解析卷人教版8年級數(shù)學(xué)上冊《軸對稱》專題攻克試題(解析卷)_第1頁
解析卷人教版8年級數(shù)學(xué)上冊《軸對稱》專題攻克試題(解析卷)_第2頁
解析卷人教版8年級數(shù)學(xué)上冊《軸對稱》專題攻克試題(解析卷)_第3頁
解析卷人教版8年級數(shù)學(xué)上冊《軸對稱》專題攻克試題(解析卷)_第4頁
解析卷人教版8年級數(shù)學(xué)上冊《軸對稱》專題攻克試題(解析卷)_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)上冊《軸對稱》專題攻克考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、等腰三角形的一個(gè)角比另一個(gè)角2倍少20度,等腰三角形頂角的度數(shù)是(

)A.或或 B.或C.或 D.或2、如圖,等邊三角形ABC中,AD⊥BC,垂足為D,點(diǎn)E在線段AD上,∠EBC=45°,則∠ACE等于()A.15° B.30° C.45° D.60°3、如圖,在中,,觀察圖中尺規(guī)作圖的痕跡,則的度數(shù)為(

)A. B. C. D.4、如圖,在中,,,點(diǎn)是邊上任意一點(diǎn),過點(diǎn)作交于點(diǎn),則的度數(shù)是(

).A. B. C. D.5、以下四個(gè)標(biāo)志,每個(gè)標(biāo)志都有圖案和文字說明,其中的圖案是軸對稱圖形是(

)A. B.C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,AB的垂直平分線l交AB于點(diǎn)M,P是l上一點(diǎn),PB平分∠MPN.若AB=2,則點(diǎn)B到直線PN的距離為__________.2、如圖,C為線段AE上一動(dòng)點(diǎn)(不與點(diǎn)A,E重合),在AE同側(cè)分別作等邊ABC和等邊CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ.則下列結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP.其中正確的有________.(填序號)3、內(nèi)部有一點(diǎn)P,,點(diǎn)P關(guān)于的對稱點(diǎn)為M,點(diǎn)P關(guān)于的對稱點(diǎn)為N,若,則的周長為___________.4、已知∠AOB=60°,OC是∠AOB的平分線,點(diǎn)D為OC上一點(diǎn),過D作直線DE⊥OA,垂足為點(diǎn)E,且直線DE交OB于點(diǎn)F,如圖所示.若DE=2,則DF=_____.5、如圖,在中,的中垂線交于點(diǎn),交于點(diǎn),已知,的周長為22,則______.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,在中,點(diǎn),分別是、邊上的點(diǎn),,,與相交于點(diǎn),求證:是等腰三角形.2、兩個(gè)大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,,,,,,在同一條直線上,連結(jié).求的度數(shù).3、如圖,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC與BD相交于點(diǎn)O,限用無刻度直尺完成以下作圖:(1)在圖1中作線段BC的中點(diǎn)P;(2)在圖2中,在OB、OC上分別取點(diǎn)E、F,使EF∥BC.4、如圖,是邊長為2的等邊三角形,是頂角為120°的等腰三角形,以點(diǎn)為頂點(diǎn)作,點(diǎn)、分別在、上.(1)如圖①,當(dāng)時(shí),則的周長為______;(2)如圖②,求證:.5、(1)已知等腰三角形的兩邊長分別為9cm和15cm,則周長為多少?(2)已知等腰三角形的兩邊長分別為6cm和15cm,則周長為多少?-參考答案-一、單選題1、A【解析】【分析】設(shè)另一個(gè)角是x,表示出一個(gè)角是2x-20°,然后分①x是頂角,2x-20°是底角,②x是底角,2x-20°是頂角,③x與2x-20°都是底角根據(jù)三角形的內(nèi)角和等于180°與等腰三角形兩底角相等列出方程求解即可.【詳解】設(shè)另一個(gè)角是x,表示出一個(gè)角是2x﹣20°,①x是頂角,2x﹣20°是底角時(shí),x+2(2x﹣20°)=180°,解得x=44°,所以,頂角是44°;②x是底角,2x﹣20°是頂角時(shí),2x+(2x﹣20°)=180°,解得x=50°,所以,頂角是2×50°﹣20°=80°;③x與2x﹣20°都是底角時(shí),x=2x﹣20°,解得x=20°,所以,頂角是180°﹣20°×2=140°;綜上所述,這個(gè)等腰三角形的頂角度數(shù)是44°或80°或140°.故選:A.【考點(diǎn)】本題考查了等腰三角形兩底角相等的性質(zhì),三角形的內(nèi)角和定理,難點(diǎn)在于分情況討論,特別是這兩個(gè)角都是底角的情況容易漏掉而導(dǎo)致出錯(cuò).2、A【解析】【分析】先判斷出AD是BC的垂直平分線,進(jìn)而求出∠ECB=45°,即可得出結(jié)論.