解析卷北師大版9年級數學上冊期末試卷含答案詳解(突破訓練)_第1頁
解析卷北師大版9年級數學上冊期末試卷含答案詳解(突破訓練)_第2頁
解析卷北師大版9年級數學上冊期末試卷含答案詳解(突破訓練)_第3頁
解析卷北師大版9年級數學上冊期末試卷含答案詳解(突破訓練)_第4頁
解析卷北師大版9年級數學上冊期末試卷含答案詳解(突破訓練)_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北師大版9年級數學上冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計12分)1、已知x1,x2是一元二次方程2x2-3x=5的兩個實數根,下列結論錯誤的是()A.2-3x1=5 B.(x1-x2)(2x1+2x2-3)=0C.x1+x2= D.x1x2=2、如圖,點A是反比例函數圖象上的一點,過點A作軸,垂足為點C,D為AC的中點,若的面積為1,則k的值為()A. B. C.3 D.43、一元二次方程,配方后可形為(

)A. B.C. D.4、如圖1,矩形中,點為的中點,點沿從點運動到點,設,兩點間的距離為,,圖2是點運動時隨變化的關系圖象,則的長為(

)A. B. C. D.5、神奇的自然界處處蘊含著數學知識.動物學家在鸚鵡螺外殼上發(fā)現,其每圈螺紋的直徑與相鄰螺紋直徑的比約為0.618.這體現了數學中的(

)A.平移 B.旋轉 C.軸對稱 D.黃金分割6、已知四邊形ABCD是平行四邊形,下列結論:①當AB=BC時,它是菱形;②當AC⊥BD時,它是菱形;③當∠ABC=90°時,它是矩形;④當AC=BD時,它是正方形,其中錯誤的有(

)A.1個 B.2個 C.3個 D.4個二、多選題(6小題,每小題2分,共計12分)1、下列多邊形中,一定不相似的是(

)A.兩個矩形 B.兩個菱形 C.兩個正方形 D.兩個平行四邊形2、如圖,在矩形中,,,點P在線段上以的速度從點B向點C運動,同時,點Q在線段上從點C向D點運動.若某一時刻與全等,則點Q的運動速度為(

)A. B. C. D.3、如圖,△ABC中,D在AB上,E在AC上,下列條件中,不能判定DE∥BC的是(

).A. B.C. D.4、下面一元二次方程的解法中,不正確的是(

)A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=,x2=C.(x+2)2+4x=0,∴x1=2,x2=-2D.x2=x兩邊同除以x,得x=15、已知兩個直角三角形的三邊長分別為3,4,m和6,8,n,且這兩個直角三角形不相似,則m+n的值為(

).A.5+2B.15C.10+D.15+36、(多選)為了推動“成渝地區(qū)雙城經濟圈”的建設,某工廠為了推進產業(yè)協作“一條鏈”,自2021年1月開始科學整改,其月利潤(萬元)與月份之間的變化如圖所示,整改前是反比例函數圖象的一部分,整改后是一次函數圖象的一部分,下列選項正確的有(

