滬科版9年級下冊期末測試卷(考試直接用)附答案詳解_第1頁
滬科版9年級下冊期末測試卷(考試直接用)附答案詳解_第2頁
滬科版9年級下冊期末測試卷(考試直接用)附答案詳解_第3頁
滬科版9年級下冊期末測試卷(考試直接用)附答案詳解_第4頁
滬科版9年級下冊期末測試卷(考試直接用)附答案詳解_第5頁
已閱讀5頁,還剩33頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

滬科版9年級下冊期末測試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、如圖,在中,,,將繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到,此時(shí)點(diǎn)B的對應(yīng)點(diǎn)D恰好落在BC邊上,則CD的長為()A.1 B.2 C.3 D.42、如圖,圓形螺帽的內(nèi)接正六邊形的面積為24cm2,則圓形螺帽的半徑是()A.1cm B.2cm C.2cm D.4cm3、平面直角坐標(biāo)系中點(diǎn)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)是()A. B. C. D.4、下列事件是必然發(fā)生的事件是()A.在地球上,上拋的籃球一定會下落B.明天的氣溫一定比今天高C.中秋節(jié)晚上一定能看到月亮D.某彩票中獎(jiǎng)率是1%,買100張彩票一定中獎(jiǎng)一張5、中國有悠久的金石文化,印信是金石文化的代表之一.南北朝時(shí)期的官員獨(dú)孤信的印信是迄今發(fā)現(xiàn)的中國古代唯一一枚楷書印.它的表面均由正方形和等邊三角形組成(如圖1),可以看成圖2所示的幾何體.從正面看該幾何體得到的平面圖形是()A. B. C. D.6、如圖,AB,CD是⊙O的弦,且,若,則的度數(shù)為()A.30° B.40° C.45° D.60°7、小張同學(xué)去展覽館看展覽,該展覽館有A、B兩個(gè)驗(yàn)票口(可進(jìn)可出),另外還有C、D兩個(gè)出口(只出不進(jìn)).則小張從不同的出入口進(jìn)出的概率是()A. B. C. D.8、如圖,該幾何體的左視圖是()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,過⊙O外一點(diǎn)P,作射線PA,PB分別切⊙O于點(diǎn)A,B,,點(diǎn)C在劣弧AB上,過點(diǎn)C作⊙O的切線分別與PA,PB交于點(diǎn)D,E.則______度.2、某射擊運(yùn)動員在同一條件下的射擊成績記錄如下:射擊次數(shù)20401002004001000“射中9環(huán)以上”的次數(shù)153378158321801“射中9環(huán)以下”的頻率通過計(jì)算頻率,估計(jì)這名運(yùn)動員射擊一次時(shí)“射中9環(huán)以上”的概率是______(結(jié)果保留小數(shù)點(diǎn)后一位).3、如圖,⊙O的半徑為2,△ABC是⊙O的內(nèi)接三角形,連接OB、OC,若弦BC的長度為,則∠BAC=________度.4、不透明的袋子里裝有一個(gè)黑球,兩個(gè)紅球,這些球除顏色外無其它差別,從袋子中取出一個(gè)球,不放回,再取出一個(gè)球,記下顏色,兩次摸出的球是一紅—黑的概率是________.5、為了落實(shí)“雙減”政策,朝陽區(qū)一些學(xué)校在課后服務(wù)時(shí)段開設(shè)了與冬奧會項(xiàng)目冰壺有關(guān)的選修課.