版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數(shù)學下冊《平行四邊形》定向攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在平面直角坐標系中,點A是x軸正半軸上的一個動點,點C是y軸正半軸上的點,于點C.已知,.點B到原點的最大距離為()A.22 B.18 C.14 D.102、如圖,在四邊形中,,,面積為21,的垂直平分線分別交于點,若點和點分別是線段和邊上的動點,則的最小值為()A.5 B.6 C.7 D.83、如圖,DE是ABC的中位線,點F在DE上,且∠AFB=90°,若AB=5,BC=8,則EF的長為()A.2.5 B.1.5 C.4 D.54、下列∠A:∠B:∠C:∠D的值中,能判定四邊形ABCD是平行四邊形的是()A.1:2:3:4 B.1:4:2:3C.1:2:2:1 D.3:2:3:25、在中,AC與BD相交于點O,要使四邊形ABCD是菱形,還需添加一個條件,這個條件可以是()A.AO=CO B.AO=BO C.AO⊥BO D.AB⊥BC第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,矩形ABCD的兩條對角線AC,BD交于點O,∠AOB=60°,AB=3,則矩形的周長為_____.2、如圖,正方形ABCD的面積為18,△ABE是等邊三角形,點E在正方形ABCD內(nèi),在對角線AC上有一點P,使PD+PE的和最小,則這個最小值為_____.3、如圖,將長方形ABCD按圖中方式折疊,其中EF、EC為折痕,折疊后、、E在一直線上,已知∠BEC=65°,那么∠AEF的度數(shù)是_____.4、如果一個矩形較短的邊長為5cm,兩條對角線的夾角為60°,則這個矩形的對角線長是_________cm.5、如圖,在?ABCD中,BC=3,CD=4,點E是CD邊上的中點,將△BCE沿BE翻折得△BGE,連接AE,A、G、E在同一直線上,則AG=______,點G到AB的距離為______.三、解答題(5小題,每小題10分,共計50分)1、如圖,在正方形中,是直線上的一點,連接,過點作,交直線于點,連接.(1)當點在線段上時,如圖①,求證:;(2)當點在直線上移動時,位置如圖②、圖③所示,線段,與之間又有怎樣的數(shù)量關系?請直接寫出你的猜想,不需證明.2、如圖,已知△ACB中,∠ACB=90°,E是AB的中點,連接EC,過點A作AD∥EC,過點C作CD∥EA,AD與CD交于點D.(1)求證:四邊形ADCE是菱形;(2)若AB=8,∠DAE=60°,則△ACB的面積為(直接填空).3、如圖,四邊形ABCD是平行四邊形,∠BAC=90°.(1)尺規(guī)作圖:在BC上截取CE,使CE=CD,連接DE與AC交于點F,過點F作線段AD的垂線交AD于點M;(不寫作法,保留作圖痕跡)(2)在(1)的條件下,猜想線段FM和CF的數(shù)量關系,并證明你的結論.4、如圖,是的中位線,延長到,使,連接.求證:.
5、如圖,在正方形ABCD中,DF=AE,AE與DF相交于點O.(1)求證:△DAF≌△ABE;(2)求∠AOD的度數(shù).-參考答案-一、單選題1、B【解析】【分析】首先取AC的中點E,連接BE,OE,OB,可求得OE與BE的長,然后由三角形三邊關系,求得點B到原點的最大距離.【詳解】解:取AC的中點E,連接BE,OE,OB,∵∠AOC=90°,AC=16,∴OE=CEAC=8,∵BC⊥AC,BC=6,∴BE10,若點O,E,B不在一條直線上,則OB<OE+BE=18.若點O,E,B在一條直線上,則OB=OE+BE=18,∴當O,E,B三點在一條直線上時,OB取得最大值,最大值為18.故選:B【點睛】此題考查了直角三角形斜邊上的中線的性質(zhì)以及三角形三邊關系.此題難度較大,注意掌握輔助線的作法,注意掌握數(shù)形結合思想的應用.2、C【解析】【分析】連接AQ,過點D作,根據(jù)垂直平分線的性質(zhì)得到,再根據(jù)計算即可;【詳解】連接AQ,過點D作,∵,面積為21,∴,∴,∵MN垂直平分AB,∴,∴,∴當AQ的值最小時,的值最小,根據(jù)垂線段最短可知,當時,AQ的值最小,∵,∴,∴的值最小值為7;故選C.【點睛】本題主要考查了四邊形綜合,垂直平分線的性質(zhì),準確分析計算是解題的關鍵.3、B【解析】【分析】根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得,再利用三角形中位線定理可得DE=4,進而可得答案.