解析卷人教版8年級數(shù)學(xué)上冊《全等三角形》專項訓(xùn)練試卷(含答案詳解版)_第1頁
解析卷人教版8年級數(shù)學(xué)上冊《全等三角形》專項訓(xùn)練試卷(含答案詳解版)_第2頁
解析卷人教版8年級數(shù)學(xué)上冊《全等三角形》專項訓(xùn)練試卷(含答案詳解版)_第3頁
解析卷人教版8年級數(shù)學(xué)上冊《全等三角形》專項訓(xùn)練試卷(含答案詳解版)_第4頁
解析卷人教版8年級數(shù)學(xué)上冊《全等三角形》專項訓(xùn)練試卷(含答案詳解版)_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)上冊《全等三角形》專項訓(xùn)練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,把沿線段折疊,使點落在點處;若,,,則的度數(shù)為(

)A. B. C. D.2、如圖,已知,下面甲、乙、丙、丁四個三角形中,與全等的是(

)A.甲 B.乙 C.丙 D.丁3、小明不慎將一塊三角形的玻璃摔碎成如圖所示的四塊(即圖中標有1、2、3、4的四塊),你認為將其中的哪一些塊帶去,就能配一塊與原來一樣大小的三角形?應(yīng)該帶(

)A.第1塊 B.第2塊 C.第3塊 D.第4塊4、如圖,已知,則圖中全等三角形的總對數(shù)是A.3 B.4 C.5 D.65、如圖,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,點E是△ABC的內(nèi)心,過點E作EF∥AB交AC于點F,則EF的長為()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,,若,則到的距離為_________.2、如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2,BE=1.則DE=________.3、如圖是教科書中的一個片段,由畫圖我們可以得到△,判定這兩個三角形全等的依據(jù)是__.(1)畫;(2)分別以點,為圓心,線段,長為半徑畫弧,兩弧相交于點;(3)連接線段,.4、如圖,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,則∠B=______度.5、如圖,,,若,則線段長為______.三、解答題(5小題,每小題10分,共計50分)1、如圖,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求證:△BCE≌△DCF;(2)求證:AB+AD=2AE.2、【問題解決】(1)已知△ABC中,AB=AC,D,A,E三點都在直線l上,且有∠BDA=∠AEC=∠BAC.如圖①,當(dāng)∠BAC=90°時,線段DE,BD,CE的數(shù)量關(guān)系為:______________;【類比探究】(2)如圖②,在(1)的條件下,當(dāng)0°<∠BAC<180°時,線段DE,BD,CE的數(shù)量關(guān)系是否變化,若不變,請證明:若變化,寫出它們的關(guān)系式;【拓展應(yīng)用】(3)如圖③,AC=BC,∠ACB=90°,點C的坐標為(-2,0),點B的坐標為(1,2),請求出點A的坐標.3、如圖,在△ABC中,AB=AC,D是BC的中點,E,F(xiàn)分別是AB,AC上的點,且AE=AF.求證:DE=DF.4、如圖,已知△ABC.求作:BC邊上的高與內(nèi)角∠B的角平分線的交點.5、如圖,在△ABC中∠ABC=45°,AD⊥BC于點D,點E為AD上的一點,且BE=AC,延長BE交AC于點F,連接FD.(1)求證:△BED≌△ACD;(2)若FC=c,F(xiàn)B=b,求的值.(用含a,b的式子表示)-參考答案-一、單選題1、C【解析】【分析】由于折疊,可得三角形全等,運用三角形全等得出,利用平行線的性質(zhì)可得出則即可求.【詳解】解:∵沿線段折疊,使點落在點處,∴,∴,∵,,∴,∵,∴,∴,故選:C.【考點】本題考查了全等三角形的性質(zhì)及三角形內(nèi)角和定理、平行線的性質(zhì);解題的關(guān)鍵是,理解折疊就是得到全等的三角形,根據(jù)全等三角形的對應(yīng)角相等就可以解決.2、B【解析】【分析】根據(jù)全等三角形的判定定理逐判定即可.【詳解】解:A.△ABC和甲所示三角形只有一邊一角對應(yīng)相等,無法判定它們?nèi)龋时具x項不符合題意;B.△ABC和乙所示三角形有兩邊及其夾角對應(yīng)相等,根據(jù)SAS可判定它們?nèi)?,故本選項符合題意;C.