江蘇省常熟市中考數(shù)學(xué)測試卷及參考答案詳解【考試直接用】_第1頁
江蘇省常熟市中考數(shù)學(xué)測試卷及參考答案詳解【考試直接用】_第2頁
江蘇省常熟市中考數(shù)學(xué)測試卷及參考答案詳解【考試直接用】_第3頁
江蘇省常熟市中考數(shù)學(xué)測試卷及參考答案詳解【考試直接用】_第4頁
江蘇省常熟市中考數(shù)學(xué)測試卷及參考答案詳解【考試直接用】_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江蘇省常熟市中考數(shù)學(xué)測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、若實數(shù)滿足,則的值是()A.1 B.-3或1 C.-3 D.-1或32、把四張撲克牌所擺放的順序與位置如下,小楊同學(xué)選取其中一張撲克牌把他顛倒后在放回原來的位置,那么撲克牌的擺放順序與位置都沒變化,那么小楊同學(xué)所選的撲克牌是(

)A. B. C. D.3、如圖1,矩形中,點為的中點,點沿從點運動到點,設(shè),兩點間的距離為,,圖2是點運動時隨變化的關(guān)系圖象,則的長為(

)A. B. C. D.4、如圖,⊙O的半徑為5cm,直線l到點O的距離OM=3cm,點A在l上,AM=3.8cm,則點A與⊙O的位置關(guān)系是(

)A.在⊙O內(nèi) B.在⊙O上 C.在⊙O外 D.以上都有可能5、二次函數(shù)y=x2+px+q,當(dāng)0≤x≤1時,此函數(shù)最大值與最小值的差(

)A.與p、q的值都有關(guān) B.與p無關(guān),但與q有關(guān)C.與p、q的值都無關(guān) D.與p有關(guān),但與q無關(guān)二、多選題(5小題,每小題3分,共計15分)1、關(guān)于二次函數(shù)y=ax2+bx+c的圖象有下列命題,其中正確的命題是()A.當(dāng)c=0時,函數(shù)的圖象經(jīng)過原點;B.當(dāng)c>0,且函數(shù)的圖象開口向下時,方程ax2+bx+c=0必有兩個不相等的實根;C.函數(shù)圖象最高點的縱坐標(biāo)是;D.當(dāng)b=0時,函數(shù)的圖象關(guān)于y軸對稱.2、已知二次函數(shù)y=x2-4x+a,下列說法正確的是()A.當(dāng)x<1時,y隨x的增大而減小B.若圖象與x軸有交點,則a≥-4C.當(dāng)a=3時,不等式x2-4x+a<0的解集是1<x<3D.若將圖象向上平移1個單位,再向左平移3個單位后過點(1,-2),則a=-33、若為圓內(nèi)接四邊形,則下列哪個選項可能成立(

)A. B.C. D.4、關(guān)于x的一元二次方程(k-1)x2+4x+k-1=0有兩個相等的實數(shù)根,則k的值為(

)A.1 B.0 C.3 D.-35、如圖,O是正△ABC內(nèi)一點,OA=3,OB=4,OC=5,將線段BO以點B為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論中正確的結(jié)論是()A.△BO′A可以由△BOC繞點B逆時針旋轉(zhuǎn)60°得到B.點O與O′的距離為4C.∠AOB=150°D.S四邊形AOBO′=6+3E.S△AOC+S△AOB=6+第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、已知二次函數(shù)y=x2+bx+c的頂點在x軸上,點A(m﹣1,n)和點B(m+3,n)均在二次函數(shù)圖象上,求n的值為____.2、如果關(guān)于的一元二次方程有實數(shù)根,那么的取值范圍是___.3、如圖,在平面直角坐標(biāo)系中,點A在拋物線y=x2﹣2x+2上運動.