版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)上冊《全等三角形》專項攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,矩形ABCD中,對角線AC的垂直平分線EF分別交BC,AD于點E,F(xiàn),若BE=3,AF=5,則AC的長為(
)A. B. C.10 D.82、如圖,,,要使,直接利用三角形全等的判定方法是A.AAS B.SAS C.ASA D.SSS3、如圖,在ABC和BDE中,點C在邊BD上,邊AC交邊BE于點F.若AC=BD,AB=ED,BC=BE,則∠ACB等于(
)A.∠EDB B.∠BED C.∠AFB D.2∠ABF4、已知,如圖,在△ABC中,D為BC邊上的一點,延長AD到點E,連接BE、CE,∠ABD+∠3=90°,∠1=∠2=∠3,下列結(jié)論:①△ABD為等腰三角形;②AE=AC;③BE=CE=CD;④CB平分∠ACE.其中正確的結(jié)論個數(shù)有(
)A.1個 B.2個 C.3個 D.4個5、已知:如圖,∠1=∠2,則不一定能使△ABD≌△ACD的條件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,若△ABC≌△ADE,且∠1=35°,則∠2=_____.2、如圖,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,則∠B=______度.3、△ABC中,∠BAC:∠ACB:∠ABC=4:3:2,且△ABC≌△DEF,則∠DEF=______度.4、如圖,已知,,,則等于________.5、在ABC中,AB=AC,點D在BC上(不與點B,C重合).只需添加一個條件即可證明ABD≌ACD,這個條件可以是________(寫出一個即可)三、解答題(5小題,每小題10分,共計50分)1、如圖,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求證:BC=DE.2、如圖,小明和小華兩家位于A,B兩處,隔河相望.要測得兩家之間的距離,小明設(shè)計如下方案:從點B出發(fā)沿河岸畫一條射線BF,在BF上截取,過點D作,取點E使E,C,A在同一條直線上,則DE的長就是A,B之間的距離,說明他設(shè)計的道理.3、如圖,在四邊形ABCD中,已知BD平分∠ABC,∠BAD+∠C=180°,求證:AD=CD.4、如圖,在△ABC中,∠ABC=90°,AB=CB,點E在邊BC上,點F在邊AB的延長線上,BE=BF.
(1)求證:△ABE≌△CBF;
(2)若∠CAE=30°,求∠ACF的度數(shù).5、已知:如圖,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°.(1)求證:AC=BD;(2)求∠APB的度數(shù).-參考答案-一、單選題1、A【解析】【分析】連接AE,由線段垂直平分線的性質(zhì)得出OA=OC,AE=CE,證明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=4,再由勾股定理求出AC即可.【詳解】解:如圖,連結(jié)AE,設(shè)AC交EF于O,依題意,有AO=OC,∠AOF=∠COE,∠OAF=∠OCE,所以,△OAF≌△OCE(ASA),所以,EC=AF=5,因為EF為線段AC的中垂線,所以,EA=EC=5,又BE=3,由勾股定理,得:AB=4,所以,AC=【考點】本題考查了全等三角形的判定、勾股定理,熟練掌握是解題的關(guān)鍵.2、B【解析】【分析】根據(jù)平行線性質(zhì)得出∠ABD=∠CDB,再加上AB=DC,BD=DB,根據(jù)全等三角形的判定定理SAS即可推出△ABD≌△CDB,從而推出∠A=∠C,即可得出答案.【詳解】,,在和中,,≌,,故選B.【考點】本題考查了平行線性質(zhì)、全等三角形的判定與性質(zhì)的應(yīng)用,熟練掌握全等三角形的判定與性質(zhì)定理是解題的關(guān)鍵.3、C【解析】【分析】根據(jù)全等三角形的判定與性質(zhì)可得=,再根據(jù)三角形外角的性質(zhì)即可求得答案.【詳解】解:在和中,,,,是的外角,,∴,故選:C.