版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
廣東省羅定市中考數(shù)學真題分類(勾股定理)匯編專項練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、為⊙外一點,與⊙相切于點,,,則的長為(
)A. B. C. D.2、如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點D是BC上一動點,連接AD,將△ACD沿AD折疊,點C落在點E處,連接DE交AB于點F,當∠DEB是直角時,DF的長為(
).A.5 B.3 C. D.3、《九章算術》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈.問戶高、廣各幾何.”大意是說:已知長方形門的高比寬多6尺8寸,門的對角線長1丈,那么門的高和寬各是多少(1丈=10尺,1尺=10寸)?若設門的寬為x寸,則下列方程中,符合題意的是()A.x2+12=(x+0.68)2 B.x2+(x+0.68)2=12C.x2+1002=(x+68)2 D.x2+(x+68)2=10024、如圖,有一塊直角三角形紙片,∠C=90°,AC=8,BC=6,將斜邊AB翻折,使點B落在直角邊AC的延長線上的點E處,折痕為AD,則BD的長為(
)A.2 B. C. D.45、如圖,矩形中,的平分線交于點E,,垂足為F,連接.下列結(jié)論:①;②;③;④;⑤若,則.其中正確的結(jié)論有(
)A.2個 B.3個 C.4個 D.5個6、如圖,已知點E在正方形ABCD內(nèi),滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是()A.48 B.60C.76 D.807、如圖,正方形ABCD中,AB=12,將△ADE沿AE對折至△AEF,延長EF交BC于點G,G剛好是BC邊的中點,則ED的長是()A.2 B.3 C.4 D.5第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、《九章算術》中有一道“引葭赴岸”問題:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊.問水深,葭長各幾何?”題意是:有一個池塘,其底面是邊長為10尺的正方形,一棵蘆葦AB生長在它的中央,高出水面部分BC為1尺.如果把該蘆葦沿與水池邊垂直的方向拉向岸邊,那么蘆葦?shù)捻敳緽恰好碰到岸邊的B'(如圖).則蘆葦長_____尺.2、如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點D在AB上,AD=AC,AF⊥CD交CD于點E,交CB于點F,則CF的長是________________.3、如圖所示,數(shù)軸上點A所表示的數(shù)為_______.4、圖①所示的正方體木塊棱長為6cm,沿其相鄰三個面的對角線(圖中虛線)剪掉一角,得到如圖②的幾何體,一只螞蟻沿著圖②的幾何體表面從頂點A爬行到頂點B的最短距離為_____cm.5、在△ABC中,AD是BC邊上的中線,AD⊥AB,如果AC=5,AD=2,那么AB的長是________.6、如圖,在△ABC中,AB=10,BC=9,AC=17,則BC邊上的高為_______.7、等腰△ABC中,AB=AC=10cm,BC=12cm,則BC邊上的高是_______cm.8、云頂滑雪公園是北京2022年冬奧會7個雪上競賽場館中唯一利用現(xiàn)有雪場改造而成的.下圖左右兩幅圖分別是公園內(nèi)云頂滑雪場U型池的實景圖和示意圖,該場地可以看作是從一個長方體中挖去了半個圓柱而成,它的橫截面圖中半圓的半徑為,其邊緣,點E在上,.