如圖,在冰壺比賽場地的一端畫有一些同心圓作為營壘,其中有兩個(gè)圓的半徑分別約為60cm和180cm,小明擲出一球恰好沿著小圓的切線滑行出界,則該球在大圓內(nèi)滑行的路徑MN的長度為______cm.6、已知如圖,AB=8,AC=4,∠BAC=60°,BC所在圓的圓心是點(diǎn)O,∠BOC=60°,分別在、線段AB和AC上選取點(diǎn)P、E、F,則PE+EF+FP的最小值為____________.7、已知圓O的圓心到直線l的距離為2,且圓的半徑是方程x2﹣5x+6=0的根,則直線l與圓O的的位置關(guān)系是______.三、解答題(7小題,每小題0分,共計(jì)0分)1、作圖題(1)由大小相同的小立方塊搭成的幾何體如下圖,請?jiān)谟覉D的方格中畫出該幾何體的俯視圖和左視圖.(2)用小立方體搭一幾何體,使得它的俯視圖和左視圖與你在上圖方格中所畫的圖一致,則這樣的幾何體最少要個(gè)小立方塊,最多要個(gè)小立方塊.2、已知:Rt△ABC中,∠ACB=90°,∠ABC=60°,將△ABC繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn).(1)當(dāng)C轉(zhuǎn)到AB邊上點(diǎn)C′位置時(shí),A轉(zhuǎn)到A′,(如圖1所示)直線CC′和AA′相交于點(diǎn)D,試判斷線段AD和線段A′D之間的數(shù)量關(guān)系,并證明你的結(jié)論.(2)將Rt△ABC繼續(xù)旋轉(zhuǎn)到圖2的位置時(shí),(1)中的結(jié)論是否成立?若成立,請證明;若不成立,請說明理由;(3)將Rt△ABC旅轉(zhuǎn)至A、C′、A′三點(diǎn)在一條直線上時(shí),請直接寫出此時(shí)旋轉(zhuǎn)角α的度數(shù).3、如圖,已知線段,點(diǎn)A在線段上,且,點(diǎn)B為線段上的一個(gè)動點(diǎn).以A為中心順時(shí)針旋轉(zhuǎn)點(diǎn)M,以B為中心逆時(shí)針旋轉(zhuǎn)點(diǎn)N,旋轉(zhuǎn)角分別為和.若旋轉(zhuǎn)后M、N兩點(diǎn)重合成一點(diǎn)C(即構(gòu)成),設(shè).(1)的周長為_______;(2)若,求x的值.4、如圖,拋物線y=-+x+2與x軸負(fù)半軸交于點(diǎn)A,與y軸交于點(diǎn)B.(1)求A,B兩點(diǎn)的坐標(biāo);(2)如圖1,點(diǎn)C在y軸右側(cè)的拋物線上,且AC=BC,求點(diǎn)C的坐標(biāo);(3)如圖2,將△ABO繞平面內(nèi)點(diǎn)P順時(shí)針旋轉(zhuǎn)90°后,得到△DEF(點(diǎn)A,B,O的對應(yīng)點(diǎn)分別是點(diǎn)D,E,F(xiàn)),D,E兩點(diǎn)剛好在拋物線上.①求點(diǎn)F的坐標(biāo);②直接寫出點(diǎn)P的坐標(biāo).5、如圖,AB是⊙O的直徑,點(diǎn)D,E在⊙O上,四邊形BDEO是平行四邊形,過點(diǎn)D作交AE的延長線于點(diǎn)C.(1)求證:CD是⊙O的切線.(2)若,求陰影部分的面積.6、在△ABC與△DEF中,∠BAC=∠EDF=90°,且AB=AC,DE=DF.(1)如圖1,若點(diǎn)D與A重合,AC與EF交于P,且∠CAE=30°,CE,求EP的長;(2)如圖2,若點(diǎn)D與C重合,EF與BC交于點(diǎn)M,且BM=CM,連接AE,且∠CAE=∠MCE,求證:AE+MF=CE;(3)如圖3,若點(diǎn)D與A重合,連接BE,且∠ABE∠ABC,連接BF,CE,當(dāng)BF+CE最小時(shí),直接出的值.7、如圖,已知弓形的長,弓高,(,并經(jīng)過圓心O).