)A.4月份的利潤為50萬元B.治污改造完成后每月利潤比前一個月增加30萬元C.治污改造完成前后共有4個月的利潤低于100萬元D.9月份該廠利潤達到200萬元第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計16分)1、對任意實數a,b,定義一種運算:,若,則x的值為_________.2、一個正方形的面積為,則它的對角線長為________.3、布袋中有紅、黃、藍三個球,它們除顏色不同以外,其他都相同,從袋中隨機取出一個球后再放回袋中,這樣取出球的順序依次是“紅—黃—藍”的概率是__________.4、如圖,正方形ABCO的邊長為,OA與x軸正半軸的夾角為15°,點B在第一象限,點D在x軸的負半軸上,且滿足∠BDO=15°,直線y=kx+b經過B、D兩點,則b﹣k=_____.5、《九章算術》中記載了一種測量井深的方法.如圖所示,在井口B處立一根垂直于井口的木桿,從木桿的頂端D觀察水岸C,視線與井口的直徑交于點E,如果測得米,米,米,那么井深為______米.6、圖1是一種手機托架,使用該手機托架示意圖如圖3所示,底部放置手機處寬AB1.2厘米,托架斜面長BD6厘米,它有C到F共4個檔位調節(jié)角度,相鄰兩個檔位間的距離為0.8厘米,檔位C到B的距離為2.4厘米.將某型號手機置于托架上(圖2),手機屏幕長AG是15厘米,O是支點且OBOE2.5厘米(支架的厚度忽略不計).當支架調到E檔時,點G離水平面的距離GH為__________cm.7、舉出一個生活中應用反比例函數的例子:______.8、如圖,在矩形紙片ABCD中,AB=12,AD=5,P為DC邊上的動點(點P不與點D,C重合),將紙片沿AP折疊(1)當四邊形ADPD′是正方形時,CD′的長為___.(2)當CD′的長最小時,PC的長為___.四、解答題(6小題,每小題10分,共計60分)1、如圖,在△ABC中,AB=AC,點P在BC上.(1)求作:△PCD,使點D在AC上,且△PCD∽△ABP;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)(2)在(1)的條件下,若∠APC=2∠ABC,求證:PD//AB.2、在等邊三角形中,,D為的中點.連接,E,F分別為,的中點,將繞點C逆時針旋轉,記旋轉角為,直線和直線交于點G.(1)如圖1,線段和線段的數量關系是________________,直線與直線相交所成的較小角的度數是________________.(2)將圖1中的繞點C逆時針旋轉到圖2所示位置時,判斷(1)中的結論是否仍然成立?若成立,請僅就圖2的情形給出證明;若不成立,請說明理由.(3)在(2)的條件下,當以點C,F,E,G為頂點的四邊形是矩形時,請直接寫出的長.3、已知:如圖所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,點P從點A開始沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動,當其中一點到達終點后,另外一點也隨之停止運動.(1)如果P、Q分別從A、B同時出發(fā),那么幾秒后,△PBQ的面積等于4cm2?(2)在(1)中,△PQB的面積能否等于7cm2?請說明理由.4、如圖,Rt△ABO的頂點A是反比例函數的圖象與一次函數的圖象在第二象限的交點,AB⊥x軸于點B,且.(1)求反比例函數和一次函數的解析式;(2)求一次函數與反比例函數圖象的兩個交點A,C的坐標.5、如圖,在△ABC和△ADB中,∠ABC=∠ADB=90°,AC=5,AB=4,當BD的長是多少時,圖中的兩個直角三角形相似?6、(1)計算:(2)解方程:2(x﹣3)2=50-參考答案-一、單選題1、D【解析】【分析】根據一元二次方程的根的判別式、一元二次方程根的定義、一元二次方程根與系數的關系逐一進行分析即可.【詳解】解:∵x1、x2是一元二次方程2x2-3x=5的兩個實數根,∴,故A正確,不符合題意;這里a=2,b=-3,c=-5,∴,,∵,∴,∴,故B、C正確,不符合題意,D錯誤,符合題意.故選:D.【考點】本題考查了一元二次方程根的意義,根與系數的關系等,熟練掌握根與系數的關系,,是解題的關鍵.2、D【解析】【分析】先設出點A的坐標,進而表示出點D的坐標,利用△ADO的面積建立方程求出,即可得出結論.【詳解】點A的坐標為(m,2n),∴,∵D為AC的中點,∴D(m,n),∵AC⊥軸,△ADO的面積為1,∴,∴,∴,故選:D.【考點】本題考查反比例函數系數k的幾何意義、反比例函數圖象上點的坐標特征,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用反比例函數的性質解答.3、A【解析】【分析】把常數項移到方程右邊,再把方程兩邊加上16,然后把方程作邊寫成完全平方形式即可【詳解】解:x2-8x=2,x2-8x+16=18,(x-4)2=18.