版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
北師大版9年級數(shù)學上冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計12分)1、如果,那么的結(jié)果是(
)A. B. C. D.2、如圖,在矩形ABCD中,E,F(xiàn)分別是AD,BC的中點,連結(jié)AF,BE,CE,DF分別交于點M,N,則四邊形EMFN是()A.梯形 B.菱形C.矩形 D.無法確定3、如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,下列結(jié)論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC?CF=2HE.其中正確的結(jié)論有(
)A.1個 B.2個 C.3個 D.4個4、如圖1,點Q為菱形ABCD的邊BC上一點,將菱形ABCD沿直線AQ翻折,點B的對應(yīng)點P落在BC的延長線上.已知動點M從點B出發(fā),在射線BC上以每秒1個單位長度運動.設(shè)點M運動的時間為x,△APM的面積為y.圖2為y關(guān)于x的函數(shù)圖象,則菱形ABCD的面積為(
)A.12 B.24 C.10 D.205、如圖,AD//BC,∠D=90°,AD=3,BC=4,DC=6,若在邊DC上有點P,使△PAD與△PBC相似,則這樣的點P有(
)A.1個 B.2個 C.3個 D.4個6、在正方形網(wǎng)格中,每個小正方形的頂點稱為格點,以格點為頂點的三角形叫做格點三角形.如圖,△ABC是格點三角形,在圖中的6×6正方形網(wǎng)格中作出格點三角形△ADE(不含△ABC),使得△ADE∽△ABC(同一位置的格點三角形△ADE只算一個),這樣的格點三角形一共有()A.4個 B.5個 C.6個 D.7個二、多選題(6小題,每小題2分,共計12分)1、若反比例函數(shù)y=的圖象在每一個象限內(nèi)y的值隨x的增大而增大,則關(guān)于x的函數(shù)y=(1+m)x+m2+3的圖象經(jīng)過()A.第一象限 B.第二象限 C.第三象限 D.第四象限2、下列四個命題中正確的命題有(
)A.兩個矩形一定相似 B.兩個菱形都有一個角是40°,那么這兩個菱形相似C.兩個正方形一定相似 D.有一個角相等的兩個等腰梯形相似3、如圖,在△ABC中,中線BE,CD相交于點O,連接DE,下列結(jié)論,正確的有(
).A. B.C. D.4、如圖,在△ABC中,點D,E分別在邊AB、AC上,下列條件中能判斷△AED∽△ABC的是()A.∠AED=∠ABC B.∠ADE=∠ACBC. D.5、如圖,,AD與BC相交于點O,那么在下列比例式中,不正確的是(
)A. B.C. D.6、如圖,在△ABC中,點D在邊AC上,下列條件中,不能判斷△BDC與△ABC相似的是(
)A.AB·CB=CA·CD B.AB·CD=BD·BCC.BC2=AC·DC D.BD2=CD·DA第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計16分)1、在每個小正方形的邊長為1的網(wǎng)格圖形中,每個小正方形的頂點稱為格點,頂點都是格點的三角形稱為格點三角形.如圖,已知Rt△ABC是6×6網(wǎng)格圖形中的格點三角形,則該圖中所有與Rt△ABC相似的格點三角形中.面積最大的三角形的斜邊長是_____.2、兩個任意大小的正方形,都可以適當剪開,拼成一個較大的正方形,如用兩個邊長分別為,的正方形拼成一個大正方形.圖中的斜邊的長等于________(用,的代數(shù)式表示).3、如果一個直角三角形斜邊上的中線與斜邊所成的銳角為角,那么這個直角三角形的較小的內(nèi)角是________.4、“降次”是解一元二次方程的基本思想,用這種思想解高次方程x3-x=0,它的解是_____________.5、將方程(3x-1)(2x+4)=2化為一般形式為____________,其中二次項系數(shù)為________,一次項系數(shù)為________.6、如圖,四邊形ABCD是一個正方形,E是BC延長線上一點,且AC=EC,則∠DAE的度數(shù)為_________.7、若關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,則m的值可以是____.