(1)請利用尺規(guī)作圖的方法找到圓心O;(2)求弓形所在的半徑的長.-參考答案-一、單選題1、B【分析】由題意以及旋轉(zhuǎn)的性質(zhì)可得為等邊三角形,則BD=2,故CD=BC-BD=2.【詳解】由題意以及旋轉(zhuǎn)的性質(zhì)知AD=AB,∠BAD=60°∴∠ADB=∠ABD∵∠ADB+∠ABD+∠BAD=180°∴∠ADB=∠ABD=60°故為等邊三角形,即AB=AD=BD=2則CD=BC-BD=4-2=2故選:B.【點(diǎn)睛】本題考查了等邊三角形的判定及性質(zhì),等邊三角形的三邊都相等,三個(gè)內(nèi)角都相等,并且每一個(gè)內(nèi)角都等于,等邊三角形判定的方法有:三邊相等的三角形是等邊三角形(定義);三個(gè)內(nèi)角都相等的三角形是等邊三角形;有一個(gè)內(nèi)角是60度的等腰三角形是等邊三角形;兩個(gè)內(nèi)角為60度的三角形是等邊三角形.2、D【分析】根據(jù)圓內(nèi)接正六邊形的性質(zhì)可得△AOB是正三角形,由面積公式可求出半徑.【詳解】解:如圖,由圓內(nèi)接正六邊形的性質(zhì)可得△AOB是正三角形,過作于設(shè)半徑為r,即OA=OB=AB=r,OM=OA?sin∠OAB=,∵圓O的內(nèi)接正六邊形的面積為(cm2),∴△AOB的面積為(cm2),即,,解得r=4,故選:D.【點(diǎn)睛】本題考查正多邊形和圓,作邊心距轉(zhuǎn)化為直角三角形的問題是解決問題的關(guān)鍵.3、B【分析】根據(jù)關(guān)于原點(diǎn)對稱的兩個(gè)點(diǎn),橫坐標(biāo)、縱坐標(biāo)分別互為相反數(shù),即可求解.【詳解】解:平面直角坐標(biāo)系中點(diǎn)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)是故選B【點(diǎn)睛】本題考查了關(guān)于原點(diǎn)對稱的點(diǎn)的特征,掌握關(guān)于原點(diǎn)對稱的兩個(gè)點(diǎn),橫坐標(biāo)、縱坐標(biāo)分別互為相反數(shù)是解題的關(guān)鍵.4、A【分析】根據(jù)必然事件的概念(必然事件指在一定條件下一定發(fā)生的事件)可判斷正確答案.【詳解】解:A、在地球上,上拋的籃球一定會下落是必然事件,符合題意;B、明天的氣溫一定比今天的高,是隨機(jī)事件,不符合題意;C、中秋節(jié)晚上一定能看到月亮,是隨機(jī)事件,不符合題意;D、某彩票中獎(jiǎng)率是1%,買100張彩票一定中獎(jiǎng)一張,是隨機(jī)事件,不符合題意.故選:A.【點(diǎn)睛】本題考查了必然事件的概念,解決本題需要正確理解必然事件、不可能事件、隨機(jī)事件的概念.關(guān)鍵是理解必然事件指在一定條件下一定發(fā)生的事件.5、D【分析】找到從正面看所得到的圖形即可.【詳解】解:從正面看是一個(gè)正六邊形,里面有2個(gè)矩形,故選D.【點(diǎn)睛】本題靈活考查了三種視圖之間的關(guān)系以及視圖和實(shí)物之間的關(guān)系,同時(shí)還考查了對圖形的想象力,難度適中.6、B【分析】由同弧所對的圓周角是圓心角的一半可得,利用平行線的性質(zhì):兩直線平行,內(nèi)錯(cuò)角相等即可得.【詳解】解:∵,∴,∵,∴,故選:B.【點(diǎn)睛】題目主要考查圓周角定理,平行線的性質(zhì)等,理解題意,找出相關(guān)的角度是解題關(guān)鍵.7、D【分析】先畫樹狀圖得到所有的等可能性的結(jié)果數(shù),然后找到小張從不同的出入口進(jìn)出的結(jié)果數(shù),最后根據(jù)概率公式求解即可.