故選:A.【考點】本題考查了解一元二次方程-配方法:將一元二次方程配成(x+m)2=n的形式,再利用直接開平方法求解,這種解一元二次方程的方法叫配方法.4、C【解析】【分析】先利用圖2得出當P點位于B點時和當P點位于E點時的情況,得到AB和BE之間的關系以及,再利用勾股定理求解即可得到BE的值,最后利用中點定義得到BC的值.【詳解】解:由圖2可知,當P點位于B點時,,即,當P點位于E點時,,即,則,∵,∴,即,∵∴,∵點為的中點,∴,故選:C.【考點】本題考查了學生對函數圖象的理解與應用,涉及到了勾股定理、解一元二次方程、中點的定義等內容,解決本題的關鍵是能正確理解題意,能從圖象中提取相關信息,能利用勾股定理建立方程等,本題蘊含了數形結合的思想方法.5、D【解析】【分析】根據黃金分割的定義即可求解.【詳解】解:動物學家在鸚鵡螺外殼上發(fā)現,其每圈螺紋的直徑與相鄰螺紋直徑的比約為0.618.這體現了數學中的黃金分割.故選:D【考點】本題考查了黃金分割的定義,黃金分割是指將整體一分為二,較大部分與整體部分的比值等于較小部分與較大部分的比值,其比值為,約等于0.618,這個比例被公認為是最能引起美感的比例,因此被稱為黃金分割.熟知黃金分割的定義是解題關鍵.6、A【解析】【分析】根據矩形、菱形、正方形的判定可以判斷題目中的各個小題的結論是否正確,從而可以解答本題.【詳解】解:四邊形是平行四邊形,A、當時,它是菱形,選項不符合題意,B、當時,它是菱形,選項不符合題意,C、當時,它是矩形,選項不符合題意,D、當時,它是矩形,不一定是正方形,選項符合題意,故選:.【考點】本題考查正方形、菱形、矩形的判定,解答本題的關鍵是熟練掌握矩形、菱形、正方形的判定定理.二、多選題1、ABD【解析】【分析】利用相似多邊形的對應邊的比相等,對應角相等分析.【詳解】解:要判斷兩個多邊形是否相似,需要看對應角是否相等,對應邊的比是否相等.矩形、菱形、平行四邊形都屬于形狀不唯一確定的圖形,即對應角、對應邊的比不一定相等,故不一定相似,選項A、B、D符合題意;而兩個正方形,對應角都是90°,對應邊的比也都相等,故一定相似,選項C不符合題意.故選:ABD.【考點】本題考查了相似多邊形的識別.判定兩個圖形相似的依據是:對應邊的比相等,對應角相等.兩個條件必須同時具備.2、AD【解析】【分析】設Q的速度為xcm/s,運動時間為ts時,△ABP與△PCQ全等,則,,,由矩形的性質可知∠B=∠C=90°,則只有△ABP≌△PCQ和△ABP≌△QCP這兩種情況,然后利用全等三角形的性質進行求解即可.【詳解】解:設Q的速度為xcm/s,運動時間為ts時,△ABP與△PCQ全等,∴,,,∵四邊形ABCD是矩形,∴∠B=∠C=90°,當△ABP≌△PCQ時,AB=CP,BP=CQ,∴,解得;當△ABP≌△QCP時,AB=QC,BP=CP,∴,解得∴Q的速度為4cm/或,故選AD..【考點】本題主要考查了矩形的性質,全等三角形的性質,解題的關鍵在于能夠熟練掌握相關知識進行求解.3、BCD【解析】【分析】利用各選項給定的條件,結合再證明,可得,逐一分析各選項,從而可得答案.【詳解】解:A、而則故A不符合題意;B、與不一定相似,則與不一定相等,不一定平行,故B符合題意;C、,而而不一定相等,故不一定平行,故C符合題意;D、與不一定相似,則與不一定相等,不一定平行,故D符合題意;故選:BCD.【考點】本題考查的是相似三角形的判定與性質,平行線的判定,掌握兩邊對應成比例且夾角相等的兩個三角形相似是解題的關鍵.4、ACD【解析】【分析】各方程求出解,即可作出判斷.【詳解】解:A、方程整理得:x2-8x-5=0,這里a=1,b=-8,c=-5,∵△=64+20=84,∴,故選項A符合題意;B、提取公因式得:(2-5x)(1+2-5x)=0,解得:x1=,x2=,故選項B不符合題意;C、方程整理得:x2+8x+4=0,解得:,故選項C符合題意;D、方程整理得:x2-x=0,即x(x-1)=0,解得:x1=0,x2=1,故選項D符合題意,故選:ACD.【考點】此題考查了解一元二次方程-因式分解法,熟練掌握因式分解的方法是解本題的關鍵.5、AC【解析】【分析】根據相似三角形的性質、分情況計算即可.【詳解】解:當3,4為直角邊,6,8也為直角邊時,此時兩三角形相似;當三邊分別為3,4,,和6,8,2,此時兩三角形相似;當3,4為直角邊時,m=5;則8為另一三角形的斜邊,其直角邊為:n==2,故m+n=5+2;當6,8為直角邊,n=10;則4為另一三角形的斜邊,其直角邊為:m==,故m+n=10+;綜上所述:m+n的值為5+2或10+,故選:A、C.