【詳解】解:∵D為AB中點,∠AFB=90°,AB=5,∴,∵DE是△ABC的中位線,BC=8,∴DE=4,∴EF=4﹣2.5=1.5,故選:B.【點睛】此題主要考查了直角三角形的性質(zhì)和三角形中位線定理,三角形的中位線平行于第三邊,并且等于第三邊的一半.4、D【解析】【分析】兩組對角分別相等的四邊形是平行四邊形,所以∠A和∠C是對角,∠B和∠D是對角,對角的份數(shù)應相等.【詳解】解:根據(jù)平行四邊形的判定:兩組對角分別相等的四邊形是平行四邊形,所以只有D符合條件.故選:D.【點睛】本題考查了平行四邊形的判定,在應用判定定理判定平行四邊形時,應仔細觀察題目所給的條件,仔細選擇適合于題目的判定方法進行解答,避免混用判定方法.5、C【解析】【分析】根據(jù)菱形的判定分析即可;【詳解】∵四邊形ABCD時平行四邊形,AO⊥BO,∴是菱形;故選C.【點睛】本題主要考查了菱形的判定,準確分析判斷是解題的關鍵.二、填空題1、##【解析】【分析】根據(jù)矩形性質(zhì)得出AD=BC,AB=CD,∠BAD=90°,OA=OC=AC,BO=OD=BD,AC=BD,推出OA=OB=OC=OD,得出等邊三角形AOB,求出BD,根據(jù)勾股定理求出AD即可.【詳解】解:∵四邊形ABCD是矩形,∴∠BAD=90°,OA=OC=AC,BO=OD=BD,AC=BD,∴OA=OB=OC=OD,∵∠AOB=60°,OB=OA,∴△AOB是等邊三角形,∵AB=3,∴OA=OB=AB=3,∴BD=2OB=6,在Rt△BAD中,AB=3,BD=6,由勾股定理得:AD=3,∵四邊形ABCD是矩形,∴AB=CD=3,AD=BC=3,∴矩形ABCD的周長是AB+BC+CD+AD=6+6.故答案為:6+6.【點睛】本題考查了矩形性質(zhì),等邊三角形的性質(zhì)和判定,勾股定理等知識點,關鍵是求出AD的長.2、【解析】【分析】由正方形的對稱性可知,PB=PD,當B、P、E共線時PD+PE最小,求出BE即可.【詳解】解:∵正方形中B與D關于AC對稱,∴PB=PD,∴PD+PE=PB+PE=BE,此時PD+PE最小,∵正方形ABCD的面積為18,△ABE是等邊三角形,∴BE=3,∴PD+PE最小值是3,故答案為:3.【點睛】本題考查軸對稱求最短距離,熟練掌握正方形的性質(zhì)是解題的關鍵.3、25°【解析】【分析】利用翻折變換的性質(zhì)即可解決.【詳解】解:由折疊可知,∠EF=∠AEF,∠EC=∠BEC=65°,∵∠EF+∠AEF+∠EC+∠BEC=180°,∴∠EF+∠AEF=50°,∴∠AEF=25°,故答案為:25°.【點睛】本題考查了折疊的性質(zhì),熟練掌握折疊的性質(zhì)是解題的關鍵.4、10【解析】【分析】如圖,由題意得:四邊形為矩形,證明是等邊三角形,結合矩形的性質(zhì)可得答案.【詳解】解:如圖,由題意得:四邊形為矩形,是等邊三角形,故答案為:【點睛】本題考查的是等邊三角形的判定與性質(zhì),矩形的性質(zhì),掌握“矩形的對角線相等且互相平分”是解本題的關鍵.5、2##【解析】【分析】根據(jù)折疊性質(zhì)和平行四邊形的性質(zhì)可以證明△ABG≌△EAD,可得AG=DE=2,然后利用勾股定理可得求出AF的長,進而可得GF的值.【詳解】解:如圖,GF⊥AB于點F,∵點E是CD邊上的中點,∴CE=DE=2,由折疊可知:∠BGE=∠C,BC=BG=3,CE=GE=2,在?ABCD中,BC=AD=3,BC∥AD,∴∠D+∠C=180°,BG=AD,∵∠BGE+∠AGB=180°,∴∠AGB=∠D,∵AB∥CD,∴∠BAG=∠AED,在△ABG和△EAD中,,∴△ABG≌△EAD(AAS),∴AG=DE=2,∴AB=AE=AG+GE=4,∵GF⊥AB于點F,∴∠AFG=∠BFG=90°,在Rt△AFG和△BFG中,根據(jù)勾股定理,得AG2-AF2=BG2-BF2,即22-AF2=32-(4-AF)2,解得AF=,∴GF2=AG2-AF2=4-=,∴GF=,故答案為2,.【點睛】本題考查了折疊的性質(zhì)、平行四邊形的性質(zhì)、勾股定理等知識,證明△ABG≌△EAD是解題的關鍵.三、解答題1、(1)見解析;(2)圖②中,圖③中【分析】(1)在上截取,連接,可先證得,則,,進而可證得△AED為等腰直角三角形,即可得證;(2)仿照(1)的證明思路,作出相應的輔助線,即可證得對應的,與之間的數(shù)量關系.【詳解】解:(1)證明:如圖,在上截取,連接.∵四邊形是正方形,,,,,,,,,,,,,,∴△ECF是等腰直角三角形,在中,,,;
(2)圖②:,理由如下:如下圖,在延長線上截取,連接.