【詳解】解:列樹狀圖如下所示:由樹狀圖可知一共有8種等可能性的結(jié)果數(shù),其中小張從不同的出入口進(jìn)出的結(jié)果數(shù)有6種,∴P小張從不同的出入口進(jìn)出的結(jié)果數(shù),故選D.【點(diǎn)睛】本題主要考查了用列表法或樹狀圖法求解概率,解題的關(guān)鍵在于能夠熟練掌握用列表法或樹狀圖法求解概率.8、C【分析】根據(jù)從左邊看得到的圖形是左視圖解答即可.【詳解】解:從左邊看是一個(gè)正方形被水平的分成3部分,中間的兩條分線是虛線,故C正確.故選C.【點(diǎn)睛】本題主要考查了簡單組合體的三視圖,掌握三視圖的定義成為解答本題的關(guān)鍵.二、填空題1、65【分析】連接OA,OC,OB,根據(jù)四邊形內(nèi)角和可得,依據(jù)切線的性質(zhì)及角平分線的判定定理可得DO平分,EO平分,再由各角之間的數(shù)量關(guān)系可得,,根據(jù)等量代換可得,代入求解即可.【詳解】解:如圖所示:連接OA,OC,OB,∵PA、PB、DE與圓相切于點(diǎn)A、B、E,∴,,,∵,∴,∵,∴DO平分,EO平分,∴,,∴,,∴,故答案為:65.【點(diǎn)睛】題目主要考查圓的切線的性質(zhì),角平分線的判定和性質(zhì),四邊形內(nèi)角和等,理解題意,作出相應(yīng)輔助線,綜合運(yùn)用這些知識點(diǎn)是解題關(guān)鍵.2、0.8【分析】重復(fù)試驗(yàn)次數(shù)越多,其頻率越能估計(jì)概率,求出射擊1000次時(shí)的頻率即可.【詳解】解:由題意可知射擊1000次時(shí),運(yùn)動員射擊一次時(shí)“射中9環(huán)以上”的頻率為∴用頻率估計(jì)概率為0.801,保留小數(shù)點(diǎn)后一位可知概率值為0.8故答案為:0.8.【點(diǎn)睛】本題考查了概率.解題的關(guān)鍵在于明確頻率估計(jì)概率時(shí)要在重復(fù)試驗(yàn)次數(shù)盡可能多的情況下.3、60【分析】在Rt△BOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圓周角定理即可解決問題.【詳解】解:如圖作OE⊥BC于E.∵OE⊥BC,∴BE=EC=,∠BOE=∠COE,∴OE=1,∴OB=2OE,∴∠OBE=30°,∴∠BOE=∠COE=60°,∴∠BOC=120°,∴∠BAC=60°,故答案為:60.【點(diǎn)睛】本題考查三角形的外心與外接圓、圓周角定理.垂徑定理、勾股定理、直角三角形30度角性質(zhì)、等腰三角形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,靈活運(yùn)用所學(xué)知識解決問題.4、【分析】根據(jù)題意列出表格,可得6種等可能結(jié)果,其中一紅—黑的有4種,再利用概率公式,即可求解.【詳解】解:根據(jù)題意列出表格如下:黑球紅球1紅球2黑球紅球1、黑球紅球2、黑球紅球1黑球、紅球1紅球2、紅球1紅球2黑球、紅球2紅球1、紅球2得到6種等可能結(jié)果,其中一紅—黑的有4種,所以兩次摸出的球是一紅—黑的概率是.故答案為:【點(diǎn)睛】本題主要考查了求概率,能夠利用畫樹狀圖或列表格的方法解答是解題的關(guān)鍵.5、【分析】如圖,設(shè)小圓的切線MN與小圓相切于點(diǎn)D,與大圓交于M、N,連接OD、OM,根據(jù)切線的性質(zhì)定理和垂徑定理求解即可.