過點A作AC⊥x軸于點C,以AC為對角線作矩形ABCD,連接BD,則對角線BD的最小值為_____.4、圓錐形冰淇淋的母線長是12cm,側(cè)面積是60πcm2,則底面圓的半徑長等于_____.5、如圖,正方形ABCD的邊長為6,點E在邊CD上.以點A為中心,把△ADE順時針旋轉(zhuǎn)90°至△ABF的位置.若DE=2,則FE=___.四、解答題(6小題,每小題10分,共計60分)1、已知關(guān)于x的一元二次方程有兩個相等的實數(shù)根,求的值.2、已知關(guān)于的一元二次方程.(1)求證:方程總有兩個實數(shù)根;(2)若方程的兩個實數(shù)根都為正整數(shù),求這個方程的根.3、如圖,矩形ABCD中,AB=2cm,BC=3cm,點E從點B沿BC以2cm/s的速度向點C移動,同時點F從點C沿CD以1cm/s的速度向點D移動,當(dāng)E,F(xiàn)兩點中有一點到達終點時,另一點也停止運動.當(dāng)△AEF是以AF為底邊的等腰三角形時,求點E運動的時間.4、判斷2、5、-4是不是一元二次方程的根5、已知拋物線過點.(1)求拋物線的解析式;(2)點A在直線上且在第一象限內(nèi),過A作軸于B,以為斜邊在其左側(cè)作等腰直角.①若A與Q重合,求C到拋物線對稱軸的距離;②若C落在拋物線上,求C的坐標(biāo).6、在數(shù)學(xué)活動課上,王老師要求學(xué)生將圖1所示的3×3正方形方格紙,剪掉其中兩個方格,使之成為軸對稱圖形.規(guī)定:凡通過旋轉(zhuǎn)能重合的圖形視為同一種圖形,如圖2的四幅圖就視為同一種設(shè)計方案(陰影部分為要剪掉部分)請在圖中畫出4種不同的設(shè)計方案,將每種方案中要剪掉的兩個方格涂黑(每個3×3的正方形方格畫一種,例圖除外)-參考答案-一、單選題1、A【解析】【分析】設(shè)x2-3x=y.將y代入原方程得到關(guān)于y的一元二次方程y2+2y-3=0即可,解這個方程求出y的值,然后利用根的判別式檢驗即可.【詳解】設(shè)x2-3x=y.將y代入原方程,得y2+2y-3=0,解之得,y=1或y=-3.當(dāng)y=1時,x2-3x=1,△=b2-4ac=(-3)2-4×1×(-1)=9+4=13>0,有兩個不相等的實數(shù)根,當(dāng)y=-3時,x2-3x=-3,△=b2-4ac=(-3)2-4×1×3=9=12<0,無解.故y=1,即x2-3x=1.故選A.【考點】本題考查了換元法解一元二次方程及一元二次方程根的判別式,解數(shù)學(xué)題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這叫換元法.換元的實質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研,從而使非標(biāo)準(zhǔn)型問題標(biāo)準(zhǔn)化、復(fù)雜問題簡單化,變得容易處理.2、D【解析】【分析】根據(jù)題意,圖形是中心對稱圖形即可得出答案.【詳解】由題意可知,圖形是中心對稱圖形,可得答案為D,故選:D.【考點】本題考查了圖形的中心對稱的性質(zhì),掌握中心圖形的性質(zhì)是解題的關(guān)鍵.3、C【解析】【分析】先利用圖2得出當(dāng)P點位于B點時和當(dāng)P點位于E點時的情況,得到AB和BE之間的關(guān)系以及,再利用勾股定理求解即可得到BE的值,最后利用中點定義得到BC的值.【詳解】解:由圖2可知,當(dāng)P點位于B點時,,即,當(dāng)P點位于E點時,,即,則,∵,∴,即,∵∴,∵點為的中點,∴,故選:C.