∵四邊形是正方形,,,,,,,,,,,,,∴△ECF是等腰直角三角形,在中,,,;圖③:如圖,在DE上截取DF=BE,連接.
∵四邊形是正方形,,,,,,,,,,,,,∴△ECF是等腰直角三角形,在中,,,.【點睛】本題是四邊形綜合題,考查了正方形的性質(zhì)、全等三角形的判定及性質(zhì)、等腰直角三角形、勾股定理等相關知識,正確作出輔助線構造全等三角形是解決本題的關鍵.2、(1)見解析;(2)【分析】(1)由AD//CE,CD//AE,得四邊形AECD為平行四邊形,根據(jù)直角三角形斜邊上中線性質(zhì),得CE=AE,可知四邊形ADCE是菱形;(2)由菱形的性質(zhì)可得當∠DAE=60°時,∠CAE=30°,可求BC,再根據(jù)勾股定理求出AC,最后求面積即可.【詳解】解:(1)∵∥,∥,∴四邊形是平行四邊形.∵,是的中點,∴,∴四邊形是菱形;(2)∵四邊形是菱形,,∴.∵在Rt△中,,,,∴,∴.∴.【點睛】此題主要考查了菱形的性質(zhì)和判定,含30度角的直角三角形的性質(zhì),直角三角形斜邊上的中線,勾股定理,三角形面積,能夠靈活運用菱形知識解決有關問題是解題的關鍵.3、(1)圖形見解析;(2),證明見解析【分析】(1)以C為圓心CD長為半徑畫弧于BC交點即為E;連DE與AC交點即為F;過F作AD的垂直平分線與AD交點即為M;(2)證明DF平分,再利用角平分線的性質(zhì)判定即可.【詳解】(1)圖形如下:(2),證明如下:由(1)可得:,CE=CD∴∵四邊形ABCD是平行四邊形∴AD∥BC,AB∥CD∴,∴即DF平分∵∠BAC=90°∴∴【點睛】本題考查了作圖-復雜作圖:解決此類題目的關鍵是熟悉基本幾何圖形的性質(zhì),結合幾何圖形的基本性質(zhì)把復雜作圖拆解成基本作圖,逐步操作.也考查了平行四邊形的判定與性質(zhì).4、見解析【分析】由已知條件可得DF=AB及DF∥AB,從而可得四邊形ABFD為平行四邊形,則問題解決.【詳解】∵是的中位線∴DE∥AB,,AD=DC∴DF∥AB∵EF=DE∴DF=AB∴四邊形ABFD為平行四邊形∴AD=BF∴BF=DC【點睛】本題主要考查了平行四邊形的判定與性質(zhì)、三角形中位線的性質(zhì)定理,掌握它們是解答本題的關鍵.當然本題也可以用三角形全等的知識來解決.5、(1)見解析;(2)90°【分析】(1)利用正方形的性質(zhì)得出AD=AB,∠DAB=∠ABC=90°,再證明Rt△DAF≌Rt△ABE即可得出結論;
(2)利用(1)的結論得出∠ADF=∠BAE,進而求出∠BAE+∠DFA=90°
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 流動人口系統(tǒng)培訓課件
- 活動策劃執(zhí)行培訓課件
- 2024-2025學年遼寧省朝陽市多校高一下學期6月聯(lián)合考試歷史試題(解析版)
- 2026年物流管理專業(yè)認證考試題庫及答案解析
- 2026年機械制造工藝認證試題車削與銑削工藝區(qū)別題庫
- 2026年金融投資基礎課程股票與債券市場分析練習題
- 2026年托??荚嚳谡Z實踐題集
- 2026年化工產(chǎn)品質(zhì)量檢測與控制技術試題
- 2026年財務成本管理師專業(yè)能力筆試題目
- 2026年英語八級詞匯語法練習題
- 安全生產(chǎn)安全風險分級管控制度
- ktv衛(wèi)生應急預案管理制度
- 2026簡易標準版離婚協(xié)議書
- 湖南省長沙市天心區(qū)長郡中學2026屆高一生物第一學期期末統(tǒng)考試題含解析
- 2025年陜西藝術職業(yè)學院輔導員考試真題
- 2025-2030中國低壓電器行業(yè)融資渠道及應用領域發(fā)展現(xiàn)狀研究報告
- 密封件管理制度及流程規(guī)范
- 2026年英語首考浙江試卷及答案
- 煙臺交通集團有限公司管理培訓生招聘參考題庫必考題
- 倉儲安全檢查標準及執(zhí)行流程
- 2025FIGO指南:肝病與妊娠解讀課件
評論
0/150
提交評論