△ABC和丙所示三角形有兩邊一角相等,但不是對應(yīng)的兩邊一角,無法判定它們?nèi)?,故本選項不符合題意;;D.△ABC和丁所示三角形有兩角對應(yīng)相等,有一邊相等,但相等邊不是兩角的夾邊,所以兩角一邊不是對應(yīng)相等,無法判定它們?nèi)?,故本選項不符合題意;;故選:B.3、B【解析】【分析】本題應(yīng)先假定選擇哪塊,再對應(yīng)三角形全等判定的條件進行驗證.【詳解】解:1、3、4塊玻璃不同時具備包括一完整邊在內(nèi)的三個證明全等的要素,所以不能帶它們?nèi)?,只有?塊有完整的兩角及夾邊,符合ASA,滿足題目要求的條件,是符合題意的.故選:B.【考點】本題主要考查三角形全等的判定,看這4塊玻璃中哪個包含的條件符合某個判定.判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.4、D【解析】【分析】根據(jù)全等三角形的判定方法進行判斷.全等三角形的5種判定方法中,選用哪一種方法,取決于題目中的已知條件.【詳解】解:∵AB∥DC,AD∥BC,∴∠DAC=∠BCA,∠CDB=∠ABD,∠DCA=∠BAC,∠ADB=∠CBD,又∵BE=DF,∴由∠ADB=∠CBD,DB=BD,∠ABD=∠CDB,可得△ABD≌△CDB;由∠DAC=∠BCA,AC=CA,∠DCA=∠BAC,可得△ACD≌△CAB;∴AO=CO,DO=BO,由∠DAO=∠BCO,AO=CO,∠AOD=∠COB,可得△AOD≌△COB;由∠CDB=∠ABD,∠COD=∠AOB,CO=AO,可得△COD≌△AOB;由∠DCA=∠BAC,∠COF=∠AOE,CO=AO,可得△AOE≌△COF;由∠CDB=∠ABD,∠DOF=∠BOE,DO=BO,可得△DOF≌△BOE;故選D.【考點】本題主要考查了全等三角形的判定與性質(zhì)的運用,解題時注意:若已知兩邊對應(yīng)相等,則找它們的夾角或第三邊;若已知兩角對應(yīng)相等,則必須再找一組對邊對應(yīng)相等,或者是兩角的夾邊,若已知一邊一角,則找另一組角,或找這個角的另一組對應(yīng)鄰邊.5、A【解析】【分析】延長FE交BC于點D,作EG⊥AB、作EH⊥AC,由EF∥AC可證四邊形BDEG是矩形,由角平分線可得ED=EH=EG、∠GAE=∠HAE,從而知四邊形BDEG是正方形,再證△GAE≌△HAE、△DCE≌△HCE得AG=AH、CD=CH,設(shè)BD=BG=x,則AG=AH=6-x、CD=CH=8-x,由AC=10可得x=2,即BD=DE=2、AG=4,再證△CDF∽△CBA,可得,據(jù)此得出EF=DF-DE=.【詳解】解:如圖,延長FE交BC于點D,作EG⊥AB于點G,作EH⊥AC于點H,∵EF∥AB、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四邊形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠GAE=∠HAE,∴四邊形BDEG是正方形,在△GAE和△HAE中,∵,∴△GAE≌△HAE(AAS),∴AG=AH,同理△DCE≌△HCE,∴CD=CH,設(shè)BD=BG=x,則AG=AH=6﹣x、CD=CH=8﹣x,∵AC===10,∴6﹣x+8﹣x=10,解得:x=2,∴BD=DE=BG=2,AG=4,∵DF∥AB,∴△DCF∽△BCA,∴,即,解得:,則EF=DF﹣DE=,故選A【考點】本題主要考查相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)及正方形的判定與性質(zhì),熟練掌握角平分線的性質(zhì)和正方形的判定與性質(zhì)、相似三角形的判定與性質(zhì)是解題的關(guān)鍵.二、填空題1、4【解析】【分析】過P點作PE⊥OB于E,根據(jù)角平分線的性質(zhì)定理可得PE=PD,即可求解.【詳解】解:如圖,過P點作PE⊥OB于E,∵,PE⊥OB,∴PE=PD=4,即P到OB的距離是4,故答案為:4.【考點】本題考查了角平分線的性質(zhì),熟練掌握角平分線的性質(zhì)定理是解題的關(guān)鍵.2、1【解析】【分析】先證明△ACD≌△CBE,再求出DE的長,解決問題.【詳解】解:∵BE⊥CE于E,AD⊥CE于D∴∵∴∵∴∴,∴.故答案為:1【考點】此題考查三角形全等的判定和性質(zhì),掌握再全等三角形的判定和性質(zhì)是解題的關(guān)鍵.3、【解析】【分析】根據(jù)全等三角形的判定方法解決問題即可.【詳解】解:在和△中,,,故答案為:.【考點】本題考查了作圖?復(fù)雜作圖,全等三角形的判定等知識,解題的關(guān)鍵是理解題意,靈活應(yīng)用所學(xué)知識解決問題.4、120【解析】【分析】根基三角形全等的性質(zhì)得到∠C=∠C′=24°,再根據(jù)三角形的內(nèi)角和定理求出答案.