(寫出一個即可)8、正方形ABCD的邊長為1,點P為對角線AC上任意一點,PE⊥AD,PF⊥CD,垂足分別是E,F(xiàn).則PE+PF=_____.四、解答題(6小題,每小題10分,共計60分)1、已知圖中的曲線是反比例函數(shù)y=(m為常數(shù))圖象的一支.(1)根據(jù)圖象位置,求m的取值范圍;(2)若該函數(shù)的圖象任取一點A,過A點作x軸的垂線,垂足為B,當△OAB的面積為4時,求m的值.2、如圖,在矩形中,.動點P從點A開始沿邊以的速度運動,動點Q從點C開始沿邊以的速度運動.點P和點Q分別從點A和點C同時出發(fā),當其中一點到達終點時,另一點也隨之停止運動.設(shè)動點的運動時間為,則當t為何值時,四邊形是矩形?3、如圖,BF平行于正方形ADCD的對角線AC,點E在BF上,且AE=AC,CF∥AE,求∠BCF.4、如圖,在邊長為1的正方形網(wǎng)格中建立平面直角坐標系,已知△ABC三個頂點分別為A(﹣1,2)、B(2,1)、C(4,5).(1)以原點O為位似中心,在x軸的上方畫出△A1B1C1,使△A1B1C1與△ABC位似,且相似比為2;(2)△A1B1C1的面積是平方單位.(3)點P(a,b)為△ABC內(nèi)一點,則在△A1B1C1內(nèi)的對應(yīng)點P’的坐標為.5、如圖,一次函數(shù)y1=ax+b與反比例函數(shù)的圖象相交于A(2,8),B(8,2)兩點,連接AO,BO,延長AO交反比例函數(shù)圖象于點C.(1)求一次函數(shù)y1的表達式與反比例函數(shù)y2的表達式;(2)當y1<y2,時,直接寫出自變量x的取值范圍;(3)點P是x軸上一點,當時,請求出點P的坐標.6、如圖所示,直線y=x+2與坐標軸交于A、B兩點,與反比例函數(shù)y=(x>0)交于點C,已知AC=2AB.(1)求反比例函數(shù)解析式;(2)若在點C的右側(cè)有一平行于y軸的直線,分別交一次函數(shù)圖象與反比例函數(shù)圖象于D、E兩點,若CD=CE,求點D坐標.-參考答案-一、單選題1、B【解析】【分析】根據(jù)比例的性質(zhì)即可得到結(jié)論.【詳解】∵=,∴可設(shè)a=2k,b=3k,∴==-.故選B.【考點】本題主要考查了比例的性質(zhì),解本題的要點根據(jù)題意可設(shè)a,b的值,從而求出答案.2、B【解析】【分析】求出四邊形ABFE為平行四邊形,四邊形BFDE為平行四邊形,根據(jù)平行四邊形的性質(zhì)得出BE∥FD,即ME∥FN,同理可證EN∥MF,得出四邊形EMFN為平行四邊形,求出ME=MF,根據(jù)菱形的判定得出即可.【詳解】連接EF.∵四邊形ABCD為矩形,∴AD∥BC,AD=BC,又∵E,F(xiàn)分別為AD,BC中點,∴AE∥BF,AE=BF,ED∥CF,DE=CF,∴四邊形ABFE為平行四邊形,四邊形BFDE為平行四邊形,∴BE∥FD,即ME∥FN,同理可證EN∥MF,∴四邊形EMFN為平行四邊形,∵四邊形ABFE為平行四邊形,∠ABC為直角,∴ABFE為矩形,∴AF,BE互相平分于M點,∴ME=MF,∴四邊形EMFN為菱形.故選B.【考點】本題考查了矩形的性質(zhì)和判定,菱形的判定,平行四邊形的性質(zhì)和判定的應(yīng)用,能綜合運用性質(zhì)進行推理是解此題的關(guān)鍵,題目比較好,綜合性比較強.3、D【解析】【分析】①根據(jù)角平分線的定義可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得AE=AB,從而得到AE=AD,然后利用“角角邊”證明△ABE和△AHD全等,根據(jù)全等三角形對應(yīng)邊相等可得BE=DH,再根據(jù)等腰三角形兩底角相等求出∠ADE=∠AED=67.5°,根據(jù)平角等于180°求出∠CED=67.5°,從而判斷出①正確;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根據(jù)等角對等邊可得OE=OD=OH,判斷出②正確;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角邊角”證明△BEH和△HDF全等,根據(jù)全等三角形對應(yīng)邊相等可得BH=HF,判斷出③正確;④根據(jù)全等三角形對應(yīng)邊相等可得DF=HE,然后根據(jù)HE=AE-AH=BC-CD,BC-CF=BC-(CD-DF)=2HE,判斷出④正確.