【詳解】解:如圖,設(shè)小圓的切線MN與小圓相切于點(diǎn)D,與大圓交于M、N,連接OD、OM,則OD⊥MN,∴MD=DN,在Rt△ODM中,OM=180cm,OD=60cm,∴cm,∴cm,即該球在大圓內(nèi)滑行的路徑MN的長度為cm,故答案為:.【點(diǎn)睛】本題考查切線的性質(zhì)定理、垂徑定理、勾股定理,熟練掌握切線的性質(zhì)和垂徑定理是解答的關(guān)鍵.6、12【分析】如圖,連接BC,AO,作點(diǎn)P關(guān)于AB的對稱點(diǎn)M,作點(diǎn)P關(guān)于AC的對稱點(diǎn)N,連接MN交AB于E,交AC于F,此時(shí)△PEF的周長=PE+PF+EF=EM+EF+FM=MN,想辦法求出MN的最小值即可解決問題.【詳解】解:如圖,連接BC,AO,作點(diǎn)P關(guān)于AB的對稱點(diǎn)M,作點(diǎn)P關(guān)于AC的對稱點(diǎn)N,連接MN交AB于E,交AC于F,此時(shí)△PEF的周長=PE+PF+EF=EM+EF+FM=MN,∴當(dāng)MN的值最小時(shí),△PEF的值最小,∵AP=AM=AN,∠BAM=∠BAP,∠CAP=∠CAN,∠BAC=60°,∴∠MAN=120°,∴MN=AM=PA,∴當(dāng)PA的值最小時(shí),MN的值最小,取AB的中點(diǎn)J,連接CJ.∵AB=8,AC=4,∴AJ=JB=AC=4,∵∠JAC=60°,∴△JAC是等邊三角形,∴JC=JA=JB,∴∠ACB=90°,∴BC=,∵∠BOC=60°,OB=OC,∴△OBC是等邊三角形,∴OB=OC=BC=4,∠BCO=60°,∴∠ACH=30°,∵AH⊥OH,AH=AC=2,CH=AH=2,∴OH=6,∴OA==4,∵當(dāng)點(diǎn)P在直線OA上時(shí),PA的值最小,最小值為-,∴MN的最小值為?(-)=-12.故答案:-12.【點(diǎn)睛】本題考查了圓周角定理,垂徑定理,軸對稱-最短問題等知識,解題的關(guān)鍵是學(xué)會利用軸對稱解決最短問題,屬于中考填空題中的壓軸題.7、相切或相交【詳解】首先求出方程的根,再利用半徑長度,由點(diǎn)O到直線l的距離為d,若d<r,則直線與圓相交;若d=r,則直線于圓相切;若d>r,則直線與圓相離,從而得出答案.【分析】解:∵x2﹣5x+6=0,(x﹣2)(x﹣3)=0,解得:x1=2,x2=3,∵圓的半徑是方程x2﹣5x+6=0的根,即圓的半徑為2或3,∴當(dāng)半徑為2時(shí),直線l與圓O的的位置關(guān)系是相切,當(dāng)半徑為3時(shí),直線l與圓O的的位置關(guān)系是相交,綜上所述,直線l與圓O的的位置關(guān)系是相切或相交.故答案為:相切或相交.【點(diǎn)睛】本題考查的是直線與圓的位置關(guān)系,因式分解法解一元二次方程,解決此類問題可通過比較圓心到直線距離d與圓的半徑大小關(guān)系完成判定.三、解答題1、(1)見解析;(2)7【分析】(1)從上面看得到從左往右3列正方形的個(gè)數(shù)依次為1,2,1,依此畫出圖形即可;從左面看得到從左往右2列正方形的個(gè)數(shù)依次為2,1,依此畫出圖形即可;(2)由俯視圖易得最底層小立方塊的個(gè)數(shù),由左視圖找到其余層數(shù)里最少和最多個(gè)數(shù)相加即可.(1)(2)由俯視圖易得最底層有4個(gè)小立方塊,第二層最少有1個(gè)小立方塊,所以最少有5個(gè)小立方塊;第二層最多有3個(gè)小立方塊,所以最多有7個(gè)小立方塊.故答案為:57.