【詳解】∵,∴∠C=∠C′=24°,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=120°,故答案為:120.【考點】此題考查三角形全等的性質(zhì)定理:全等三角形的對應(yīng)角相等,三角形的內(nèi)角和定理.5、8【解析】【分析】過點D作DH⊥AC于H,由等腰三角形的性質(zhì)可得AH=HC,∠DAC=∠DCA=30°,由直角三角形的性質(zhì)可證DH=CF,由“AAS”可證△DHE≌△FCE,可得EH=EC,即可求解.【詳解】解:如圖,過點D作DH⊥AC于H,在△DHE和△FCE中,故答案為8.【考點】本題考查了全等三角形的判定和性質(zhì),等腰三角形的性質(zhì),添加恰當(dāng)輔助線構(gòu)造全等三角形是解題的關(guān)鍵.三、解答題1、詳見解析【解析】【分析】(1)由角平分線定義可證△BCE≌△DCF(HL);(2)先證Rt△FAC≌Rt△EAC,得AF=AE,由(1)可得AB+AD=(AE+BE)+(AF﹣DF)=AE+BE+AE﹣DF=2AE.【詳解】(1)證明:∵AC是角平分線,CE⊥AB于E,CF⊥AD于F,∴CE=CF,∠F=∠CEB=90°,在Rt△BCE和Rt△DCF中,∴△BCE≌△DCF;(2)解:∵CE⊥AB于E,CF⊥AD于F,∴∠F=∠CEA=90°,在Rt△FAC和Rt△EAC中,,∴Rt△FAC≌Rt△EAC,∴AF=AE,∵△BCE≌△DCF,∴BE=DF,∴AB+AD=(AE+BE)+(AF﹣DF)=AE+BE+AE﹣DF=2AE.【考點】本題考查了全等三角形的判定、性質(zhì)和角平分線定義,注意:全等三角形的對應(yīng)角相等,對應(yīng)邊相等,直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL.2、(1)DE=BD+CE;(2)DE=BD+CE的數(shù)量關(guān)系不變,理由見解析;(3)(﹣4,3)【解析】【分析】(1)證明△ABD≌△CAE,根據(jù)全等三角形的性質(zhì)得到AD=CE,BD=AE,結(jié)合圖形證明結(jié)論;(2)根據(jù)三角形的外角性質(zhì)得到∠ABD=∠CAE,證明△ABD≌△CAE,根據(jù)全等三角形的性質(zhì)解答;(3)過點A作AM⊥x軸于點M,過點B作BN⊥x軸于點N,根據(jù)(1)的結(jié)論得到△ACM≌△BCN,根據(jù)全等三角形的性質(zhì)解答即可.【詳解】解:(1)∵∠BAC=90°,∴∠BDA=∠AEC=∠BAC=90°,∴∠ABD+∠BAD=90°,∠CAE+∠BAD=90°,∴∠ABD=∠CAE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴AD=CE,BD=AE,∴DE=AD+AE=BD+CE,故答案為:DE=BD+CE;(2)DE=BD+CE的數(shù)量關(guān)系不變,理由如下:∵∠BAE是△ABD的一個外角,∴∠BAE=∠ADB+∠ABD,∵∠BDA=∠BAC,∴∠ABD=∠CAE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴AD=CE,BD=AE,∴DE=AD+AE=BD+CE;(3)過點A作AM⊥x軸于點M,過點B作BN⊥x軸于點N,∵點C的坐標為(﹣2,0),點B的坐標為(1,2),∴OC=2,ON=1,BN=2,∴CN=3,由(1)可知,△ACM≌△CBN,∴AM=CN=3,CM=BN=2,∴OM=OC+CM=4,∴點A的坐標為(﹣4,3).【考點】本題考查的是三角形全等的判定和性質(zhì)、坐標與圖形性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.3、見解析【解析】【分析】首先連接AD,由AB=AC,D是BC的中點,根據(jù)三線合一的性質(zhì),可得∠EAD=∠FAD,又由SAS,可判定△AED≌△AFD,繼而證得DE=DF.【詳解】如圖,連結(jié)AD∵AB=AC,D是BC的中點,∴∠EAD=∠FAD.在△AED和△AFD中,∵AE=AF,∠EAD=∠FAD,AD=AD,∴△AED≌△AFD(SAS),∴DE=DF.【考點】本題考查了等腰三角形的性質(zhì)及全等三角形的判定與性質(zhì);利用等腰三角形三線合一的性質(zhì)是解答本題的關(guān)鍵.4、詳見解析.【解析】【分析】過點A作

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論