∵AD=2,AP=x,DQ=y,∴y=2+2-x,即y=-x+4.【點睛】本題考查含30°角的直角三角形的性質(zhì)、直角三角形斜邊上的中線性質(zhì)、角平分線的定義、等腰三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)、三角形的外角性質(zhì)等知識,知識點較多,綜合性強,熟練掌握相關(guān)知識的聯(lián)系和運用,利用類比的方法解決問題是解答的關(guān)鍵.2、的長為或10【解析】【分析】分兩種情況:①當(dāng)為最大線段時,由勾股定理求出;②當(dāng)為最大線段時,由勾股定理求出即可.【詳解】解:分兩種情況:①當(dāng)為最大線段時,點、是線段的勾股分割點,;②當(dāng)為最大線段時,點、是線段的勾股分割點,;綜上所述:的長為或10.【點睛】本題考查了新定義“勾股分割點”、勾股定理;理解新定義,熟練掌握勾股定理,進行分類討論是解決問題的關(guān)鍵.3、(1),(2)見解析(3)或【解析】【分析】(1)令直線解析式中的分別為0,即可求解;(2)根據(jù)的坐標(biāo),勾股定理求得,根據(jù)勾股定理的逆定理證明即可;(3)設(shè),根據(jù)三角形的面積相等,建立絕對值方程,解方程求解即可(1)∵直線與軸交于點,與軸交于點,∴令,則,解得,∴,令,則,∴.(2)∵,,∴,∵在中,,在中,,∴,又∵,∴,由勾股定理逆定理知,為直角三角形(3)設(shè),∵與面積相等,則,∴或,∴或,∴或.【點睛】本題考查了一次函數(shù)與坐標(biāo)軸交點問題,勾股定理以及勾股定理的逆定理,絕對值方程,掌握以上知識是解題的關(guān)鍵.4、(1)A(5,0);m=(2)D()(3)(4)a=或a=【解析】【分析】(1)根據(jù)圖2可確定點A坐標(biāo),再代入可求出的值;(2)根據(jù)對稱性質(zhì)可求出OC的長,從而可確定點D坐標(biāo);(3)當(dāng)在線段OA上時,≤a≤5,S即為△ACD的面積,由三角形面積公式求解即可;(4)分點落在點O的左側(cè)和右側(cè)兩種情況討論求解即可.(1)由圖2可知,當(dāng)時,∴A(5,0)將(5,0)代入,得解之得,m=∴A(5,0);m=(2)∵△A′DC與△ADC關(guān)于直線CD成軸對稱,∴與點A關(guān)于點C對稱,且點A′與坐標(biāo)原點O重合∴∴又軸,由(1)得∴當(dāng)時,∴D()(3)當(dāng)A’在線段OA上時,≤a≤5,S即為△ACD的面積.∵OC=a,∴AC=5-a,,∴,即(4)①當(dāng)落在點O的左側(cè)時,此時△A′DC與△AOB相交的圖形為梯形,如圖,D交y軸于點E,∵∴又∵∴∴∴當(dāng)時,∴∴,設(shè)的解析式為,將點、D的坐標(biāo)代入得,解得,∴當(dāng)時,∴∴當(dāng)時,解得,②當(dāng)落在點O的右側(cè)時,如圖,即時,,解之得,,(舍去)∴綜上可知,當(dāng)時,a=或a=【點睛】本題主要考查了一次函數(shù)的綜合應(yīng)用,解答本題主要應(yīng)用了面積法,注意數(shù)形結(jié)合思想的應(yīng)用,,根據(jù)題意畫出符合題意的圖形是解答本題的關(guān)鍵.5、(1)直線l的函數(shù)解析式為(2)點到直線的距離為(3)存在點或或或,使以點A,D,E,F(xiàn)為頂點的四邊形為菱形.【解析】【分析】(1)用待定系數(shù)法即可求解;(2)由△PBD的面積求出點P的坐標(biāo),進而求出點P'(5,4),構(gòu)建△P'DN用解直角三角形的方法即可求解;(3)分AD是菱形的邊、AD是菱形的對角線兩種情況,利用圖象平移和中點公式,分別求解即可.(1)解:∵,點A在點C右側(cè),∴.∵直線l與直線相交于點,∴解得