【考點】本題考查了全等三角形的判定與性質(zhì)以及三角形的外角性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解決本題的關(guān)鍵.4、C【解析】【分析】作AF平分∠BAD.可根據(jù)證△ABF≌△ADF,推出AB=AD,得出△ABD為等腰三角形;可根據(jù)同弦所對的圓周角相等知點A、B、C、E共圓,可判出BE=CE=CD,根據(jù)三角形內(nèi)角和等于180°,可判出AE=AC;求出∠7=90°﹣∠2,根據(jù)∠1=∠4=∠2推出∠4≠∠7,即可得出BC不是∠ACE的平分線.【詳解】解:作AF平分∠BAD,∵∠BAD=∠3,∠ABD+∠3=90°,∴∠BAF=∠3=∠DAF,∴∠ABF+∠BAF=90°∴∠AFB=∠AFD=90°,在△BAF和△DAF中∴△ABF≌△ADF(ASA),∴AB=AD,故①正確;∵AE=AC,∴∠6=∠4+∠7==90°?,∵∠5=∠ADB=∠ABD==90°?,∠1=∠2,∴∠5=∠6=90°?∴CE=CD,∠4=180°?∠5?∠6=180°?2(90°?)=∠1,∵∠1=∠3,∴∠4=∠3,∴BE=CE,∴BE=CE=CD,∴③正確;∵∠6+∠2+∠ACE=180°,∠6=∠5=∠ADB=∠ABD=90°﹣∠2.∴∠ACE=180°﹣∠6﹣∠2=90°﹣∠2,∴∠ACE=∠6,∴AE=CE,故②正確∵∠5=∠2+∠7=90°﹣∠2,∴∠7=90°﹣∠2,∵∠BAD=∠4=∠2,∴∠4≠∠7,故④錯誤;故選C.【考點】本題主要考查了全等三角形的判定和性質(zhì)、同弦所對的圓周角相等、三角形內(nèi)角和的相關(guān)知識,靈活運用所學(xué)知識是解題的關(guān)鍵.5、B【解析】【分析】利用全等三角形判定定理ASA,SAS,AAS對各個選項逐一分析即可得出答案.【詳解】解:A、∵∠1=∠2,AD為公共邊,若AB=AC,則△ABD≌△ACD(SAS);故A不符合題意;B、∵∠1=∠2,AD為公共邊,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合題意;C、∵∠1=∠2,AD為公共邊,若∠B=∠C,則△ABD≌△ACD(AAS);故C不符合題意;D、∵∠1=∠2,AD為公共邊,若∠BDA=∠CDA,則△ABD≌△ACD(ASA);故D不符合題意.故選B.二、填空題1、35°.【解析】【分析】根據(jù)全等的性質(zhì)可得:∠EAD=∠CAB,再根據(jù)等式的基本性質(zhì)可得∠1=∠2=35°.【詳解】解:∵△ABC≌△ADE,∴∠EAD=∠CAB,∴∠EAD-∠CAD=∠CAB-∠CAD,∴∠2=∠1=35°.故答案為35°.【考點】此題考查的是全等三角形的性質(zhì),掌握全等三角形的對應(yīng)角相等是解決此題的關(guān)鍵.2、120【解析】【分析】根基三角形全等的性質(zhì)得到∠C=∠C′=24°,再根據(jù)三角形的內(nèi)角和定理求出答案.【詳解】∵,∴∠C=∠C′=24°,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=120°,故答案為:120.【考點】此題考查三角形全等的性質(zhì)定理:全等三角形的對應(yīng)角相等,三角形的內(nèi)角和定理.3、40【解析】【分析】設(shè)∠BAC為4x,則∠ACB為3x,∠ABC為2x,由∠BAC+∠ACB+∠ABC=180°得4x+3x+2x=180.【詳解】解:設(shè)∠BAC為4x,則∠ACB為3x,∠ABC為2x∵∠BAC+∠ACB+∠ABC=180°∴4x+3x+2x=180,解得x=20∴∠ABC=2x=40°∵△ABC≌△DEF∴∠DEF=∠ABC=40°.故答案為40【考點】考核知識點:全等三角形性質(zhì).理解全等三角形性質(zhì)是關(guān)鍵.4、【解析】【分析】根據(jù)提示可找到一組公共邊OP,從而根據(jù)SSS判定△POB≌△POA,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論.【詳解】在和中,∵,,,,故答案為40°.【考點】本題考查了全等三角形的判定及性質(zhì),熟練掌握基本的性質(zhì)和判定是正確解題的關(guān)鍵.5、∠BAD=∠CAD(或BD=CD)【解析】【分析】證明ABD≌ACD,已經(jīng)具備根據(jù)選擇的判定三角形全等的判定方法可得答案.