考點解析-吉林省集安市中考數學真題分類(平行線的證明)匯編同步測試練習題(詳解)_第1頁
考點解析-吉林省集安市中考數學真題分類(平行線的證明)匯編同步測試練習題(詳解)_第2頁
考點解析-吉林省集安市中考數學真題分類(平行線的證明)匯編同步測試練習題(詳解)_第3頁
考點解析-吉林省集安市中考數學真題分類(平行線的證明)匯編同步測試練習題(詳解)_第4頁
考點解析-吉林省集安市中考數學真題分類(平行線的證明)匯編同步測試練習題(詳解)_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

吉林省集安市中考數學真題分類(平行線的證明)匯編同步測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、下列說法正確的是(

)A.“任意畫一個三角形,其內角和為”是必然事件 B.調查全國中學生的視力情況,適合采用普查的方式C.抽樣調查的樣本容量越小,對總體的估計就越準確 D.十字路口的交通信號燈有紅、黃、綠三種顏色,所以開車經過十字路口時,恰好遇到黃燈的概率是2、如圖,直線a,b被直線c所截,下列條件不能判定直線a與b平行的是()A.∠1=∠3 B.∠2+∠3=180° C.∠1=∠4 D.∠1+∠4=180°3、如圖所示,過點P畫直線a的平行線b的作法的依據是()A.兩直線平行,同位角相等 B.同位角相等,兩直線平行C.兩直線平行,內錯角相等 D.內錯角相等,兩直線平行4、如圖,不能判定AB∥CD的是(

)A.∠B=∠DCE B.∠A=∠ACDC.∠B+∠BCD=180° D.∠A=∠DCE5、如圖,是某企業(yè)甲、乙兩位員工的能力測試結果的網狀圖,以O為圓心的五個同心圓分別代表能力水平的五個等級由低到高分別賦分1至5分,由原點出發(fā)的五條線段分別指向能力水平的五個維度,網狀圖能夠更加直觀的描述測試者的優(yōu)勢和不足,觀察圖形,有以下幾個推斷:①甲和乙的動手操作能力都很強;②缺少探索學習的能力是甲自身的不足;③與甲相比乙需要加強與他人的溝通合作能力;④乙的綜合評分比甲要高.其中合理的是(

)A.①③ B.②④ C.①②③ D.①②③④6、對于命題“若a2>b2,則a>b”,下面四組關于a,b的值中,能說明這個命題是假命題的是()A.a=3,b=2 B.a=-3,b=2 C.a=3,b=-1 D.a=-1,b=37、如圖,將一副直角三角板按如圖所示疊放,其中,,,則的大小是(

)A. B. C. D.8、將一副三角尺按如圖所示的方式擺放,則的大小為(

)A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,在△ABC中,∠ACB=60°,D為△ABC邊AC上一點,BC=CD,點M在BC的延長線上,CE平分∠ACM,且AC=CE.連接BE交AC于F,G為邊CE上一點,滿足CG=CF,連接DG交BE于H.以下結論:①△ABC≌△EDC;②∠DHF=60°;③若∠A=60°,則AB∥CE;④若BE平分∠ABC中,則EB平分∠DEC;正確的有_____(只填序號)2、將△ABC沿著DE翻折,使點A落到點A′處,A′D、A′E分別與BC交于M、N兩點,且DEBC.已知∠A′NM=27°,則∠NEC=_____.3、如圖.有一個三角形紙片,,,將紙片一角折疊,使點落在外,若,則的大小為______.4、命題“如果a+b=0,那么a,b互為相反數”的逆命題為____________________________.5、如圖,在ΔABC中,E、F分別是AB、AC上的兩點,∠1+∠2=235°,則∠A=____度.6、下列說法:(1)兩點之間的所有連線中,線段最短;(2)相等的角是對頂角;(3)過一點有且僅有一條直線與已知直線平行;(4)長方體是四棱柱.