基礎(chǔ)強(qiáng)化滬科版9年級下冊期末試卷及參考答案詳解(培優(yōu)B卷)_第1頁
基礎(chǔ)強(qiáng)化滬科版9年級下冊期末試卷及參考答案詳解(培優(yōu)B卷)_第2頁
基礎(chǔ)強(qiáng)化滬科版9年級下冊期末試卷及參考答案詳解(培優(yōu)B卷)_第3頁
基礎(chǔ)強(qiáng)化滬科版9年級下冊期末試卷及參考答案詳解(培優(yōu)B卷)_第4頁
基礎(chǔ)強(qiáng)化滬科版9年級下冊期末試卷及參考答案詳解(培優(yōu)B卷)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

滬科版9年級下冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,在中,,,將繞點A順時針旋轉(zhuǎn)60°得到,此時點B的對應(yīng)點D恰好落在BC邊上,則CD的長為()A.1 B.2 C.3 D.42、下列四個圖案中,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.3、“2022年春節(jié)期間,中山市會下雨”這一事件為()A.必然事件 B.不可能事件 C.確定事件 D.隨機(jī)事件4、如圖,中,,O是AB邊上一點,與AC、BC都相切,若,,則的半徑為()A.1 B.2 C. D.5、若的圓心角所對的弧長是,則此弧所在圓的半徑為()A.1 B.2 C.3 D.46、若a是從“、0、1、2”這四個數(shù)中任取的一個數(shù),則關(guān)于x的方程為一元二次方程的概率是()A.1 B. C. D.7、下列事件是確定事件的是()A.方程有實數(shù)根 B.買一張體育彩票中大獎C.拋擲一枚硬幣正面朝上 D.上海明天下雨8、如圖,點P是等邊三角形ABC內(nèi)一點,且PA=3,PB=4,PC=5,則∠APB的度數(shù)是().A.90° B.100° C.120° D.150°第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、到點的距離等于8厘米的點的軌跡是__.2、第24屆世界冬季奧林匹克運(yùn)動會,于2022年2月4日在中國北京市和河北省張家口市聯(lián)合舉行,其會徽為“冬夢”,這是中國歷史上首次舉辦冬季奧運(yùn)會.如圖,是一幅印有北京冬奧會會徽且長為3m,寬為2m的長方形宣傳畫,為測量宣傳畫上會徽圖案的面積,現(xiàn)將宣傳畫平鋪,向長方形宣傳畫內(nèi)隨機(jī)投擲骰子(假設(shè)骰子落在長方形內(nèi)的每一點都是等可能的),經(jīng)過大量重復(fù)投擲試驗,發(fā)現(xiàn)骰子落在會徽圖案上的頻率穩(wěn)定在0.15左右,由此可估計宣傳畫上北京冬奧會會徽圖案的面積約為______.3、AB是的直徑,點C在上,,點P在線段OB上運(yùn)動.設(shè),則x的取值范圍是________.4、為了落實“雙減”政策,朝陽區(qū)一些學(xué)校在課后服務(wù)時段開設(shè)了與冬奧會項目冰壺有關(guān)的選修課.如圖,在冰壺比賽場地的一端畫有一些同心圓作為營壘,其中有兩個圓的半徑分別約為60cm和180cm,小明擲出一球恰好沿著小圓的切線滑行出界,則該球在大圓內(nèi)滑行的路徑MN的長度為______cm.5、一個不透明的袋子中放有3個紅球和5個白球,這些球除顏色外均相同,隨機(jī)從袋子中摸出一球,摸到紅球的概率為_____.6、邊長為2的正三角形的外接圓的半徑等于___.7、如圖,半圓O中,直徑AB=30,弦CD∥AB,長為6π,則由與AC,AD圍成的陰影部分面積為_______.三、解答題(7小題,每小題0分,共計0分)1、如圖,在△ABC中,∠ACB=90°,AC=BC,D是AB邊上一點(與A、B不重合),連接CD,將線段CD繞點C按逆時針方向旋轉(zhuǎn)90°得到線段CE,連接DE、BE(1)求證:△ACD≌△BCE;(2)若BE=5,DE=13,求AB的長2、如圖,是的弦,是上的一點,且,于點,交于點.