【詳解】解:要使則可以添加:∠BAD=∠CAD,此時利用邊角邊判定:或可以添加:此時利用邊邊邊判定:故答案為:∠BAD=∠CAD或()【考點】本題考查的是三角形全等的判定,屬開放性題,掌握三角形全等的判定是解題的關(guān)鍵.三、解答題1、證明見解析.【解析】【分析】根據(jù)ASA證明△ADE≌△ABC即可得到答案;【詳解】證明:∵∠1=∠2,∵∠DAC+∠1=∠2+∠DAC∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ADE≌△ABC(ASA)∴BC=DE,【考點】本題考查了全等三角形的判定與性質(zhì):判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的對應(yīng)邊相等.2、見解析【解析】【分析】根據(jù)兩直線平行,內(nèi)錯角相等可得,然后利用“角角邊”證明和全等,根據(jù)全等三角形對應(yīng)邊相等解答;【詳解】解:,,在和中,,,,即的長就是、兩點之間的距離.【考點】本題考查了全等三角形的應(yīng)用,熟練掌握三角形全等的判定方法是解題的關(guān)鍵.3、見解析【解析】【詳解】試題分析:在邊BC上截取BE=BA,連接DE,根據(jù)SAS證△ABD≌△EBD,推出AD=ED,∠A=∠BED,求出∠DEC=∠C即可.試題解析:證明:在邊BC上截取BE=BA,連接DE.∵BD平分∠ABC,∴∠ABD=∠CBD.在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴AD=ED,∠A=∠BED.∵∠A+∠C=180°,∠BED+∠CED=180°,∴∠C=∠CED,∴CD=ED,∴AD=CD.點睛:本題考查了等腰三角形的判定,全等三角形的性質(zhì)和判定等知識點的應(yīng)用,解答此題的關(guān)鍵是正確作輔助線,又是難點,解題的思路是把AD和CD放到一個三角形中,根據(jù)等腰三角形的判定進行證明,題型較好,有一定的難度.4、(1)見解析;(2)∠ACF的度數(shù)為60°【解析】【分析】(1)由∠ABC=90°可得∠CBF=90°,再由SAS就即可得出△ABE≌△CBF;(2)根據(jù)題意可得∠BAC=∠ACB=45°由∠CAE=30°可得∠BAE=15°,即∠BCF=15°,進而可以求出∠ACF的度數(shù).【詳解】(1)證明:∵∠ABC=90°,
∴∠ABC=∠CBF=90°.在△ABE和△CBF中,,∴△ABE≌△CBF(SAS);(2)解:∵△ABE≌△CBF,
∴∠BAE=∠BCF,∵∠ABC=90°,AB=CB,∴∠BCA=∠BAC=45°,∵∠CAE=30°,∴∠BAE=15°,∴∠BCF=15°,∵∠ACF=∠BCF+∠ACB,∴∠ACF=15°+45°=60°.答:∠ACF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年光建一體化科技公司技術(shù)測試與成果驗收管理制度
- 2026江蘇南京大學(xué)化學(xué)學(xué)院助理招聘備考題庫含答案詳解(研優(yōu)卷)
- 2025年全國各地高考真題及答案解析
- 2026江蘇南京大學(xué)化學(xué)學(xué)院助理招聘備考題庫附參考答案詳解(基礎(chǔ)題)
- 2025年反壟斷知識測試題及答案
- (2025年)食品質(zhì)量控制與管理復(fù)習(xí)題附答案
- (2025年)msoffice考試題庫及答案
- 2026年叉車安全培訓(xùn)考試題庫及完整答案1套
- 2026年叉車崗位實操考試題庫附答案
- 2026年叉車技能試題庫及一套答案
- 2026年空天科技衛(wèi)星互聯(lián)網(wǎng)應(yīng)用報告及未來五至十年全球通信創(chuàng)新報告
- 2026四川成都市錦江區(qū)國有企業(yè)招聘18人筆試備考試題及答案解析
- 2025學(xué)年度人教PEP五年級英語上冊期末模擬考試試卷(含答案含聽力原文)
- 2025年上海市普通高中學(xué)業(yè)水平等級性考試地理試卷(含答案)
- 腔鏡器械的清洗與管理
- 企業(yè)內(nèi)部承包責(zé)任制管理辦法
- 胰島細(xì)胞瘤課件
- 生鮮采購員知識培訓(xùn)內(nèi)容課件
- 《TCSUS69-2024智慧水務(wù)技術(shù)標(biāo)準(zhǔn)》
- 折彎機操作工作業(yè)指導(dǎo)書
- 硫酸銨生產(chǎn)工藝
評論
0/150
提交評論