【詳解】解:∵等邊三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分線,∵點(diǎn)E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等邊三角形,∴∠ACB=60°,∴∠ACE=∠ACB-∠ECB=15°,故選A.【考點(diǎn)】此題主要考查了等邊三角形的性質(zhì),垂直平分線的判定和性質(zhì),等腰三角形的性質(zhì),求出∠ECB是解本題的關(guān)鍵.3、B【解析】【分析】先由等腰三角形的性質(zhì)和三角形的內(nèi)角和定理求出∠BCA,進(jìn)而求得∠ACD,由作圖痕跡可知CE為∠ACD的平分線,利用角平分線定義求解即可.【詳解】∵在中,,∴,∴∠ACD=180°-∠ACB=180°-50°=130°,由作圖痕跡可知CE為∠ACD的平分線,∴,故選:B.【考點(diǎn)】本題考查了等腰三角形的性質(zhì)、三角形的內(nèi)角和定理、角平分線的定義和作法,熟練掌握等腰三角形的性質(zhì)以及角平分線的尺規(guī)作圖法是解答的關(guān)鍵.4、B【解析】【分析】根據(jù)等腰三角形的性質(zhì)可得∠B=∠C,進(jìn)而可根據(jù)三角形的內(nèi)角和定理求出∠A的度數(shù),然后根據(jù)平行線的性質(zhì)可得∠DEC=∠A,進(jìn)一步即可求出結(jié)果.【詳解】解:∵,,∴∠B=∠C=65°,∴∠A=180°-∠B-∠C=50°,∵DF∥AB,∴∠DEC=∠A=50°,∴∠FEC=130°.故選:B.【考點(diǎn)】本題考查了等腰三角形的性質(zhì)、平行線的性質(zhì)和三角形的內(nèi)角和定理等知識,屬于常考題型,熟練掌握上述基礎(chǔ)知識是解題的關(guān)鍵.5、D【解析】【分析】根據(jù)軸對稱圖形的定義判斷即可【詳解】∵A,B,C都不是軸對稱圖形,∴都不符合題意;D是軸對稱圖形,符合題意,故選D.【考點(diǎn)】本題考查了軸對稱圖形的定義,準(zhǔn)確理解軸對稱圖形的定義是解題的關(guān)鍵.二、填空題1、1【解析】【分析】根據(jù)線段垂直平分線的性質(zhì)得出BM=1,根據(jù)角平分線的性質(zhì)得到BN=BM=1,即可得出答案.【詳解】解:如圖,過點(diǎn)B作BC⊥PN,垂足為點(diǎn)C,∵AB的垂直平分線l交AB于點(diǎn)M,∴,BM⊥PM,∵PB平分∠MPN,BM⊥PM,BC⊥PN,∴BC=BM=1,∴點(diǎn)B到直線PN的距離為1,故答案為:1.【考點(diǎn)】本題考查了線段垂直平分線的性質(zhì)與角平分線的性質(zhì),能熟記線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等是解此題的關(guān)鍵.2、①②③【解析】【分析】根據(jù)等邊三角形的三邊都相等,三個(gè)角都是60°,可以證明ACD與BCE全等,根據(jù)全等三角形對應(yīng)邊相等可得AD=BE,所以①正確,對應(yīng)角相等可得∠CAD=∠CBE,然后證明ACP與BCQ全等,根據(jù)全等三角形對應(yīng)邊相等可得PC=PQ,從而得到CPQ是等邊三角形,再根據(jù)等腰三角形的性質(zhì)可以找出相等的角,從而證明PQ∥AE,所以②正確;根據(jù)全等三角形對應(yīng)邊相等可以推出AP=BQ,所以③正確,根據(jù)③可推出DP=EQ,再根據(jù)DEQ的角度關(guān)系DE≠DP.【詳解】解:∵等邊ABC和等邊CDE,∴AC=BC,CD=CE,∠ACB=∠ECD=60°,∴180°﹣∠ECD=180°﹣∠ACB,即∠ACD=∠BCE,在ACD與BCE中,,∴ACD≌BCE(SAS),∴AD=BE,故①小題正確;∵ACD≌BCE(已證),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已證),∴∠BCQ=180°﹣60°×2=60°,∴∠ACB=∠BCQ=60°,在ACP與BCQ中,,∴ACP≌BCQ(ASA),∴AP=BQ,故③小題正確;PC=QC,∴PCQ是等邊三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE,故②小題正確;∵AD=BE,AP=BQ,∴AD﹣AP=BE﹣BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,故④小題錯(cuò)誤.綜上所述,正確的是①②③.故答案為:①②③.【考點(diǎn)】本題考查了等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),以及平行線的判定,需要多次證明三角形全等,綜合性較強(qiáng),但難度不是很大,是熱點(diǎn)題目,仔細(xì)分析圖形是解題的關(guān)鍵.3、15【解析】【分析】根據(jù)軸對稱的性質(zhì)可證∠MON=2∠AOB=60°;再利用OM=ON=OP,即可求出的周長.【詳解】解:根據(jù)題意可畫出下圖,∵OA垂直平分PM,OB垂直平分PN.