【考點】本題考查了學(xué)生對函數(shù)圖象的理解與應(yīng)用,涉及到了勾股定理、解一元二次方程、中點的定義等內(nèi)容,解決本題的關(guān)鍵是能正確理解題意,能從圖象中提取相關(guān)信息,能利用勾股定理建立方程等,本題蘊含了數(shù)形結(jié)合的思想方法.4、A【解析】【詳解】如圖,連接OA,則在直角△OMA中,根據(jù)勾股定理得到OA=.∴點A與⊙O的位置關(guān)系是:點A在⊙O內(nèi).故選A.5、D【解析】【分析】分別求出函數(shù)解析式的最小值、當(dāng)0≤x≤1時端點值即:當(dāng)x=0和x=1時的函數(shù)值.由二次函數(shù)性質(zhì)可知此函數(shù)最大值與最小值必是其中的兩個,通過比較可知差值與p有關(guān),但與q無關(guān)【詳解】解:依題意得:當(dāng)時,端點值,當(dāng)時,端點值,當(dāng)時,函數(shù)最小值,由二次函數(shù)的最值性質(zhì)可知,當(dāng)0≤x≤1時,此函數(shù)最大值和最小值是、、其中的兩個,所以最大值與最小值的差可能是或或,故其差只含p不含q,故與p有關(guān),但與q無關(guān)故選:.【考點】本題考查了二次函數(shù)的最值問題,掌握二次函數(shù)的性質(zhì)、靈活運用配方法是解題的關(guān)鍵.二、多選題1、ABD【解析】【分析】根據(jù)c與0的關(guān)系判斷二次函數(shù)y=ax2+bx+c與y軸交點的情況;根據(jù)頂點坐標(biāo)與拋物線開口方向判斷函數(shù)的最值;根據(jù)函數(shù)y=ax2+c的圖象與y=ax2圖象相同,判斷函數(shù)y=ax2+c的圖象對稱軸.【詳解】解:A.c是二次函數(shù)y=ax2+bx+c與y軸的交點,所以當(dāng)c=0時,函數(shù)的圖象經(jīng)過原點;B.c>0時,二次函數(shù)y=ax2+bx+c與y軸的交點在y軸的正半軸,又因為函數(shù)的圖象開口向下,所以方程ax2+bx+c=0必有兩個不相等的實根;C.當(dāng)a<0時,函數(shù)圖象最高點的縱坐標(biāo)是;當(dāng)a>0時,函數(shù)圖象最低點的縱坐標(biāo)是;由于a值不定,故無法判斷最高點或最低點;D.當(dāng)b=0時,二次函數(shù)y=ax2+bx+c變?yōu)閥=ax2+c,又因為y=ax2+c的圖象與y=ax2圖象相同,所以當(dāng)b=0時,函數(shù)的圖象關(guān)于y軸對稱.故選:ABD.【考點】二次函數(shù)y=ax2+bx+c最值,掌握當(dāng)a<0時,函數(shù)的最大值是;當(dāng)a>0時,函數(shù)的最小值是是解題關(guān)鍵.2、ACD【解析】【分析】A、此函數(shù)在對稱軸的左邊是隨著x的增大而減小,在右邊是隨x增大而增大,據(jù)此作答;B、和x軸有交點,就說明△≥0,易求a的取值;C、解一元二次不等式即可;D、根據(jù)左加右減,上加下減作答即可.【詳解】解:∵y=x2?4x+a,∴對稱軸:直線x=2,A、當(dāng)x<1時,y隨x的增大而減小,故該選項正確;B、當(dāng)Δ=b2?4ac=16?4a≥0,即a≤4時,二次函數(shù)和x軸有交點,該選項錯誤;C、當(dāng)a=3時,則不等式x2?4x+3<0,即(x-3)(x-1)<0,∴不等式的解集是1<x<3,故該選項正確;D、y=x2?4x+a配方后是y=(x?2)2+a?4,向上平移1個單位,再向左平移3個單位后,函數(shù)解析式是y=(x-1)2+a?3,把(1,?2)代入函數(shù)解析式,易求a=?3,故該選項正確.故選:ACD.