一名滑雪愛好者從點A滑到點E,他滑行的最短路線長為_________m.三、解答題(7小題,每小題10分,共計70分)1、《算法統(tǒng)宗》是中國古代數(shù)學名著,作者是我國明代數(shù)學家程大位.在《算法統(tǒng)宗》中有一道“蕩秋千”的問題:“平地秋千未起,踏板一尺離地.送行二步與人齊,五尺人高曾記.仕女佳人爭蹴,終朝笑語歡嬉.良工高士素好奇,算出索長有幾.”(注:1步=5尺)譯文:“有一架秋千,當它靜止時,踏板離地1尺,將它往前推送10尺(水平距離)時,秋千的踏板就和人一樣高,這個人的身高為5尺,秋千的繩索始終拉得很直,問繩索有多長.”2、如圖,在筆直的鐵路上A、B兩點相距25km,C、D為兩村莊,,,于A,于B,現(xiàn)要在AB上建一個中轉(zhuǎn)站E,使得C、D兩村到E站的距離相等,求E應建在距A多遠處?3、設直角三角形的兩條直角邊長及斜邊上的高分別為a,b及h,求證:.4、閱讀與思考:請閱讀下列材料,并完成相應的任務.若直角三角形的三邊的長都是正整數(shù),則三邊的長為“勾股數(shù)”.構造勾股數(shù),就是要尋找3個正整數(shù),使它們滿足“其中兩個數(shù)的平方和(或平方差)等于第三個數(shù)的平方”.通過觀察常見勾股數(shù)“3,4,5”;“5,12,13”;“7,24,25”……猜想當一組勾股數(shù)中(),最小數(shù)為奇數(shù)時,另兩個正整數(shù)和滿足比且,解得,.任務:(1)請證明猜想成立,即證明,,構成勾股數(shù).(2)若一組勾股數(shù)中,最小數(shù)為9,則另兩個數(shù)分別是________和________.5、我國古代的數(shù)學名著《九章算術》中記載“今有竹高一丈八,末折抵地,去本6尺.問:折者高幾何?”譯文:一根竹子,原高一丈八,蟲傷有病,一陣風將竹子折斷,其竹梢恰好著地,著地處離原竹子根部6尺遠.問:折處離地還有多高的竹子?(1丈=10尺)6、如圖,在△ABC中,∠C=90°,M是BC的中點,MD⊥AB于D,求證:.7、如圖,把長方形紙片沿折疊,使點落在邊上的點處,點落在點處.(1)試說明;(2)設,,,試猜想,,之間的關系,并說明理由.-參考答案-一、單選題1、A【解析】【分析】連接OT,根據(jù)切線的性質(zhì)求出求,結(jié)合利用含的直角三角形的性質(zhì)求出OT,再利用勾股定理求得PT的長度即可.【詳解】解:連接OT,如下圖.∵與⊙相切于點,∴.∵,,∴,∴.故選:A.【考點】本題考查了切線的性質(zhì),含的直角三角形的性質(zhì),勾股定理,求出OT的長度是解答關鍵.2、C【解析】【分析】如圖,由題意知,,,,可知三點共線,與重合,在中,由勾股定理得,求的值,設,,在中,由勾股定理得,計算求解即可.【詳解】解:如圖,∵是直角∴由題意知,,∴∴三點共線∴與重合在中,由勾股定理得設,在中,由勾股定理得即解得∴的長為故選C.【考點】本題考查了折疊的性質(zhì),勾股定理等知識.解題的關鍵在于明確三點共線,與重合.3、D【解析】【分析】1丈=100寸,6尺8寸=68寸,設門的寬為x寸,則門的高度為(x+68)寸,利用勾股定理及門的對角線長1丈(100寸),即可得出關于x的一元二次方程,此題得解.【詳解】解:1丈=100寸,6尺8寸=68寸.設門的寬為x寸,則門的高度為(x+68)寸,依題意得:x2+(x+68)2=1002.故選:D.【考點】本題主要考查了勾股定理的應用、由實際問題抽象出一元二次方程,準確計算是解題的關鍵.4、B【解析】【分析】根據(jù)勾股定理求出AB的長,利用翻折得到AE=AB=10,DE=BD,求出CE,由勾股定理得到,列得,求出BD.