【詳解】解:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,在△ABE和△AHD中,,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°-45°)=67.5°,∴∠CED=180°-45°-67.5°=67.5°,∴∠AED=∠CED,故①正確;∵AB=AH,∵∠AHB=(180°-45°)=67.5°,∠OHE=∠AHB(對頂角相等),∴∠OHE=67.5°=∠AED,∴OE=OH,∵∠DHO=90°-67.5°=22.5°,∠ODH=67.5°-45°=22.5°,∴∠DHO=∠ODH,∴OH=OD,∴OE=OD=OH,故②正確;∵∠EBH=90°-67.5°=22.5°,∴∠EBH=∠OHD,在△BEH和△HDF中,,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正確;∵HE=AE-AH=BC-CD,∴BC-CF=BC-(CD-DF)=BC-(CD-HE)=(BC-CD)+HE=HE+HE=2HE.故④正確;綜上所述,結(jié)論正確的是①②③④共4個.故選:D.【考點】本題考查了矩形的性質(zhì),全等三角形的判定與性質(zhì),角平分線的定義,等腰三角形的判定與性質(zhì),熟記各性質(zhì)并仔細分析題目條件,根據(jù)相等的度數(shù)求出相等的角,從而得到三角形全等的條件或判斷出等腰三角形是解題的關(guān)鍵,也是本題的難點.4、D【解析】【分析】由圖2,可知BP=6,S△ABP=12,由圖1翻折可知,AQ⊥BP,進而得出AQ=4,由勾股定理,可知BC=AB=5,菱形ABCD的面積為BC×AQ即可求出.【詳解】解:由圖2,得BP=6,S△ABP=12∴AQ=4由翻折可知,AQ⊥BP由勾股定理,得BC=AB==5∴菱形ABCD的面積為BC×AQ=5×4=20故選:D【考點】本題是一道幾何變換綜合題,解決本題主要用到勾股定理,翻折的性質(zhì),根據(jù)函數(shù)圖象找出幾何圖形中的對應(yīng)關(guān)系是解決本題的關(guān)鍵.5、A【解析】【分析】根據(jù)已知分兩種情況△PAD∽△PBC或△PAD∽△CBP來進行分析,求得PD的長,從而確定P存在的個數(shù).【詳解】解:∵AD∥BC,∠D=90°,∴∠C=∠D=90°,∵DC=6,AD=3,BC=4,設(shè)PD=x,則PC=6-x.①若PD:PC=AD:BC,則△PAD∽△PBC,則,解得:x=,經(jīng)檢驗:x=是原方程的解;②若PD:BC=AD:PC,則△PAD∽△BPC,則,解得:x無解,所以這樣的點P存在的個數(shù)有1個.故選:A.【考點】此題考查了相似三角形的性質(zhì),熟練掌握相似三角形對應(yīng)邊成比例是解本題的關(guān)鍵.6、C【解析】【分析】根據(jù)題意,得出ABC的三邊之比,并在直角坐標系中找出與ABC各邊長成比例的相似三角形,并在直角坐標系中無一遺漏地表示出來.【詳解】解:ABC的三邊之比為,如圖所示,可能出現(xiàn)的相似三角形共有以下六種情況:所以使得△ADE∽△ABC的格點三角形一共有6個,故選:C.【考點】本題考察了在直角坐標系中畫出與已知三角形相似的圖形,解題的關(guān)鍵在于找出與已知三角形各邊長成比例的三角形,并在直角坐標系中無一遺漏地表示出來.二、多選題1、ABD【解析】【分析】先根據(jù)反比例函數(shù)y=的圖象在每一個象限內(nèi),y隨x的增大而增大可得出關(guān)于m的不等式,求出m的取值范圍,然后推知函數(shù)y=(1+m)x+m2+3的圖象所經(jīng)過的象限.