【點(diǎn)睛】本題考查了幾何體三視圖的問題,掌握幾何體三視圖的性質(zhì)是解題的關(guān)鍵.2、(1),證明見解析(2)成立,證明見解析(3)【分析】(1)設(shè),先根據(jù)直角三角形的性質(zhì)可得,再根據(jù)旋轉(zhuǎn)的性質(zhì)可得,然后根據(jù)等邊三角形的判定與性質(zhì)可得,,都是等邊三角形,從而可得,由此即可得出結(jié)論;(2)在上截取,連接,先根據(jù)旋轉(zhuǎn)的性質(zhì)可得,從而可得,再根據(jù)三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)可得,,然后根據(jù)三角形的外角性質(zhì)可得,最后根據(jù)等腰三角形的判定可得,由此即可得出結(jié)論;(3)如圖(見解析),先根據(jù)旋轉(zhuǎn)的性質(zhì)可得,再根據(jù)直角三角形全等的判定定理證出,然后根據(jù)全等三角形的性質(zhì)可得,最后根據(jù)旋轉(zhuǎn)角即可得.(1)解:,證明如下:設(shè),在中,,,由旋轉(zhuǎn)的性質(zhì)得:,,和都是等邊三角形,,,是等邊三角形,,;(2)解:成立,證明如下:如圖,在上截取,連接,由旋轉(zhuǎn)的性質(zhì)得:,,,在和中,,,,,,;(3)解:如圖,當(dāng)點(diǎn)三點(diǎn)在一條直線上時(shí),由旋轉(zhuǎn)的性質(zhì)得:,,在和中,,,,則旋轉(zhuǎn)角.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì)、等邊三角形的判定與性質(zhì)、三角形全等的判定定理與性質(zhì)等知識點(diǎn),較難的是題(2),通過作輔助線,構(gòu)造全等三角形是解題關(guān)鍵.3、(1)4(2)【分析】(1)由旋轉(zhuǎn)知:AM=AC=1,BN=BC,將△ABC的周長轉(zhuǎn)化為MN;(2)由α+β=270°,得∠ACB=90°,利用勾股定理列方程即可.(1)解:由旋轉(zhuǎn)知:AM=AC=1,BN=BC=3-x,∴△ABC的周長為:AC+AB+BC=MN=4;故答案為:4;(2)解:∵α+β=270°,∴∠CAB+∠CBA=360°-270°=90°,∴∠ACB=180°-(∠CAB+∠CBA)=180°-90°=90°,∴AC2+BC2=AB2,即12+(3-x)2=x2,解得.【點(diǎn)睛】本題主要考查了旋轉(zhuǎn)的性質(zhì),勾股定理等知識,證明∠ACB=90°是解題的關(guān)鍵.4、(1)A(-1,0),B(0,2);(2)點(diǎn)C的坐標(biāo)(,);(3)①求點(diǎn)F的坐標(biāo)(1,2);②點(diǎn)P的坐標(biāo)(,)【分析】(1)令x=0,求得y值,得點(diǎn)B的坐標(biāo);令y=0,求得x的值,取較小的一個(gè)即求A點(diǎn)的坐標(biāo);(2)設(shè)C的坐標(biāo)為(x,-+x+2),根據(jù)AC=BC,得到,令t=-+x,解方程即可;(3)①根據(jù)題意,得∠BPE=90°,PB=PE即點(diǎn)P在線段BE的垂直平分線上,根據(jù)B,E都在拋物線上,則B,E是對稱點(diǎn),從而確定點(diǎn)P在拋物線的對稱軸上,點(diǎn)F在BE上,且BE∥x軸,點(diǎn)E(3,2),確定BE=3,根據(jù)旋轉(zhuǎn)性質(zhì),得EF=BO=2,從而確定點(diǎn)F的坐標(biāo);②根據(jù)BE=3,∠BPE=90°,PB=PE,確定P到BE的距離,即可寫出點(diǎn)P的坐標(biāo).