【詳解】解:∵∠C=90°,AC=8,BC=6,∴,由翻折得AE=AB=10,DE=BD,∴CE=AE-AC=10-8=2,在Rt△CED中,,∴,解得BD=,故選:B.【考點】此題考查了勾股定理的應用,翻折的性質(zhì),熟記勾股定理的計算公式是解題的關鍵.5、D【解析】【分析】根據(jù)AE平分∠DAE,可得,從而得到AB=BE,進而得到,可得①正確;然后證明△ABE≌△AFD,可得AB=BE=AF=FD,從而得到∠AED=∠CED,故②正確;再證得△DEF≌△DEC,可得③正確;再根據(jù)△ABF≌△DCF,可得BF=CF,故④正確;過點F作FG⊥BC于點G,可得,從而得到,進而得到,可得⑤正確;即可求解.【詳解】解:在矩形中,∠BAD=∠ADC=∠ABC=90°,AD=BC,AD∥BC,∵AE平分∠DAE,∴,∵AD∥BC,∴∠DAE=∠AEB=45°,∴∠AEB=∠BAE=45°,∴AB=BE,∴,∵,∴AE=AD,故①正確;在△ABE和△AFD中,∵∠BAE=∠DAE,∠ABE=∠AFD,AE=AD,∴△ABE≌△AFD(AAS),∴BE=DF,∴AB=BE=AF=FD,∴,∴∠AED=∠CED,故②正確;∵∠DAE=45°,DF⊥AE,∴∠ADF=45°,∴∠CDF=45°,∠EDF=∠ADE-∠ADF=22.5°,∴∠CDE=∠FDE=22.5°,∵∠AEB=45°,∠AED=67.5°,∴∠CED=67.5°,∴∠AED=∠CED,∵DE=DE,∴△DEF≌△DEC,∴DF=CD,∴DE⊥CF,故③正確;∵AB=CD,∠BAE=∠CDF=45°,AF=DF,∴△ABF≌△DCF,∴BF=CF,故④正確;如圖,過點F作FG⊥BC于點G,∴FG∥AB,∴∠EFG=∠BAE=45°,∴∠EFG=∠FEG,∴FG=GE,∵△DEF≌△DEC,∴CE=EF,∴,∴,∵BF=CF,∴BG=CG,∴,∵AB=1,,∴,,解得:,∴.故⑤正確;∴正確的有5個.故選:D【考點】本題主要考查了矩形的性質(zhì),全等三角形的判定和性質(zhì),等腰直角三角形的判定和性質(zhì),勾股定理等知識,熟練掌握相關知識點是解題的關鍵.6、C【解析】【詳解】解:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S陰影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故選:C.7、C【解析】【分析】連接AG,證明△ABG≌△AFG,得到FG=BG,△ADE沿AE對折至△AEF,則EF=DE,設DE=x,則EF=x,EC=12-x,則Rt△EGC中根據(jù)勾股定理列方程可求出DE的值.【詳解】如圖,連接AG,∵四邊形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD=12.∵△ADE沿AE對折至△AEF,∴EF=DE,AF=AD,∵AF=AD,AB=AD,∴AF=AB,又AG是公共邊,∴△ABG≌△AFG(HL),∵G剛好是BC邊的中點,∴BG=FG=,設DE=x,則EF=x,EC=12-x,在Rt△EGC中,根據(jù)勾股定理列方程:62+(12-x)2=(x+6)2解得:x=4.所以ED的長是4,答案選C.【考點】本題考查了正方形和全等三角形的綜合知識,根據(jù)勾股定理列方程是本題的解題關鍵.二、填空題1、13【解析】【分析】將其轉(zhuǎn)化為數(shù)學幾何圖形,如圖所示,根據(jù)題意,可知B'C=5尺,設水深AC=x尺,則蘆葦長(x+1)尺,根據(jù)勾股定理建立方程,求出的方程的解即可得到蘆葦?shù)拈L和水深.