【考點】本題考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是掌握有關(guān)二次函數(shù)的增減性、與x軸交點的條件、與一元二次不等式的關(guān)系、上下左右平移的規(guī)律.3、BD【解析】【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠A+∠C=∠B+∠D=180°,再逐個判斷即可.【詳解】解:∵四邊形ABCD是圓內(nèi)接四邊形,∴∠A+∠C=180°,∠B+∠D=180°,∴∠A+∠C=∠B+∠D,A.∵,∴∠A+∠C≠∠B+∠D,故本選項不符合題意;B.∵,∴∠A+∠C=∠B+∠D,故本選項符合題意;C.∵,∴∠A+∠C≠∠B+∠D,故本選項不符合題意;D.∵,∴∠A+∠C=∠B+∠D,故本選項符合題意;故選:BD.【考點】本題考查了圓周角定理和圓內(nèi)接四邊形的性質(zhì),注意:圓內(nèi)接四邊形的對角互補.4、C【解析】【分析】由方程有兩個相等的實數(shù)根,根據(jù)根的判別式可得到關(guān)于k的方程,則可求得k的值.【詳解】解:∵關(guān)于x的一元二次方程(k﹣1)x2+4x+k﹣1=0有兩個相等的實數(shù)根,∴Δ=0,即42﹣4(k﹣1)2=0,且k﹣1≠0,解得k=3或k=-1.故選C.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac與根的關(guān)系,熟練掌握根的判別式與根的關(guān)系式解答本題的關(guān)鍵.當(dāng)?>0時,一元二次方程有兩個不相等的實數(shù)根;當(dāng)?=0時,一元二次方程有兩個相等的實數(shù)根;當(dāng)?<0時,一元二次方程沒有實數(shù)根.5、ABCE【解析】【分析】證明可判斷證明是等邊三角形,可判斷利用是等邊三角形,證明可判斷由是等邊三角形,可得四邊形的面積,可判斷如圖,將繞點逆時針旋轉(zhuǎn)與重合,對應(yīng),同理可得:是邊長為的等邊三角形,是邊長為的直角三角形,從而可判斷【詳解】解:由題意得:為等邊三角形,△BO′A可以由△BOC繞點B逆時針旋轉(zhuǎn)60°得到,故符合題意;如圖,連接,由是等邊三角形,則點O與O′的距離為4,故符合題意;故符合題意;如圖,過作于是等邊三角形,S四邊形AOBO′=故不符合題意;如圖,將繞點逆時針旋轉(zhuǎn)與重合,對應(yīng),同理可得:是邊長為的等邊三角形,是邊長為的直角三角形,同理可得:故符合題意;故選:【考點】本題考查的是等邊三角形的判定與性質(zhì),旋轉(zhuǎn)的性質(zhì),勾股定理與勾股定理的逆定理的應(yīng)用,全等三角形的判定與性質(zhì),熟練的做出正確的輔助線是解題的關(guān)鍵.三、填空題1、4【解析】【分析】由A、B坐標(biāo)可得對稱軸,由頂點在x軸上可得,求得b=﹣2(m+1),c=(m+1)2,即可得出y=x2﹣2(m+1)x+(m+1)2,把A的坐標(biāo)代入即可求得n的值.【詳解】解:∵點A(m﹣1,n)和點B(m+3,n)均在二次函數(shù)y=x2+bx+c圖象上,∴,∴b=﹣2(m+1),∵二次函數(shù)y=x2+bx+c的頂點在x軸上,∴,∴b2﹣4c=0,∴[﹣2(m+1)]2﹣4c=0,∴c=(m+1)2,∴y=x2﹣2(m+1)x+(m+1)2,把A的坐標(biāo)代入得,n=(m﹣1)2﹣2(m+1)(m﹣1)+(m+1)2=4,故答案為:4.【考點】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)的頂點坐標(biāo),表示出b、c的值是解題的關(guān)鍵.2、【解析】【分析】由一元二次方程根與系數(shù)的關(guān)鍵可得:從而列不等式可得答案.