若的半徑為6,求弦的長.3、如圖,在中,AB是直徑,弦EF∥AB.(1)請僅用無刻度的直尺畫出劣弧EF的中點P;(保留作圖痕跡,不寫作法)(2)在(1)的條件下,連接OP交EF于點Q,,,求PQ的長度.4、如圖,拋物線y=-+x+2與x軸負(fù)半軸交于點A,與y軸交于點B.(1)求A,B兩點的坐標(biāo);(2)如圖1,點C在y軸右側(cè)的拋物線上,且AC=BC,求點C的坐標(biāo);(3)如圖2,將△ABO繞平面內(nèi)點P順時針旋轉(zhuǎn)90°后,得到△DEF(點A,B,O的對應(yīng)點分別是點D,E,F(xiàn)),D,E兩點剛好在拋物線上.①求點F的坐標(biāo);②直接寫出點P的坐標(biāo).5、如圖,四邊形ABCD是正方形.△ABE是等邊三角形,M為對角線BD(不含B,D點)上任意一點,將線段BM繞點B逆時針旋轉(zhuǎn)60°得到BN,連接EN,AM、CM.請判斷線段AM和線段EN的數(shù)量關(guān)系,并說明理由.6、如圖,在直角坐標(biāo)系中,將△ABC繞點A順時針旋轉(zhuǎn)90°.(1)畫出旋轉(zhuǎn)后的△AB1C1,并寫出B1、C1的坐標(biāo);(2)求線段AB在旋轉(zhuǎn)過程中掃過的面積.7、在中,,,點E在射線CB上運(yùn)動.連接AE,將線段AE繞點E順時針旋轉(zhuǎn)90°得到EF,連接CF.(1)如圖1,點E在點B的左側(cè)運(yùn)動.①當(dāng),時,則___________°;②猜想線段CA,CF與CE之間的數(shù)量關(guān)系為____________.(2)如圖2,點E在線段CB上運(yùn)動時,第(1)問中線段CA,CF與CE之間的數(shù)量關(guān)系是否仍然成立?如果成立,請說明理由;如果不成立,請求出它們之間新的數(shù)量關(guān)系.-參考答案-一、單選題1、B【分析】由題意以及旋轉(zhuǎn)的性質(zhì)可得為等邊三角形,則BD=2,故CD=BC-BD=2.【詳解】由題意以及旋轉(zhuǎn)的性質(zhì)知AD=AB,∠BAD=60°∴∠ADB=∠ABD∵∠ADB+∠ABD+∠BAD=180°∴∠ADB=∠ABD=60°故為等邊三角形,即AB=AD=BD=2則CD=BC-BD=4-2=2故選:B.【點睛】本題考查了等邊三角形的判定及性質(zhì),等邊三角形的三邊都相等,三個內(nèi)角都相等,并且每一個內(nèi)角都等于,等邊三角形判定的方法有:三邊相等的三角形是等邊三角形(定義);三個內(nèi)角都相等的三角形是等邊三角形;有一個內(nèi)角是60度的等腰三角形是等邊三角形;兩個內(nèi)角為60度的三角形是等邊三角形.2、D【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、不是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;C、是軸對稱圖形,是中心對稱圖形,故此選項不符合題意;D、不是軸對稱圖形,是中心對稱圖形,故此選項符合題意;故選:D.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.3、D【分析】根據(jù)事件發(fā)生的可能性大小判斷相應(yīng)事件的類型即可.【詳解】解:“2022年年春節(jié)期間,中山市會下雨”這一事件為隨機(jī)事件,故選:D.【點睛】本題考查的是必然事件、不可能事件、隨機(jī)事件的概念,必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.4、D【分析】作OD⊥AC于D,OE⊥BC于E,如圖,設(shè)⊙O的半徑為r,根據(jù)切線的性質(zhì)得OD=OE=r,易得四邊形ODCE為正方形,則CD=OD=r,再證明△ADO∽△ACB,然后利用相似比得到,再根據(jù)比例的性質(zhì)求出r即可.