【詳解】解:設水深x尺,則蘆葦長(x+1)尺,在Rt△CAB′中,AC2+B′C2=AB′2,即x2+52=(x+1)2,解得:x=12,∴x+1=13,故蘆葦長13尺,故答案為:13【考點】本題考查勾股定理,和列方程解決實際問題,能夠在實際問題中找到直角三角形并應用勾股定理是解決本題的關鍵.2、1.5【解析】【分析】連接DF,由勾股定理求出AB=5,由等腰三角形的性質(zhì)得出∠CAF=∠DAF,由SAS證明△ADF≌△ACF,得出CF=DF,∠ADF=∠ACF=∠BDF=90°,設CF=DF=x,則BF=4-x,在Rt△BDF中,由勾股定理得出方程,解方程即可.【詳解】連接DF,如圖所示:在Rt△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理求得AB=5,∵AD=AC=3,AF⊥CD,∴∠CAF=∠DAF,BD=AB-AD=2,在△ADF和△ACF中,∴△ADF≌△ACF(SAS),∴∠ADF=∠ACF=90°,CF=DF,∴∠BDF=90°,設CF=DF=x,則BF=4-x,在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,即x2+22=(4-x)2,解得:x=1.5;∴CF=1.5;故答案為1.5.【考點】本題考查了勾股定理、全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì),證明△ADF≌△ACF得到CF=DF,在Rt△BDF中利用勾股定理列方程是解決問題的關鍵.3、【解析】【分析】根據(jù)數(shù)軸上點的特點和相關線段的長,結(jié)合勾股定理求出斜邊長,即可求出-1和A之間的線段的長,即可知A所表示的數(shù).【詳解】圖中直角三角形的兩直角邊為1,2,所以斜邊長為,那么-1和A之間的距離為,那么數(shù)軸上點A所表示的數(shù)為:.故答案為:.【考點】本題考查實數(shù)與數(shù)軸之間的對應關系以及勾股定理,利用勾股定理求出直角三角形的斜邊的長是解答本題的關鍵.4、(3+3).【解析】【分析】要求螞蟻爬行的最短距離,需將圖②的幾何體表面展開,進而根據(jù)“兩點之間線段最短”得出結(jié)果.【詳解】如圖所示:△BCD是等腰直角三角形,△ACD是等邊三角形,在Rt△BCD中,CD==6cm,∴BE=CD=3cm,在Rt△ACE中,AE==3cm,∴從頂點A爬行到頂點B的最短距離為(3+3)cm.故答案為(3+3).【考點】本題考查了平面展開-最短路徑問題,關鍵是把圖②的幾何體表面展開成平面圖形,根據(jù)等腰直角三角形的性質(zhì)和等邊三角形的性質(zhì)解題.5、3【解析】【分析】過點C作CE∥AB交AD延長線于E,先證△ABD≌△ECD(AAS),求出AE=2AD=4,在Rt△AEC中,即可.【詳解】解:過點C作CE∥AB交AD延長線于E,∵AD是BC邊上的中線,∴BD=CD,∵AD⊥AB,CE∥AB,∴AD⊥CE,∠ABD=∠ECD,∴∠E=90°,在△ABD和△ECD中,∴△ABD≌△ECD(AAS),∴AB=EC,AD=ED=2,∴AE=2AD=4,在Rt△AEC中,,∴AB=CE=3.故答案為:3.【考點】本題考查中線性質(zhì),平行線性質(zhì),三角形全等判定與性質(zhì),勾股定理,掌握中線性質(zhì),平行線性質(zhì),三角形全等判定與性質(zhì),勾股定理,關鍵是利用輔助線構造三角形全等.6、8【解析】【分析】作交的延長于點,在中,,在中,,根據(jù)列出方程即可求解.【詳解】如圖,作交的延長于點,則即為BC邊上的高,在中,,在中,,,AB=10,BC=9,AC=17,,解得,故答案為:8.