【詳解】解:關(guān)于的一元二次方程有實數(shù)根,故答案為:【考點】本題考查的是一元二次方程根的判別式,掌握一元二次方程根的判別式是解題的關(guān)鍵.3、1【解析】【分析】由矩形的性質(zhì)可知BD=AC,再結(jié)合頂點到x軸的距離最近可知當(dāng)點A在頂點處時滿足條件,求得拋物線的頂點坐標(biāo)即可求得答案.【詳解】解:∵AC⊥x軸,∴當(dāng)點A為拋物線頂點時,AC有最小值,∵拋物線y=x2﹣2x+2=(x?1)2+1,∴頂點坐標(biāo)為(1,1),∴AC的最小值為1,∵四邊形ABCD為矩形,∴BD=AC,∴BD的最小值為1,故答案為:1.【考點】本題主要考查了二次函數(shù)的性質(zhì)及矩形的性質(zhì),確定出AC最小時的位置是解題的關(guān)鍵.4、5cm.【解析】【分析】設(shè)圓錐的底面圓的半徑長為rcm,根據(jù)圓錐的側(cè)面積公式計算即可.【詳解】解:設(shè)圓錐的底面圓的半徑長為rcm.則×2π?r×12=60π,解得:r=5(cm),故答案為5cm.【考點】圓錐的側(cè)面積公式是本題的考點,牢記其公式是解題的關(guān)鍵.5、【解析】【分析】由旋轉(zhuǎn)的性質(zhì)可得BF=DE=2,∠D=∠ABF=90°,在直角△EFC中,由勾股定理可求解.【詳解】解:∵把△ADE順時針旋轉(zhuǎn)90°得△ABF,∴BF=DE=2,∠D=∠ABF=90°,∴∠ABC+∠ABF=180°,∴點F,點B,點C共線,在直角△EFC中,EC=6-2=4,CF=BC+BF=8.根據(jù)勾股定理得:EF=,故答案為:.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),勾股定理,靈活運用這些性質(zhì)解決問題是本題的關(guān)鍵.四、解答題1、4【解析】【分析】先根據(jù)一元二次方程根的判別式可得,從而可得,再代入計算即可得.【詳解】解:∵關(guān)于的一元二次方程有兩個相等的實數(shù)根,∴此方程根的判別式,即,則,,,.【考點】本題考查了一元二次方程根的判別式、代數(shù)式求值,熟練掌握一元二次方程根的判別式是解題關(guān)鍵.2、證明見祥解;.【解析】【分析】(1)先求出判別式,再配方變?yōu)榧纯?;?)用十字相乘法可以求出根的表達式,方程的兩個實數(shù)根都為正整數(shù),列不等式組,即可得出m的值.【詳解】證明:∵是關(guān)于的一元二次方程,,∴此方程總有兩個實數(shù)根.解:∵,∴,∴,.∵方程的兩個實數(shù)根都為正整數(shù),,解得,,∴..【考點】本題考查了根的判別式,配方為平方式,根據(jù)方程的兩個實數(shù)根都為正整數(shù),列出不等式組,求出是解題的關(guān)鍵.3、(6-)s【解析】【分析】設(shè)點E運動的時間是x秒.根據(jù)題意可得方程,解方程即可得到結(jié)論.【詳解】解:設(shè)點E運動的時間是xs.根據(jù)題意可得22+(2x)2=(3-2x)2+x2,解這個方程得x1=6-,x2=6+,∵3÷2=1.5(s),2÷1=2(s),∴兩點運動了1.5s后停止運動.∴x=6-.答:當(dāng)△AEF是以AF為底邊的等腰三角形時,點E運動的時間是(6-)s.【考點】本題考查了一元二次方程的應(yīng)用,考查了矩形的性質(zhì),等腰三角形的判定及性質(zhì),勾股定理的運用.4、2,-4是一元二次方程的根,5不是一元二次方程的根.【解析】【分析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論