【詳解】(1)令x=0,得y=2,∴點(diǎn)B的坐標(biāo)為B(0,2);令y=0,得-+x+2=0,解得∵點(diǎn)A在x軸的負(fù)半軸;∴A點(diǎn)的坐標(biāo)(-1,0);(2)設(shè)C的坐標(biāo)為(x,-+x+2),∵AC=BC,A(-1,0),B(0,2),∴,∵A(-1,0),B(0,2),∴,即,設(shè)t=-+x,∴,∴,∴,∴,整理,得,解得∵點(diǎn)C在y軸右側(cè)的拋物線上,∴,此時(shí)y=,∴點(diǎn)C的坐標(biāo)(,);(3)①如圖,根據(jù)題意,得∠BPE=90°,PB=PE即點(diǎn)P在線段BE的垂直平分線上,∵B,E都在拋物線上,∴B,E是對稱點(diǎn),∴點(diǎn)P在拋物線的對稱軸上,點(diǎn)F在BE上,且BE∥x軸,∵拋物線的對稱軸為直線x=,B(0,2),∴點(diǎn)E(3,2),BE=3,∵EF=BO=2,∴BF=1,∴點(diǎn)F的坐標(biāo)為(1,2);②如圖,設(shè)拋物線的對稱軸與BE交于點(diǎn)M,交x軸與點(diǎn)N,∵BE=3,∴BM=,∵∠BPE=90°,PB=PE,∴PM=BM=,∴PM=BM=,∴PN=2-=,∴點(diǎn)P的坐標(biāo)為(,).【點(diǎn)睛】本題考查了拋物線與坐標(biāo)軸的交點(diǎn),旋轉(zhuǎn)的性質(zhì),兩點(diǎn)間的距離公式,一元二次方程的解法,換元法解方程,熟練掌握拋物線的對稱性,靈活理解旋轉(zhuǎn)的意義,熟練解一元二次方程是解題的關(guān)鍵.5、(1)見詳解;(2)【分析】(1)連接OD,由題意易得,則有△ODB是等邊三角形,然后可得△AEO也為等邊三角形,進(jìn)而可得OD∥AC,最后問題可求證;(2)由(1)易得AE=ED,∠CED=∠OBD=60°,然后可得圓O的半徑,進(jìn)而可得扇形OED和△OED的面積,則有弓形ED的面積,最后問題可求解.【詳解】(1)證明:連接OD,如圖所示:∵四邊形BDEO是平行四邊形,∴,∴△ODB是等邊三角形,∴∠OBD=∠BOD=60°,∴∠AOE=∠OBD=60°,∵OE=OA,∴△AEO也為等邊三角形,∴∠EAO=∠DOB=60°,∴AE∥OD,∴∠ODC+∠C=180°,∵CD⊥AE,∴∠C=90°,∴∠ODC=90°,∵OD是圓O的半徑,∴CD是⊙O的切線.(2)解:由(1)得∠EAO=∠AOE=∠OBD=∠BOD=60°,ED∥AB,∴∠EAO=∠CED=60°,∵∠AOE+∠EOD+∠BOD=180°,∴∠EOD=60°,∴△DEO為等邊三角形,∴ED=OE=AE,∵CD⊥AE,∠CED=60°,∴∠CDE=30°,∴,∵,∴,∴,設(shè)△OED的高為h,∴,∴,∴.【點(diǎn)睛】本題主要考查扇形面積公式、切線的判定定理及解直角三角形,熟練掌握扇形面積公式、切線的判定定理及解直角三角形是解題的關(guān)鍵.6、(1);(2)證明見詳解;(3).【分析】(1)過點(diǎn)P作PG⊥EC于G,根據(jù)等腰直角三角形得出∠B=∠C=45°,根據(jù)PG⊥EC,可取∠GPC=90°-∠C=45°,可得PG=GC,根據(jù)三角形外角性質(zhì)∠EPC=75°,可求∠EPG=30°,根據(jù)30°直角三角形性質(zhì)得出EP=2EG,根據(jù)勾股定理根據(jù)EC=EG+GC=EG+,可求EG=即可;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,根據(jù)∠MAH=45°=∠HEC,可得點(diǎn)A、M、C、E四點(diǎn)共圓,得出∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