【詳解】反比例函數(shù)y=的圖象在每一個象限內(nèi)y的值隨x值的增大而增大,m+2<0,m<-2,1+m<-1,m2+3>7,函數(shù)y=(1+m)x+m2+3的圖象經(jīng)過第一、二、四象限,故選:ABD.【考點】本題考查了反比例函數(shù)的性質(zhì),一次函數(shù)的性質(zhì),反比例函數(shù)的圖象,熟悉函數(shù)圖象與系數(shù)的關(guān)系是解題的關(guān)鍵.2、BC【解析】【分析】根據(jù)兩個圖形相似的性質(zhì)及判定方法,對應(yīng)邊的比相等,對應(yīng)角相等,兩個條件同時滿足來判斷正誤.【詳解】解:A兩個矩形對應(yīng)角都是直角相等,對應(yīng)邊不一定成比例,所以不一定相似,故本小題錯誤;B兩個菱形有一個角相等,則其它對應(yīng)角也相等,對應(yīng)邊成比例,所以一定相似,故本小題正確;C兩個正方形一定相似,正確;D有一個角相等的兩個等腰梯形,對應(yīng)角一定相等,但對應(yīng)邊的比不一定相等,故本小題錯誤.故選:BC.【考點】本題考查的是相似多邊形的判定及菱形,矩形,正方形,等腰梯形的性質(zhì)及其定義.3、AC【解析】【分析】由中線BE和中線CD得DE是△ABC的中位線,由中位線的性質(zhì)判斷A,B;由中位線得證△DOE∽△COB,從而判斷C;求得△ODE與△ABC的面積關(guān)系,由中線CD得△ADC和△ABC的面積關(guān)系,從而判斷D.【詳解】解:∵BE和CD是△ABC的中線,∴DE是△ABC的中位線,點O是△ABC的重心,∴DE:BC=1:2,故選項A正確,符合題意;AD:AB=1:2,DE∥BC,∴∠OED=∠OBC,∠ODE=∠OCB,∴△OED∽△OBC,∴,故選項B錯誤,不符合題意;∴OE:OB=ED:BC=1:2,∴AD:AB=OE:OB,故選項C正確,符合題意;∵CD是△ABC的中線,∴,∵OE:OB=OD:OC=1:2∴OC:DC=2:3∴,∴∴,故選項D錯誤,不符合題意;故答案為:A、C.【考點】此題考查了中位線的性質(zhì),涉及了比例線段和相似三角形的性質(zhì),熟練掌握相關(guān)基本性質(zhì)是解題的關(guān)鍵.4、ABD【解析】【分析】根據(jù)三角形相似的判斷方法判斷即可.【詳解】解:A、∵∠AED=∠ABC,∠A=∠A,∴△AED∽△ABC,符合題意;B、∵∠ADE=∠AC,∠A=∠A,∴△AED∽△ABC,符合題意;C、,不能判定△AED∽△ABC,不符合題意;D、∵,∠A=∠A,∴△AED∽△ABC,符合題意.故選:ABD.【考點】此題考查了三角形相似的判斷方法,解題的關(guān)鍵是熟練掌握三角形相似的判定方法.5、ABD【解析】【分析】先判斷三角形相似,再根據(jù)相似三角形的對應(yīng)邊成比例,則可判斷A、B、C的正確性,根據(jù)基本事實,一組平行線被兩條直線所截的對應(yīng)線段成比例,判斷D的正確性.【詳解】解:∵,∴∠A=∠D,∠B=∠C,∴,∴故A不正確;故B不正確;故C正確;∵,∴即故D不正確;故選:ABD.【考點】本題考查了相似三角形的判定和相似三角形的性質(zhì)以及基本事實的應(yīng)用,根據(jù)性質(zhì)找到對應(yīng)的邊成比例是解答此題的關(guān)鍵.6、ABD【解析】【分析】根據(jù)三角形相似的判斷方法逐個判斷即可.【詳解】解:A、AB·CB=CA·CD,不能判定△BDC∽△ABC,符合題意;B、AB·CD=BD·BC,不能判定△BDC∽△ABC,符合題意;C、BC2=AC·DC,∠BCD=∠ACB,∴△BDC∽△ABC,故選項不符合題意;D、BD2=CD·DA,不能判定△BDC與△ABC,符合題意;故選:ABD.【考點】此題考查了三角形相似的判定方法,解題的關(guān)鍵是熟練掌握三角形相似的判定方法.三、填空題1、5【解析】【分析】根據(jù)相似三角形的性質(zhì)確定兩直角邊的比值為1:2,以及6×6網(wǎng)格圖形中,最長線段為6,進行嘗試,可確定、、為邊的這樣一組三角形滿足條件.