其中正確的有______(填正確說法的序號).7、如圖,△ABC的外角∠DBC、∠ECB的角平分線交于點M,∠ACB的角平分線與BM的反向延長線交于點N,若在△CMN中存在一個內角等于另一個內角的2倍,則∠A的度數為_______三、解答題(7小題,每小題10分,共計70分)1、如圖,在三角形ABC中CD為的平分線,交AB于點D,,.(1)求證:;(2)如果,,試證明.2、如圖,在△ABC中,D為AB邊上一點,E為BC邊上一點,∠BCD=∠BDC(1)若∠ACD=15°,∠CAD=40°,則∠B=度(直接寫出答案);(2)請說明:∠EAB+∠AEB=2∠BDC的理由.3、如圖,直線分別與直線,交于點,.平分,平分,且∥.求證:∥.4、如圖,△ABC中,∠BAC=90°,點D是BC上的一點,將△ABC沿AD翻折后,點B恰好落在線段CD上的B'處,且AB'平分∠CAD.求∠BAB'的度數.5、如圖,AB⊥BC于點B,DC⊥BC于點C,DE平分∠ADC交BC于點E,點F為線段CD延長線上一點,∠BAF=∠EDF(1)求證:∠DAF=∠F;(2)在不添加任何輔助線的情況下,請直接寫出所有與∠CED互余的角.6、用兩種方法證明“三角形的外角和等于360°”.已知:如圖,∠BAE,∠CBF,∠ACD是△ABC的三個外角.求證:∠BAE+∠CBF+∠ACD=360°.證法1:∵________________________________________________________________,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°-(∠1+∠2+∠3).∵______________,∴∠BAE+∠CBF+∠ACD=540°-180°=360°.請把證法1補充完整,并用不同的方法完成證法2.7、如圖,在△ABC中,CD⊥AB,垂足為D,點E在BC上,EF⊥AB,垂足為F.(1)CD與EF平行嗎?為什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數.-參考答案-一、單選題1、A【解析】【分析】由三角形的內角和定理可判斷A,由抽樣調查與普查的含義可判斷B,C,由簡單隨機事件的概率可判斷D,從而可得答案.【詳解】解:“任意畫一個三角形,其內角和為”是必然事件,表述正確,故A符合題意;調查全國中學生的視力情況,適合采用抽樣調查的方式,故B不符合題意;抽樣調查的樣本容量越小,對總體的估計就越不準確,故C不符合題意;十字路口的交通信號燈有紅、黃、綠三種顏色,所以開車經過十字路口時,恰好遇到黃燈的概率不是,與三種燈的閃爍時間相關,故D不符合題意;故選A【考點】本題考查的是必然事件的含義,調查方式的選擇,簡單隨機事件的概率,三角形的內角和定理的含義,掌握“以上基礎知識”是解本題的關鍵.2、D【解析】【分析】同位角相等,兩直線平行,同旁內角互補,兩直線平行,根據平行線的判定方法逐一分析即可.【詳解】解:(同位角相等,兩直線平行),故A不符合題意;∠2+∠3=180°,(同旁內角互補,兩直線平行)故B不符合題意;(同位角相等,兩直線平行)故C不符合題意;∠1+∠4=180°,不是同旁內角,也不能利用等量代換轉換成同旁內角,所以不能判定故D符合題意;故選D【考點】本題考查的是平行線的判定,對頂角相等,掌握“平行線的判定方法”是解本題的關鍵.3、D【解析】【詳解】解:如圖所示,根據圖中直線a、b被c所截形成的內錯角相等,可得依據為內錯角相等,兩直線平行.故選D.4、D【解析】【分析】利用平行線的判定方法一一判斷即可.【詳解】解:由∠B=∠DCE,根據同位角相等兩直線平行,即可判斷AB∥CD.由∠A=∠ACD,根據內錯角相等兩直線平行,即可判斷AB∥CD.由∠B+∠BCD=180°,根據同旁內角互補兩直線平行,即可判斷AB∥CD.