【詳解】解:作OD⊥AC于D,OE⊥BC于E,如圖,設(shè)⊙O的半徑為r,∵⊙O與AC、BC都相切,∴OD=OE=r,而∠C=90°,∴四邊形ODCE為正方形,∴CD=OD=r,∵OD∥BC,∴△ADO∽△ACB,∴∵AF=AC-r,BC=3,AC=4,代入可得,∴r=.故選:D.【點睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.運(yùn)用切線的性質(zhì)來進(jìn)行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.也考查了相似三角形的判定與性質(zhì).5、C【分析】先設(shè)半徑為r,再根據(jù)弧長公式建立方程,解出r即可【詳解】設(shè)半徑為r,則周長為2πr,120°所對應(yīng)的弧長為解得r=3故選C【點睛】本題考查弧長計算,牢記弧長公式是本題關(guān)鍵.6、B【分析】根據(jù)一元二次方程的定義,二次項系數(shù)不為0,四個數(shù)中有一個1不能取,a是從“、0、1、2”這四個數(shù)中任取的一個數(shù),有四種等可能的結(jié)果,其中滿足條件的情況有3種,然后利用概率公式計算即可.【詳解】解:當(dāng)a=1時于x的方程不是一元二次方程,其它三個數(shù)都是一元二次方程,a是從“、0、1、2”這四個數(shù)中任取的一個數(shù),有四種等可能的結(jié)果,其中滿足條件的情況有3種,關(guān)于x的方程為一元二次方程的概率是,故選擇B.【點睛】本題考查一元二次方程的定義,列舉法求概率,掌握一元二次方程的定義,列舉法求概率方法是解題關(guān)鍵.7、A【分析】隨機(jī)事件:是指在一定條件下可能發(fā)生也可能不發(fā)生的事件,根據(jù)隨機(jī)事件的分類對各個選項逐個分析,即可得到答案【詳解】解:.方程無實數(shù)根,因此“方程有實數(shù)”是不可能事件,所以選項符合題意;B.買一張體育彩票可能中大獎,有可能不中,因此是隨機(jī)事件,所以選項B不符合題意;C.拋擲一枚硬幣,可能正面朝上,有可能反面朝上,因此是隨機(jī)事件,所以選項C不符合題意;D.上海明天可能下雨,有可能不下雨,因此是隨機(jī)事件,所以選項D不符合題意;故選:.【點睛】本題考查的是確定事件與隨機(jī)事件的概念,掌握確定事件分為必然事件,不可能事件,及隨機(jī)事件的概念是解題的關(guān)鍵.8、D【分析】將繞點逆時針旋轉(zhuǎn)得,根據(jù)旋轉(zhuǎn)的性質(zhì)得,,,則為等邊三角形,得到,,在中,,,,根據(jù)勾股定理的逆定理可得到為直角三角形,且,即可得到的度數(shù).【詳解】解:為等邊三角形,,可將繞點逆時針旋轉(zhuǎn)得,如圖,連接,,,,為等邊三角形,,,在中,,,,,為直角三角形,且,.故選:D.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)、等邊三角形,解題的關(guān)鍵是掌握旋轉(zhuǎn)前后的兩個圖形全等,對應(yīng)點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角,對應(yīng)點到旋轉(zhuǎn)中心的距離相等.二、填空題1、以點為圓心,8厘米長為半徑的圓【分析】由題意直接根據(jù)圓的定義進(jìn)行分析即可解答.【詳解】到點的距離等于8厘米的點的軌跡是:以點為圓心,2厘米長為半徑的圓.故答案為:以點為圓心,8厘米長為半徑的圓.【點睛】本題主要考查了圓的定義,正確理解定義是關(guān)鍵,注意掌握圓的定義是在同一平面內(nèi)到定點的距離等于定長的點的集合.2、0.9【分析】根據(jù)題意可得長方形的面積,然后依據(jù)骰子落在會徽圖案上的頻率穩(wěn)定在0.15左右,總面積乘以頻率即為會徽圖案的面積.