∴直線l的函數(shù)解析式為.(2)解:如圖1,過點P作軸于點N,作軸,交于點,過點作于點M,過點D作軸于點E,設(shè)與y軸交于點F,設(shè)直線的解析式為,∵,∴解得∴直線的解析式為.∴.∴∵,∴∵直線l的解析式為,∴.∴.∴.設(shè),∵,∴,即,解得.∴.∵將線段沿著y軸方向平移,使得點P落在直線上的處,∴.∴.∴.∵,∴.∵,∴是等腰直角三角形.∴,即點到直線的距離為.(3)解:①如圖2,當(dāng)、為邊時,∵,∴.∵四邊形是菱形,∴.∵直線的解析式為,∴可設(shè)直線的解析式為.∵,∴,解得.∴直線的解析式為.設(shè),∴,解得.∴.當(dāng)、為邊時,∵,∴.∵四邊形是菱形,∴.∵直線的解析式為,∴可設(shè)直線的解析式為.∵,∴-,解得.∴直線的解析式為.設(shè),∴,解得或(舍去),∴.②如圖3,當(dāng)為對角線時,則.由①得直線的解析式為.設(shè),∵,∴,解得.∴.綜上所述,存在點或或或使以點A,D,E,F(xiàn)為頂點的四邊形為菱形.【點睛】本題考查的是二次函數(shù)綜合運用,涉及到二次函數(shù)的性質(zhì)、平行四邊形的性質(zhì)、圖形的平移、面積的計算等,分類求解解題的關(guān)鍵.6、(1)(2)【解析】【分析】(1)利用勾股定理先求解再利用等腰直角三角形的性質(zhì)求解可得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 青海省海東市2026屆九年級上學(xué)期期末學(xué)業(yè)質(zhì)量評估歷史試卷(含答案)
- 中學(xué)教師職稱晉升制度
- 信息技術(shù)安全規(guī)范制度
- 企業(yè)內(nèi)部會議紀(jì)要及跟進制度
- 老年終末期認(rèn)知照護中的醫(yī)患溝通策略
- 老年終末期疼痛治療的藥物相互作用優(yōu)化策略
- 老年終末期患者圍術(shù)期治療的個體化倫理策略
- 新生兒日常護理要點
- 上海青浦法院書記員招聘考試真題庫2025
- 電機制造工崗前合規(guī)化考核試卷含答案
- 2025至2030中國新癸酸縮水甘油酯行業(yè)發(fā)展研究與產(chǎn)業(yè)戰(zhàn)略規(guī)劃分析評估報告
- 剪映完整課件
- DB32∕T 310026-2024 雷電防護裝置檢測部位及檢測點確認(rèn)技術(shù)規(guī)范
- 2025新能源集控中心規(guī)范化管理導(dǎo)則
- 2025屆新疆烏魯木齊市高三下學(xué)期三模英語試題(解析版)
- 混動能量管理與電池?zé)峁芾淼膮f(xié)同優(yōu)化-洞察闡釋
- T-CPI 11029-2024 核桃殼濾料標(biāo)準(zhǔn)規(guī)范
- 統(tǒng)編版語文三年級下冊整本書閱讀《中國古代寓言》推進課公開課一等獎創(chuàng)新教學(xué)設(shè)計
- 2025年江蘇省蘇州市初三上學(xué)期物理期末陽光調(diào)研測試卷及答案
- 《顧客感知價值對綠色酒店消費意愿的影響實證研究-以三亞S酒店為例(附問卷)15000字(論文)》
- 學(xué)校教職工代表大會會議會務(wù)資料匯編
評論
0/150
提交評論