故A,B,C不符合題意,故選:D.【考點】本題考查平行線的判定,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.5、D【解析】【分析】根據甲、乙兩位員工的能力測試結果的網狀圖一一判斷即可得到答案;【詳解】解:因為甲、乙兩位員工的動手操作能力均是5分,故甲乙兩人的動手操作能力都很強,故①正確;因為甲的探索學習的能力是1分,故缺少探索學習的能力是甲自身的不足,故②正確;甲的與他人的溝通合作能力是5分,乙的與他人的溝通合作能力是3分,故與甲相比乙需要加強與他人的溝通合作能力,故③正確;乙的綜合評分是:3+4+4+5+5=22分,甲的綜合評分是:1+4+4+5+5=19分,故乙的綜合評分比甲要高,故④正確;故選:D;【考點】本題主要考查圖象信息題,能從圖象上獲取相關的信息是解題的關鍵;6、B【解析】【詳解】試題解析:在A中,a2=9,b2=4,且3>2,滿足“若a2>b2,則a>b”,故A選項中a、b的值不能說明命題為假命題;在B中,a2=9,b2=4,且-3<2,此時雖然滿足a2>b2,但a>b不成立,故B選項中a、b的值可以說明命題為假命題;在C中,a2=9,b2=1,且3>-1,滿足“若a2>b2,則a>b”,故C選項中a、b的值不能說明命題為假命題;在D中,a2=1,b2=9,且-1<3,此時滿足a2<b2,得出a<b,即意味著命題“若a2>b2,則a>b”成立,故D選項中a、b的值不能說明命題為假命題;故選B.考點:命題與定理.7、C【解析】【分析】根據直角三角形的性質可得∠BAC=45°,根據鄰補角互補可得∠EAF=135°,然后再利用三角形的外角的性質可得∠AFD=135°+30°=165°.即可.【詳解】解:∵∠B=45°,∴∠BAC=45°,∴∠EAF=135°,∴∠AFD=135°+30°=165°,∴∠BFD=180°﹣∠AFD=15°故選:C.【考點】此題主要考查了三角形的內角和,三角形的外角的性質,關鍵是掌握三角形的一個外角等于和它不相鄰的兩個內角的和.8、B【解析】【分析】先根據直角三角板的性質得出∠ACD的度數,再由三角形內角和定理即可得出結論.【詳解】解:如圖所示,由一副三角板的性質可知:∠ECD=60°,∠BCA=45°,∠D=90°,∴∠ACD=∠ECD-∠BCA=60°-45°=15°,∴∠α=180°-∠D-∠ACD=180°-90°-15°=75°,故選:B.【考點】本題考查的是三角形內角和定理,熟知三角形內角和是180°是解答此題的關鍵.二、填空題1、①②③④【解析】【分析】①可推導∠ACB=∠ACE=60°,進而可證全等;②先證△BFC≌△DGC,得到∠FBC=∠CDG,∠BFC=∠DFH,從而推導得出∠BCF=∠DHF=60°;③由∠A=60°,∠ACE=60°,可得∠A=∠ACE,即可得出ABCE;④利用△BCE的外角∠ECM和△ABC的外角∠ACM的關系,結合∠DEC=∠A可推導得出.【詳解】解:∵∠ACB=60°,∴∠ACM=180°?∠ACB=120°,∵CE平分∠ACM,∴∠ACE=∠MCE=∠ACM=60°,∴∠ACB=∠ACE.在△ABC和△EDC中,,∴△ABC≌△EDC(SAS),故①正確;在△BCF和△DCG中,,∴△BCF≌△DCG(SAS).∴∠CBF=∠CDG.∵∠ECM=∠CBF+∠BEC=60°,∴∠CDG+∠CEB=60°.∵∠DCE+∠CDE+∠CED=180°,∠DCE=60°,∴∠CDE+∠CED=120°,∴∠HDE+∠HED=60°,∴∠DHF=∠HDE+∠HED=60°,故②正確;∵∠A=60°,∠ACE=60°,∴∠A=∠ACE,∴AB∥CE,故③正確;∵BE平分∠ABC,∴∠ABE=∠CBE.∵△BCF≌△DCG,∴∠CBE=∠CDG.∴∠CDG=∠ABE=∠CBE.