【詳解】解:由題意可得:長方形的面積為,∵骰子落在會徽圖案上的頻率穩(wěn)定在0.15左右,∴會徽圖案的面積為:,故答案為:.【點睛】題目主要考查根據(jù)頻率計算滿足條件的情況,理解題意,熟練掌握頻率的計算方法是解題關(guān)鍵.3、【分析】分別求出當(dāng)點P與點O重合時,當(dāng)點P與點B重合時x的值,即可得到取值范圍.【詳解】解:當(dāng)點P與點O重合時,∵OA=OC,∴,即;當(dāng)點P與點B重合時,∵AB是的直徑,∴,∴x的取值范圍是.【點睛】此題考查了同圓中半徑相等的性質(zhì),直徑所對的圓周角是直角的性質(zhì),正確理解點P的運(yùn)動位置是解題的關(guān)鍵.4、【分析】如圖,設(shè)小圓的切線MN與小圓相切于點D,與大圓交于M、N,連接OD、OM,根據(jù)切線的性質(zhì)定理和垂徑定理求解即可.【詳解】解:如圖,設(shè)小圓的切線MN與小圓相切于點D,與大圓交于M、N,連接OD、OM,則OD⊥MN,∴MD=DN,在Rt△ODM中,OM=180cm,OD=60cm,∴cm,∴cm,即該球在大圓內(nèi)滑行的路徑MN的長度為cm,故答案為:.【點睛】本題考查切線的性質(zhì)定理、垂徑定理、勾股定理,熟練掌握切線的性質(zhì)和垂徑定理是解答的關(guān)鍵.5、【分析】讓紅球的個數(shù)除以球的總數(shù)即為摸到紅球的概率.【詳解】解:∵紅球的個數(shù)為3個,球的總數(shù)為3+5=8(個),∴摸到紅球的概率為,故答案為:.【點睛】本題考查了概率公式的應(yīng)用,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.6、【分析】過圓心作一邊的垂線,根據(jù)勾股定理可以計算出外接圓半徑.【詳解】如圖所示,是正三角形,故O是的中心,,∵正三角形的邊長為2,OE⊥AB∴,,∴,由勾股定理得:,∴,∴,∴(負(fù)值舍去).故答案為:.【點睛】本題考查了正多邊形和圓,解題的關(guān)鍵是根據(jù)題意畫出圖形,利用數(shù)形結(jié)合求解.7、45【分析】連接OC,OD,根據(jù)同底等高可知S△ACD=S△OCD,把陰影部分的面積轉(zhuǎn)化為扇形OCD的面積,利用扇形的面積公式S=來求解.【詳解】解:連接OC,OD,∵直徑AB=30,∴OC=OD=,∴CD∥AB,∴S△ACD=S△OCD,∵長為6π,∴陰影部分的面積為S陰影=S扇形OCD=,故答案為:45π.【點睛】本題主要考查了扇形的面積公式,正確理解陰影部分的面積=扇形COD的面積是解題的關(guān)鍵.三、解答題1、(1)見解析;(2)17【分析】(1)由旋轉(zhuǎn)的性質(zhì)可得CD=CE,∠DCE=90°=∠ACB,由“SAS”可證△ACD≌△BCE;(2)由∠ACB=90°,AC=BC,可得∠CAB=∠CBA=45°,再由△ACD≌△BCE,得到BE=AD=5,∠CBE=∠CAD=45°,則∠ABE=∠ABC+∠CBE=90°,然后利用勾股定理求出BD的長即可得到答案.【詳解】解:(1)證明:∵將線段CD繞點C按逆時針方向旋轉(zhuǎn)90°得到線段CE,∴CD=CE,∠DCE=90°=∠ACB,∴∠ACD+∠BCD=∠BCE+∠BCD,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS);(2)∵∠ACB=90°,AC=BC,∴∠CAB=∠CBA=45°,∵△ACD≌△BCE,∴BE=AD=5,∠CBE=∠CAD=45°,∴∠ABE=∠ABC+∠CBE=90°,∴,∴AB=AD+BD=17.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),證明三角形全等是解題的關(guān)鍵.2、【分析】連接OB,由圓周角定理得出∠AOB=2∠ACB=120°,再由垂徑定理得出∠AOE=∠AOB=60°、AB=2AE,在Rt△AOE中,由OA=2OE求解可得答案.