【考點】本題主要考查了勾股定理以及相似三角形的性質,在直角三角形中對未知邊是直角邊還是斜邊進行不同情況的討論是解題的關鍵.6、ABD【解析】【分析】直接利用已知點求出一次函數與反比例函數的解析式進而分別分析得出答案.【詳解】解:A、設反比例函數的解析式為,把(1,200)代入得,k=200,∴反比例函數的解析式為:,當x=4時,y=50,∴4月份的利潤為50萬元,正確,符合題意;B、治污改造完成后,從4月到6月,利潤從50萬到110萬,故每月利潤比前一個月增加30萬元,正確,符合題意;C、當y=100時,則,解得:x=2,則只有3月,4月,5月共3個月的利潤低于100萬元,不正確,不符合題意.D、設一次函數解析式為:y=kx+b,則,解得:,故一次函數解析式為:y=30x?70,故y=200時,200=30x?70,解得:x=9,則治污改造完成后的第5個月,即9月份該廠利潤達到200萬元,正確,符合題意.故選:ABD【考點】此題主要考查了一次函數與反比函數的應用,正確得出函數解析式是解題關鍵.三、填空題1、2或-3##-3或2【解析】【分析】根據題意得到關于x的一元二次方程,解方程即可.【詳解】解:∵,∴,∴,解得或,故答案為:2或-3.【考點】本題主要考查了新定義下的實數運算,解一元二次方程,正確理解題意是解題的關鍵.2、【解析】【分析】根據正方形的面積求得正方形的邊長,再由勾股定理求得正方形的對角線長即可.【詳解】∵正方形的面積為,∴正方形的邊長為9cm,∴正方形對角線的長為.故答案為.【考點】本題考查了正方形的性質,熟知正方形的性質是解決問題的關鍵.3、【解析】【分析】列舉出所有情況,看球的順序依次是“紅黃藍”的情況數占所有情況數的多少即可.【詳解】解:畫出樹形圖:共有27種情況,球的順序依次是“紅黃藍”的情況數有1種,所以概率為.故答案為:.【考點】考查用列樹狀圖的方法解決概率問題;得到球的順序依次是“紅黃藍”的情況數是解決本題的關鍵;用到的知識點為:概率等于所求情況數與總情況數之比.4、2﹣.【解析】【分析】連接OB,過點B作BE⊥x軸于點E,根據正方形的性質可得出∠AOB的度數及OB的長,結合三角形外角的性質可得出∠BDO=∠DBO,利用等角對等邊可得出OD=OB,進而可得出點D的坐標,在Rt△BOE中,通過解直角三角形可得出點B的坐標,由點B,D的坐標,利用待定系數法可求出k,b的值,再將其代入(b﹣k)中即可求出結論.【詳解】解:連接OB,過點B作BE⊥x軸于點E,如圖所示.∵正方形ABCO的邊長為,∴∠AOB=45°,OB=OA=2.∵OA與x軸正半軸的夾角為15°,∴∠BOE=45°﹣15°=30°.又∵∠BDO=15°,∴∠DBO=∠BOE﹣∠BDO=15°,∴∠BDO=∠DBO,∴OD=OB=2,∴點D的坐標為(﹣2,0).在Rt△BOE中,OB=2,∠BOE=30°,∴BE=OB=1,OE==,∴點B的坐標為(,1).將B(,1),D(﹣2,0)代入y=kx+b,得:,解得:,∴b﹣k=4﹣2﹣(2﹣)=2﹣.故答案為:2﹣.【考點】此題考查的是正方形的性質、等腰三角形的判定、直角三角形的性質和求一次函數的解析式,掌握正方形的性質、等角對等邊、30°所對的直角邊是斜邊的一半、勾股定理和利用待定系數法求一次函數解析式是解決此題的關鍵.5、7【解析】【分析】由題意易得,則有,然后問題可求解.【詳解】解:∵,∴,∴,∵米,米,米,∴,解得米,故井深AC為7米.【考點】本題主要考查相似三角形的性質與判定,熟練掌握相似三角形的性質與判定是解題的關鍵.6、【解析】【分析】如圖3中,作DT⊥AH于T,OK⊥BD于K.解直角三角形求出BK,OK,利用相似三角形的性質求出DT,BT,AD,即可求出GH的長.【詳解】如圖3中,作DT⊥AH于T,OK⊥BD于K.∵OB=OE=2.5cm,BE=2.4+0.82=4(cm),OK⊥BE,∴BK=KE=2(cm),∴OK(cm),∵∠OBK=∠DBT,∠OKB=∠BTD=90°,∴△BKO∽△BTD,∴,∴,∴BT=4.8(cm),DT=3.6(cm),AT=1.2+4.8=6(cm),∴AD=(cm),∵DT∥GH,∴△ATD∽△AHG,∴,∴,∴(cm).故答案為:.【考點】本題考查了相似三角形的應用,勾股定理的應用等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考填空題中的壓軸題.7、路程s一定,速度v與時間t之間的關系(答案不唯一).【解析】【分析】利用反比例函數的定義并結合生活中的實例來解答此題即可【詳解】根據路程=速度時間,速度v則可以用反比例函數來表示.故答案可以為路程s一定,速度v與時間t之間的關系(答案不唯一).【考點】本題主要考查了反比例函數的定義形式如(k為常數,)的函數稱為反比例函數.其中x是自變量,y是函數,自變量x的取值范圍是不等于0的一切實數.8、