∵△ABC≌△EDC,∴∠ABC=∠CDE,∴∠CDG=∠ABE=∠CBE=∠EDG.∵∠ECM=∠CBF+∠BEC=60°,∠DHF=∠EDG+∠DEB=60°,∴∠CBF+∠BEC=∠EDG+∠DEB,∴∠BEC=∠DEB,即EB平分∠DEC,故④正確;綜上,正確的結論有:①②③④.故答案為:①②③④.【考點】本題主要考查了全等三角形的判定定理和性質定理,角平分線的定義,三角形的內角和定理以及平行線的判定定理,正確找出圖中的全等三角形是解題的關鍵.2、126°【解析】【分析】利用平行線的性質求出∠DEN=27°,再利用翻折不變性得到∠AED=∠DEN=27°,再根據平角的性質即可解決問題.【詳解】解:∵DE∥BC,∴∠DEN=∠A′NM=27°,由翻折不變性可知:∠AED=∠DEN=27°,∴∠NEC=180°﹣2×27°=126°,故答案為126°.【考點】本題考查翻折變換,平行線的性質等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.3、【解析】【分析】先根據三角形的內角和定理可出;再根據折疊的性質得到,再利用三角形的內角和定理以及外角性質得,,即可得到,然后利用平角的定義即可求出.【詳解】解:如圖,,,∴;又將三角形紙片的一角折疊,使點落在外,∴而,,,,,.故答案為:【考點】本題考查了折疊的性質,三角形的內角和定理以及外角性質,解題的關鍵是明確折疊前后兩圖形全等.4、如果a,b互為相反數,那么a+b=0【解析】【分析】交換原命題的題設與結論即可得到其逆命題.【詳解】解:逆命題為:如果a,b互為相反數,那么a+b=0.故答案為:如果a,b互為相反數,那么a+b=0.【考點】本題考查了命題與定理:判斷一件事情的語句,叫做命題.許多命題都是由題設和結論兩部分組成,題設是已知事項,結論是由已知事項推出的事項,一個命題可以寫成“如果…那么…”形式.有些命題的正確性是用推理證實的,這樣的真命題叫做定理.也考查了逆命題.5、55【解析】【分析】根據三角形內角和定理可知,要求∠A只要求出∠AEF+∠AFE的度數即可.【詳解】∵∠1+∠AEF=180°,∠2+∠AFE=180°,∴∠1+∠AEF+∠2+∠AFE=360°,∵∠1+∠2=235°,∴∠AEF+∠AFE=360°?235°=125°,∵在△AEF中:∠A+∠AEF+∠AFE=180°(三角形內角和定理)∴∠A=180°?125°=55°,故答案為:55°【考點】本題是有關三角形角的計算問題.主要考察三角形內角和定理的應用和計算,找到∠A所在的三角形是關鍵.6、(1)、(4).【解析】【分析】根據所學公理和性質解答即可.【詳解】解:(1)兩點之間的所有連線中,線段最短,故本說法正確;(2)相等的角不一定是對頂角,但對頂角相等,故本說法錯誤;(3)應為過直線外一點有且僅有一條直線與已知直線平行,故本說法錯誤;(4)長方體是四棱柱,正確.故答案為(1)、(4).【考點】本題是對數學語言的嚴謹性的考查,記憶數學公理、性質概念等一定要做的嚴謹.7、或或【解析】【分析】根據,的角平分線交于點,可求得,延長至,根據為的外角的角平分線,可得是的外角的平分線,根據平分,得到,則有,可得,可求得;再根據,分四種情況:①;②;③;④,分別討論求解即可.【詳解】解:外角,的角平分線交于點,∴;如圖示,延長至,為的外角的角平分線,是的外角的平分線,,平分,,,,即,又,∴,即;;如果中,存在一個內角等于另一個內角的2倍,那么分四種情況:①,則,;②,則,,;③,則,解得;④,則,解得.綜上所述,的度數是或或.【考點】本題是三角形綜合題,考查了三角形內角和定理、外角的性質,角平分線定義等知識;靈活運用三角形的內角和定理、外角的性質進行分類討論是解題的關鍵.