【詳解】如圖,連接OB,則∠AOB=2∠ACB=120°,∵OD⊥AB,∴∠AOE=∠AOB=60°,∵AO=6,∴在Rt△AOE中,,∴AB=2AE,故答案為:.【點睛】本題主要考查圓周角定理,解題的關(guān)鍵是掌握圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.垂直于弦的直徑平分這條弦,并且平分弦所對的兩條?。?、(1)見解析(2)1【分析】(1)如圖,連接BE,AF,BE交AF于C,作直線OC交于點P,點P即為所求.(2)利用垂徑定理結(jié)合勾股定理求得OQ=4,進(jìn)一步計算即可求解.(1)解:如圖中,點P即為所求.(2)解:連接OF,由作圖知OP⊥EF,EQ=QF=EF=3,∵AB=10,∴OF=OP=AB=5,∴OQ==4,∴PQ=OP-OQ=1,∴PQ的長度為1.【點睛】本題考查了作圖-應(yīng)用與設(shè)計,垂徑定理,勾股定理,,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題.4、(1)A(-1,0),B(0,2);(2)點C的坐標(biāo)(,);(3)①求點F的坐標(biāo)(1,2);②點P的坐標(biāo)(,)【分析】(1)令x=0,求得y值,得點B的坐標(biāo);令y=0,求得x的值,取較小的一個即求A點的坐標(biāo);(2)設(shè)C的坐標(biāo)為(x,-+x+2),根據(jù)AC=BC,得到,令t=-+x,解方程即可;(3)①根據(jù)題意,得∠BPE=90°,PB=PE即點P在線段BE的垂直平分線上,根據(jù)B,E都在拋物線上,則B,E是對稱點,從而確定點P在拋物線的對稱軸上,點F在BE上,且BE∥x軸,點E(3,2),確定BE=3,根據(jù)旋轉(zhuǎn)性質(zhì),得EF=BO=2,從而確定點F的坐標(biāo);②根據(jù)BE=3,∠BPE=90°,PB=PE,確定P到BE的距離,即可寫出點P的坐標(biāo).【詳解】(1)令x=0,得y=2,∴點B的坐標(biāo)為B(0,2);令y=0,得-+x+2=0,解得∵點A在x軸的負(fù)半軸;∴A點的坐標(biāo)(-1,0);(2)設(shè)C的坐標(biāo)為(x,-+x+2),∵AC=BC,A(-1,0),B(0,2),∴,∵A(-1,0),B(0,2),∴,即,設(shè)t=-+x,∴,∴,∴,∴,整理,得,解得∵點C在y軸右側(cè)的拋物線上,∴,此時y=,∴點C的坐標(biāo)(,);(3)①如圖,根據(jù)題意,得∠BPE=90°,PB=PE即點P在線段BE的垂直平分線上,∵B,E都在拋物線上,∴B,E是對稱點,∴點P在拋物線的對稱軸上,點F在BE上,且BE∥x軸,∵拋物線的對稱軸為直線x=,B(0,2),∴點E(3,2),BE=3,∵EF=BO=2,∴BF=1,∴點F的坐標(biāo)為(1,2);②如圖,設(shè)拋物線的對稱軸與BE交于點M,交x軸與點N,∵BE=3,∴BM=,∵∠BPE=90°,PB=PE,∴PM=BM=,∴PM=BM=,∴PN=2-=,∴點P的坐標(biāo)為(,).【點睛】本題考查了拋物線與坐標(biāo)軸的交點,旋轉(zhuǎn)的性質(zhì),兩點間的距離公式,一元二次方程的解法,換元法解方程,熟練掌握拋物線的對稱性,靈活理解旋轉(zhuǎn)的意義,熟練解一元二次方程是解題的關(guān)鍵.5、AM=EN,理由見解析【分析】根據(jù)旋轉(zhuǎn)性質(zhì)和等邊三角形的性質(zhì)可證得∠ABM=∠EBN,BM=BN,AB=BE,根據(jù)全等三角形的判定證明△ABM≌△EBN即可得出結(jié)論.【詳解】解:AM=EN,理由為:∵△ABE是等邊三角形,∴AB=BE,∠ABE=60°,即∠EBN=∠ABN=60°,∵線段BM繞點B逆時針旋轉(zhuǎn)60°得到BN,∴BM=BN,∠MBN=60°,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論