【解析】【分析】(1)根據四邊形是正方形,得到從而得到再利用勾股定理求解即可得到答案;(2)如圖:連接,運用矩形的性質和折疊的性質求出的最小值,再設,則,最后在中運用勾股定理解答即可【詳解】解:(1)如圖所示,∵四邊形是正方形∴∵∴∵四邊形ABCD是矩形∴,∠B=90°∴(2)如圖:連接,當點在上時,有最小值.∵四邊形是矩形,,,∴,,∴.由折疊性質,得,,∴的最小值.設,則.在中,,即,解得,∴的長為.故答案為:.【考點】本題主要考查矩形的性質和折疊的性質,正方形的性質,勾股定理,根據矩形的性質和折疊的性質確定的最小值成為解答本題的關鍵.四、解答題1、(1)見解析;(2)見解析【解析】【分析】(1)根據相似三角形的性質可得∠CPD=∠BAP,故作∠CPD=∠BAP,∠CPD與AC的交點為D即可;(2)利用外角的性質以及(1)中∠CPD=∠BAP可得∠CPD=∠ABC,再根據平行線的判定即可.【詳解】解:(1)∵△PCD∽△ABP,∴∠CPD=∠BAP,故作∠CPD=∠BAP即可,如圖,即為所作圖形,(2)∵∠APC=∠APD+∠DPC=∠ABC+∠BAP=2∠ABC,∴∠BAP=∠ABC,∴∠BAP=∠CPD=∠ABC,即∠CPD=∠ABC,∴PD∥AB.【考點】本題考查了尺規(guī)作圖,相似三角形的性質,外角的性質,難度不大,解題的關鍵是掌握尺規(guī)作圖的基本作法.2、(1),;(2)結論仍然成立;證明見解析;(3)或.【解析】【分析】(1)先根據等邊三角形的性質可得,再根據含角的直角三角形的性質以及三角形中位線定理求解即可;(2)由(1)的結論以及旋轉的性質證明,根據相似三角形的性質即解答即可;(3)當以點C、F、E、G為頂點的四邊形是矩形時,分兩種情況討論,根據矩形的性質以及勾股定理求解即可.【詳解】解:(1)∵是等邊三角形,D為的中點.∴,∵E,F分別為,的中點,∴,∴,∴,∴,由圖1得:直線與直線相交所成的較小角的度數是,故填:,;(2)(1)中的結論仍然成立.證明:設交于點H,∵是等邊三角形,D為的中點.∴,∵E,F分別為,的中點,∴,∴,∴,∵繞點C逆時針旋轉,∴,∴,∴,∵,∴,∴,∵,∴,∴;(3)分兩種情況:①當點E在線段上時,∵四邊形是矩形,∴,∵,∴,由(2)知:,∴,在中,,∴,∴;②當點E在線段的延長線上時,同①,,∴;綜上,的長為或.【考點】本題屬于四邊形綜合題,主要考查了矩形的性質、等邊三角形的性、旋轉的性質、相似三角形的判定和性質等知識,正確運用相似三角形的判定和性質以及分類討論的思想的靈活運用成為解答本題的關鍵.3、(1)1秒;(2)不可能,見解析【解析】【分析】(1)經過x秒鐘,△PBQ的面積等于4cm2,根據點P從A點開始沿AB邊向點B以1cm/s的速度移動,點Q從B點開始沿B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論