,可得△AEJ為等腰直角三角形,根據(jù)根據(jù)勾股定理AJ=,得出∠CAE=∠MCE,可證∠JAC=∠JCA,可得AJ=JC=,先證△CHM∽△ECM,再證△AEM≌△HEC(AAS),得出EM=EC,再證△AME≌△MCF(AAS),得出AE=MF即可;(3)分兩種情況,當(dāng)BE在∠ABC的平分線上時(shí),與BE在△ABC外部時(shí),當(dāng)BE在∠ABC的平分線上時(shí),作∠ABC的平分線交AC于O,將△AEC逆時(shí)針旋轉(zhuǎn)90°得到△AFC′,過點(diǎn)O作OP⊥BC于P,則點(diǎn)E在BO上,有∠ABE=∠ABC,先證B、A、C′三點(diǎn)共線,根據(jù)兩點(diǎn)之交線段最短可得BF+CE=BF+C′F≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,此時(shí)點(diǎn)E在AC上與點(diǎn)O重合,然后利用勾股定理EC=,BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF在Rt△ABE中,根據(jù)勾股定理,當(dāng)BE在△ABC外部時(shí),∠EBA=,將△EAC逆時(shí)針旋轉(zhuǎn)90°得到△FAC′,先證B、A、C′三點(diǎn)共線,根據(jù)兩點(diǎn)之間線段最短可得BF+CE=BF+FC′≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,再證EF=BF,然后根據(jù)勾股定理BF=CE=AE+AC=AF+AB=在Rt△EAB中,根據(jù)勾股定理即可.【詳解】解:(1)過點(diǎn)P作PG⊥EC于G,∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵PG⊥EC,∴∠GPC=90°-∠C=45°,∴PG=GC,∵∠EAC=30°,∠EDF=90°,DE=DF,∴∠DEF=∠F=45°,∴∠EPC=∠AEF+∠EAC=30°+45°=75°,∴∠EPG=∠EPC-∠GPC=75°-45°=30°,∴EP=2EG,在Rt△EPG中,根據(jù)勾股定理∴GC=PG=∴EC=EG+GC=EG+,∴EG=,∴EP=2EG=;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,∵BM=CM,AB=AC,∠BAC=90°,∴AM⊥BC,AM=BM=CM,∴∠MAH=45°=∠HEC,∴點(diǎn)A、M、C、E四點(diǎn)共圓,∴∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,∴∠AEJ=∠AEM+∠HEC=45°+45°=90°,∵AE=JE,∴∠EAJ=∠EJA=45°,在Rt△AEJ中,根據(jù)勾股定理AJ=,∵∠CAE=∠MCE,∴∠JAC+45°=∠JCA+45°,∴∠JAC=∠JCA,∴AJ=JC=,∵∠HCM=∠CEM=45°,∠HMC=∠CME,∴△CHM∽△ECM,∴∠MHC=∠MCE,∵∠EHA=∠MHC=∠MCE=∠EAH∴AE=HE,在△AEM和△HEC中,,∴△AEM≌△HEC(AAS),∴EM=EC,∴∠EMC=∠ECM,∵∠AME+∠EMC=∠ECM+∠MCF=90°,∴∠AME=∠MCF,在△AME和△MCF中,∴△AME≌△MCF(AAS),∴AE=MF,∴CE=EJ+JC=MF+AE;(3)分兩種情況,當(dāng)BE在∠ABC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論