【詳解】解:∵在Rt△ABC中,AC=1,BC=2,∴AB=,AC:BC=1:2,∴與Rt△ABC相似的格點三角形的兩直角邊的比值為1:2,若該三角形最短邊長為4,則另一直角邊長為8,但在6×6網(wǎng)格圖形中,最長線段為6,但此時畫出的直角三角形為等腰直角三角形,從而畫不出端點都在格點且長為8的線段,故最短直角邊長應(yīng)小于4,在圖中嘗試,可畫出DE=,EF=2,DF=5的三角形,∵===,∴△ABC∽△DEF,∴∠DEF=∠C=90°,∴此時△DEF的面積為:×2÷2=10,△DEF為面積最大的三角形,其斜邊長為:5.故答案為:5.【考點】本題考查了作圖-應(yīng)用與設(shè)計、相似三角形的判定和性質(zhì)、勾股定理等知識,解題的關(guān)鍵是學會利用數(shù)形結(jié)合的思想解決問題,屬于中考填空題中的壓軸題.2、【解析】【分析】根據(jù)題意及勾股定理可得BC2=;又因Rt△ABC的邊BC在斜邊AB上的射影為a,根據(jù)射影定理可得BC2=a?AB,由此即可解答.【詳解】根據(jù)題意及勾股定理可得:BC2=;由題意可得:Rt△ABC的邊BC在斜邊AB上的射影為a,∴BC2=a?AB,即可得AB=.故答案為.【考點】本題考查射影定理的知識,注意掌握每一條直角邊是這條直角邊在斜邊上的射影和斜邊的比例中項.3、25【解析】【分析】由直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),證明得到,再利用外角性質(zhì)求出,再得到,從而得解.【詳解】如圖所示,∵是斜邊上的中線,∴,∴,∵斜邊上的中線與斜邊所成的銳角為,即,∴,解得:,另一個銳角,∴這個直角三角形的較小內(nèi)角是.故答案為:.【考點】本題考查了直角三角形的性質(zhì)和外角的性質(zhì),比較基礎(chǔ).4、【解析】【分析】先把方程的左邊分解因式,再化為三個一次方程進行降次,再解一次方程即可.【詳解】解:則或或解得:故答案為:【考點】本題考查的是利用因式分解的方法把高次方程轉(zhuǎn)化為一次方程,掌握“因式分解的方法與應(yīng)用”是解本題的關(guān)鍵.5、
3x2+5x-3=0
3
5【解析】【分析】將方程展開,化簡后即可求解.【詳解】將,開展為一般形式為:;則可知一次項系數(shù)為5,二次項系數(shù)為3,故答案為:,3,5.【考點】本題主要考查了將一元二次方程化為最簡式以及判斷方程各項系數(shù)的知識,熟記相關(guān)考點概念是解答本題的關(guān)鍵.6、22.5°【解析】【分析】由四邊形ABCD是一個正方形,根據(jù)正方形的性質(zhì),可得∠ACB=45°,又由AC=EC,根據(jù)等邊對等角,可得∠E=∠CAE,繼而根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和求得∠EAC的度數(shù),進一步即可求得∠DAE的度數(shù).【詳解】解:∵四邊形是正方形,∴,∴,又∵,∴,則.故答案為:22.5°【考點】此題考查了正方形的性質(zhì)以及等腰三角形的性質(zhì).此題比較簡單,注意掌握數(shù)形結(jié)合思想的應(yīng)用.7、0(答案不唯一)【解析】【分析】根據(jù)一元二次方程根的判別式求出的取值范圍,由此即可得出答案.【詳解】解:由題意得:此一元二次方程根的判別式,解得,則的值可以是0,故答案為:0(答案不唯一).【考點】本題考查了一元二次方程根的判別式,熟練掌握一元二次方程根的判別式是解題關(guān)鍵.8、1【解析】【分析】證明四邊形DEPF是矩形得PE=DF,證明△PFC是等腰直角三角形得PF=CF便可求得結(jié)果.【詳解】解:∵四邊形ABCD是正方形,∴∠ADC=90°,∠ACD=,∵PE⊥AD,PF⊥CD,∴四邊形DEPF是矩形,∴PE=DF,∵∠ACD=45°,∠PFC=90°,∴PF=CF,∴PE+PF=DF+CF=CD=1,故答案為:1.【考點】本題主要考查了正方形的性質(zhì),矩形的性質(zhì)與判定,等腰直角三角形的判定,關(guān)鍵是證明PE=DF,PF=CF.四、解答題1、(1)m>5;(2)m=13.【解析】【分析】(1)由反比例函數(shù)圖象位于第一象限得到m﹣5大于0,即可求出m的范圍;(2)根據(jù)反比例函數(shù)系數(shù)k的幾何意義得出(m﹣5)=4,解得即可.