【考點】本題考查了勾股定理,掌握三角形的高,直角三角形是解題的關鍵.7、8【解析】【詳解】如圖,AD是BC邊上的高線.∵AB=AC=10cm,BC=12cm,∴BD=CD=6cm,∴在直角△ABD中,由勾股定理得到:AD===(8cm).故答案為8.8、【解析】【分析】根據(jù)題意可得,AD=12m,DE=CD﹣CE=24﹣4=20m,線段AE即為滑行的最短路線長.在Rt△ADE中,根據(jù)勾股定理即可求出滑行的最短路線長.【詳解】解:如圖,根據(jù)題意可知:AD==12,DE=CD﹣CE=24﹣4=20,線段AE即為滑行的最短路線長.在Tt△ADE中,根據(jù)勾股定理,得AE=(m).故答案為:【考點】本題考查了平面展開﹣最短路徑問題,解決本題的關鍵是掌握圓柱的側(cè)面展開圖是矩形,利用勾股定理求最短距離.三、解答題1、尺【解析】【分析】設秋千的繩索長為x尺,根據(jù)題意可得AB=(x-4)尺,利用勾股定理可得x2=102+(x-4)2,解之即可.【詳解】解:設秋千的繩索長為x尺,根據(jù)題意可列方程為:x2=102+(x-4)2,解得:x=,∴秋千的繩索長為尺.【考點】此題主要考查了勾股定理的應用,關鍵是正確理解題意,表示出AB、AC的長,掌握直角三角形中兩直角邊的平方和等于斜邊的平方.2、E應建在距A點15km處【解析】【分析】設,則,根據(jù)勾股定理求得和,再根據(jù)列式計算即可;【詳解】設,則,由勾股定理得:在中,,在中,,由題意可知:,所以:,解得:.所以,E應建在距A點15km處.【考點】本題主要考查了勾股定理的實際應用,準確計算是解題的關鍵.3、見解析【解析】【分析】設斜邊為c,根據(jù)勾股定理即可得出c=,再由三角形的面積公式即可得出結(jié)論.【詳解】證明:設斜邊為c,根據(jù)勾股定理即可得出c=,∵ab=ch,∴ab=h,即a2b2=a2h2+b2h2,∴=,即.【考點】本題考查的是勾股定理,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解答此題的關鍵.4、(1)見解析(2)40;41【解析】【分析】(1)利用勾股定理的逆定理證明
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高空拋物入刑后“連坐條款”的報應刑與威懾刑張力
- 2026湖南長沙市華益中學春季教師招聘備考考試題庫及答案解析
- 2025江西吉安市泰和縣新睿人力資源服務有限公司招聘項目制員工16人參考考試題庫及答案解析
- 2025福建漳州市交通發(fā)展集團有限公司招聘中一線崗位復面及相關事項參考考試題庫及答案解析
- 2025年東營市東凱建設工程有限公司面向社會公開招聘工作人員(第二批)參考筆試題庫附答案解析
- 2025河北唐山遵化市事業(yè)單位選聘高層次人才8人模擬筆試試題及答案解析
- 2026河北省定向長安大學選調(diào)生招錄模擬筆試試題及答案解析
- 《加減混合》數(shù)學課件教案
- 2025廣西梧州市龍投人力資源有限公司招聘備考筆試試題及答案解析
- 2025廣東河源市連平縣退役軍人事務局招聘編外人員3人備考筆試題庫及答案解析
- 商業(yè)綜合體物業(yè)對接移交管理流程
- 廣東省 市政工程綜合定額2018
- 馬克思主義基本原理概論(海南大學版) 知到智慧樹網(wǎng)課答案
- 黃芪的活性成分、藥理機制及臨床應用
- 《居住區(qū)供配電設施建設規(guī)范》
- 藝術史研究中的性別與種族議題
- 加氣站安全生產(chǎn)管理制度匯編
- 地鐵站站務管理制度
- 《頜位與下頜運動》醫(yī)學課程
- 額葉出血護理課件
- 道路工程施工圖設計文件審查要點
評論
0/150
提交評論