∴∠MOA=∠AOP,∠NOB=∠BOP;OM=OP=ON=5cm.∴∠MON=2∠AOB=60°.∴為等邊三角形?!鱉ON的周長=3×5=15.故答案為:15.【考點(diǎn)】此題考查了軸對稱的性質(zhì)及相關(guān)圖形的周長計(jì)算,根據(jù)軸對稱的性質(zhì)得出∠MON=2∠AOB=60°是解題關(guān)鍵.4、4.【解析】【分析】過點(diǎn)D作DM⊥OB,垂足為M,則DM=DE=2,在Rt△OEF中,利用三角形內(nèi)角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所對的直角邊等于斜邊的一半可求出DF的長,此題得解.【詳解】過點(diǎn)D作DM⊥OB,垂足為M,如圖所示.∵OC是∠AOB的平分線,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案為4.【考點(diǎn)】本題考查了角平分線的性質(zhì)、三角形內(nèi)角和定理以及含30度角的直角三角形,利用角平分線的性質(zhì)及30°角所對的直角邊等于斜邊的一半,求出DF的長是解題的關(guān)鍵.5、12【解析】【分析】由的中垂線交于點(diǎn),可得再利用的周長為22,列方程解方程可得答案.【詳解】解:的中垂線交于點(diǎn),,的周長為22,故答案為:【考點(diǎn)】本題考查的是線段的垂直平分線的性質(zhì),掌握線段的垂直平分線的性質(zhì)是解題的關(guān)鍵.三、解答題1、見解析【解析】【分析】先證明,得到,,進(jìn)而得到,故可求解.【詳解】證明:在和中∴∴∴又∵∴即∴是等腰三角形.【考點(diǎn)】此題主要考查等腰三角形的判定,解題的關(guān)鍵是熟知全等三角形的判定與性質(zhì).2、∠ACD【解析】【分析】根據(jù)SAS證明△ACD≌△ABE,然后根據(jù)全等三角形的性質(zhì)即可得出答案.【詳解】解:∵∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,∴∠BAE=∠CAD,在△ABE與△ACD中,,∴△ACD≌△ABE(SAS),∴∠ACD=∠B.【考點(diǎn)】題考查全等三角形的判定和性質(zhì)、等腰直角三角形的性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,屬于中考常考題型.3、(1)見解析;(2)見解析.【解析】【分析】(1)延長BA和CD,它們相交于點(diǎn)Q,然后延長QO交BC于P,則PB=PC,根據(jù)線段垂直平分線的逆定理可證明;(2)連結(jié)AP交OB于E,連結(jié)DP交OC于F,則EF∥BC.分別證明△BEP≌△CFP,△BEP≌△CFP可得∠APB=∠DPC和∠PEF=∠PFE,根據(jù)三角形內(nèi)角和定理和平角的定義可得∠APB=∠PEF,即可證明EF//BC.【詳解】解:(1)如圖1,點(diǎn)P為所作,理由如下:∵∠A=∠D=90°,AC=BD,BC=CB,∴△ABC≌△DCB∴∠ABC=∠DCB,∠ACB=∠DBC∴QB=QC,OB=OC∴Q,O在BC的垂直平分線上,∴延長QO交BC于P,就有P為線段BC的中點(diǎn);(2)如圖2,EF為所作.理由如下:∵△ABC≌△DCB∴AB=DC,又∵∠ABC=∠DCB,BP=PC∴△ABP≌△DCP∴∠APB=∠DPC又∵∠DBC=∠ACB,BP=PC∴△BEP≌△CFP∴PE=PF∴∠PEF=∠PFE,∵∠APB+∠DPC+∠APD=180°∠PEF+∠PFE+∠APD=180°∴∠APB=∠PEF∴EF//BC.【考點(diǎn)】本題考查作圖——復(fù)雜作圖,等腰三角形的性質(zhì),線段垂直平分線的逆定理,平行線的判定定理,全等三角形的判定與性質(zhì).掌握相關(guān)定理并能熟練運(yùn)用是解決此題的關(guān)鍵.4、(1)4;(2)見解析【解析】【分析】(1)首先證明△BDM≌△CDN,進(jìn)而得出△DMN是等邊三角形,∠BDM=∠CDN=30°,NC=BM=DM=MN,即可解決問題;(2)延長至點(diǎn),使得,連接,首先證明,再證明,得出,進(jìn)而得出結(jié)果即可.【詳解】解:(1)∵是等邊三角形,,,∴是等邊三角形,,則,∵是頂角的等腰三角形,,,在和中,,,,∵,∴是等邊三角形,,,,∴的周長.(2)如圖,延長至點(diǎn),使得,連接,∵是等邊三角形,是頂角的等腰三角形,,,,,在和中,,,,,∵,,在和中,.,又∵,.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì)及等邊三角形的性質(zhì)及等腰三角形的性質(zhì),掌握全等三角形的性質(zhì)與判定,等邊三角形及等腰三角形的性質(zhì)是解題的關(guān)鍵.5、(1)33cm或39cm;(2)36cm.【解析】【分析】(1)根據(jù)等腰三角形的特點(diǎn)與三角形的三邊關(guān)系求出第三條邊,故可求解;(2)根據(jù)等腰三角形的特點(diǎn)與三角形的三邊關(guān)系求出第三條邊,故可求解.【詳解】(1)已知等腰三角形的兩

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論