【詳解】解:(1)∵這個反比例函數(shù)的圖象分布在第一、第三象限,∴m﹣5>0,解得m>5;(2)∵S△OAB=|k|,△OAB的面積為4,∴(m﹣5)=4,∴m=13.【考點】此題考查了反比例函數(shù)系數(shù)k的幾何意義,反比例函數(shù)的圖象與性質(zhì),根據(jù)系數(shù)k的幾何意義得出(m?5)=4是解題的關(guān)鍵.2、【解析】【分析】如圖,根據(jù)題意表示出AP=4t,DQ=20-t;根據(jù)矩形的對邊相等,求出t的值,即可解決問題.【詳解】解:由題意得:AP=4t,DQ=20-t;∵四邊形APQD是矩形,∴AP=DQ,即4t=20-t,解得:t=4(s).即當t=4s時,四邊形APQD是矩形.【考點】該題主要考查了矩形的判定及其性質(zhì)的應(yīng)用問題;解題的一般策略是靈活運用矩形的性質(zhì)來分析、判斷、解答.3、105°【解析】【分析】首先過點A作AO⊥FB的延長線于點O,連接BD,交AC于點Q,易得四邊形AOBQ是正方形,四邊形ACFE是菱形,Rt△AOE中,AE=2AO,即可求得∠AEO=30°,繼而求得答案.【詳解】作AO⊥FB的延長線,BQ⊥AC∵BF∥AC,∴AO∥BQ且∠QAB=∠QBA=45°∴AO=BQ=AQ=AC∵AE=AC
∴AO=AE∴∠AEO=30°∵BF∥AC
∴∠CAE∠AEO=30°∵BF∥AC,CF∥AE
∴∠CFE∠CAE=30°∵BF∥AC
∴∠CBF∠BCA=45°∠BCF=180°-∠CBF-∠CFE=180°-45°-30°=105°【考點】本題考了正方形的性質(zhì)、平行四邊形的判定與性質(zhì)以及含30°的直角三角形的性質(zhì),解題關(guān)鍵是注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.4、(1)見解析;(2)28;(3)(2a,2b).【解析】【分析】(1)連接OB,延長OB到B1使得OB1=2OB,同法作出A1,C1,連接A1C1,B1C1,A1B1即可.(2)兩條分割法求出三角形的面積即可.(3)利用相似三角形的性質(zhì)解決問題即可.【詳解】解:(1)△A1B1C1即為所求.(2)△A1B1C1的面積=4S△ABC=4×(4×5﹣×3×5﹣×1×3﹣×2×4)=28,故答案為:28.(3)點P(a,b)為△ABC內(nèi)一點,則在△A1B1C1內(nèi)的對應(yīng)點P’的坐標為(2a,2b),故答案為:(2a,2b).【考點】本題考查作圖——位似變換,三角形的面積等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.5、(1),;(2)當y1<y2,時,自變量x的取值范圍為x>8或0<x<2;(3)點P的坐標為(3,0)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年真人秀節(jié)目制作與傳播項目可行性研究報告
- 2025年大數(shù)據(jù)分析與運營服務(wù)項目可行性研究報告
- 2025年氫能汽車推廣項目可行性研究報告
- 2025年城市水務(wù)管理優(yōu)化與創(chuàng)新項目可行性研究報告
- 2025年AI助手在企業(yè)中的應(yīng)用可行性研究報告
- 紙業(yè)購銷合同范本
- 臨時補償協(xié)議書
- 煤礦買賣合同協(xié)議
- 部編版歷史中考試題附答案
- 綜合執(zhí)法考試題目及答案
- 2025高考化學專項復習:60個高中化學??紝嶒?/a>
- 江蘇自考現(xiàn)代企業(yè)經(jīng)營管理-練習題(附答案)27875
- 場地空地出租合同范本
- 電力建設(shè)施工技術(shù)規(guī)范 第5部分:管道及系統(tǒng)-DLT 5190.5
- 大學體育與科學健身智慧樹知到期末考試答案2024年
- 月子中心員工禮儀培訓方案
- 電鍍制造成本預估表
- 2023大型新能源集控中心建設(shè)項目技術(shù)方案
- 2023年研究生類社會工作碩士(MSW)考試題庫
- 華中科技大學《編譯原理》編譯典型題解
- 猝死的搶救配合與護理
評論
0/150
提交評論