三、解答題1、(1)見解析(2)見解析【解析】【分析】(1)先根據角平分線的定義求得∠ACB,進而說明∠ACB=∠3,然后運用同位角相等、兩直線平行即可證明;(2)先根據兩直線平行、內錯角相等可得,進而得到∠BCD=∠2可得EF//DC,運用平行線的性質可得∠BFE=∠BDC,最后結合即可證明.(1)證明:∵CD平分,(已知)∴(角平分線的定義)又∵(已知)∴(等量代換)∴.(2)證明:由(1)知(已證)∴(兩直線平行,內錯角相等)又∵(已知)∴(等量代換)∴(同位角相等,兩直線平行)∴(兩直線平行,同位角相等)又∵(已知)∴(垂直的定義)∴(等量代換)∴(垂直的定義).【考點】本題主要考查了平行線的判定與性質、角平分線的定義等知識點,靈活運用平行線線的判定與性質成為解答本題的關鍵.2、(1)70(2)見解析【解析】【分析】(1)利用三角形的外角性質可求出∠BDC的度數,結合∠BCD=∠BDC可得出∠BCD的度數,再在△BCD中,利用三角形內角和定理可求出∠B的度數;(2)在△ABE中,利用三角形內角和定理可得出∠EAB+∠AEB=180°﹣∠B,在△BCD中,利用三角形內角和定理及∠BCD=∠BDC可得出2∠BDC=180°﹣∠B,進而可得出∠EAB+∠AEB=2∠BDC.(1)解:∵∠ACD=15°,∠CAD=40°,∴∠BDC=∠ACD+∠CAD=55°,∴∠BCD=∠BDC=55°.在△BCD中,∠BDC+∠BCD+∠B=180°,∴∠B=180°﹣55°﹣55°=70°.故答案為:70;(2)解:在△ABE中,∠EAB+∠AEB+∠B=180°,∴∠EAB+∠AEB=180°﹣∠B.在△BCD中,∠BDC+∠BCD+∠B=180°,∠BCD=∠BDC,∴2∠BDC=180°﹣∠B,∴∠EAB+∠AEB=2∠BDC.【考點】本題考查了三角形內角和定理以及三角形的外角性質,解題的關鍵是:(1)利用三角形的外角性質,求出∠BDC的度數;(2)利用三角形內角和定理,找出∠EAB+∠AEB=180°﹣∠B及2∠BDC=180°﹣∠B.3、證明見解析.【解析】【分析】先根據角平分線的定義可得,再根據平行線的性質可得,從而可得,然后根據平行線的判定即可得證.【詳解】平分,平分,即.【考點】本題考查了平行線的判定與性質、角平分線的定義等知識點,熟記平行線的判定與性質是解題關鍵.4、60°【解析】【分析】由折疊和角平分線可求∠BAD=30°,即可求出∠BAB'的度數.【詳解】解:由折疊可知,∠BAD=∠B'AD,∵AB'平分∠CAD.∴∠B'AC=∠B'AD,∴∠BAD=∠B'AC=∠B'AD,∵∠BAC=90°,∴∠BAD=∠B'AC=∠B'AD=30°,∴∠BAB'=60°.【考點】本題考查了折疊和角平分線,解題關鍵是掌握折疊角相等和角平分線的性質.5、(1)證明見解析;(2)與∠CED互余的角有∠ADE,∠CDE,∠F,∠FAD.【解析】【分析】(1)依據AB⊥BC于點B,DC⊥BC于點C,即可得到AB∥CF,進而得出∠BAF+∠F=180°,再根據∠BAF=∠EDF,即可得出ED∥AF,依據三角形外角性質以及角平分線的定義,即可得到∠DAF=∠F;(2)結合圖形,根據余角的概念,即可得到所有與∠CED互余的角.【詳解】解:(1)∵AB⊥BC于點B,DC⊥BC于點C,∴∠B+∠C=180°,∴AB∥CF,∴∠BAF+∠F=180°,又∵∠BAF=∠EDF,∴∠EDF+∠F=180°,∴ED∥AF,∴∠ADE=∠DAF,∠EDC=∠F,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠DAF=∠F;(2)∵∠C=90°,∴∠CED+∠CDE=90°,∴∠CED與∠CDE互余,又∵∠ADE=∠DAF=∠EDC=∠F,∴與∠CE

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論