解析卷人教版8年級數學上冊《全等三角形》專項訓練試題(含答案及解析)_第1頁
解析卷人教版8年級數學上冊《全等三角形》專項訓練試題(含答案及解析)_第2頁
解析卷人教版8年級數學上冊《全等三角形》專項訓練試題(含答案及解析)_第3頁
解析卷人教版8年級數學上冊《全等三角形》專項訓練試題(含答案及解析)_第4頁
解析卷人教版8年級數學上冊《全等三角形》專項訓練試題(含答案及解析)_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數學上冊《全等三角形》專項訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、小明不慎將一塊三角形的玻璃摔碎成如圖所示的四塊(即圖中標有1、2、3、4的四塊),你認為將其中的哪一些塊帶去,就能配一塊與原來一樣大小的三角形?應該帶(

)A.第1塊 B.第2塊 C.第3塊 D.第4塊2、如圖,OB平分∠AOC,D、E、F分別是射線OA、射線OB、射線OC上的點,D、E、F與O點都不重合,連接ED、EF若添加下列條件中的某一個.就能使DOE△FOE,你認為要添加的那個條件是(

)A.OD=OE B.OE=OF C.∠ODE=∠OED D.∠ODE=∠OFE3、下列各組中的兩個圖形屬于全等圖形的是(

)A. B.C. D.4、如圖,C為線段AE上一動點(不與點,重合),在AE同側分別作等邊三角形ABC和等邊三角形CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連結PQ.以下結論錯誤的是(

)A.∠AOB=60° B.AP=BQC.PQ∥AE D.DE=DP5、如圖,矩形ABCD中,對角線AC的垂直平分線EF分別交BC,AD于點E,F,若BE=3,AF=5,則AC的長為(

)A. B. C.10 D.8第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、在△ABC中,∠C=90°,AD是△ABC的角平分線,BC=6、AC=8、AB=10,則點D到AB的距離為_______.2、如圖,在中,按以下步驟作圖:①以點B為圓心,任意長為半徑作弧,分別交AB、BC于點D、E.②分別以點D、E為圓心,大于的同樣長為半徑作弧,兩弧交于點F.③作射線BF交AC于點G.如果,,的面積為18,則的面積為________.3、如圖,已知在△ABD和△ABC中,∠DAB=∠CAB,點A、B、E在同一條直線上,若使△ABD≌△ABC,則還需添加的一個條件是______.(只填一個即可)4、在△ABC中,AB=4,AC=3,AD是△ABC的角平分線,則△ABD與△ACD的面積之比是_____.5、如圖,在x、y軸上分別截取OA、OB,使OA=OB,再分別以點A、B為圓心,以大于AB的長度為半徑畫弧,兩弧交于點C.若C的坐標為(3a,﹣a+8),則a=_____.三、解答題(5小題,每小題10分,共計50分)1、如圖,已知,,垂足分別為A,D,.求證:∠1=∠2.2、如圖,已知中,,是內一點,且,試說明的理由.3、如圖,G為BC的中點,且DG⊥BC,DE⊥AB于E,DF⊥AC于F,BE=CF.(1)求證:AD是∠BAC的平分線;(2)如果AB=8,AC=6,求AE的長.4、如圖,在△ABC中,∠ACB=90°,用直尺和圓規(guī)在斜邊AB上作一點P,使得點P到點B的距離與點P到邊AC的距離相等.(保留作圖痕跡,不寫作法)5、如圖,小明和小華兩家位于A,B兩處,隔河相望.要測得兩家之間的距離,小明設計如下方案:從點B出發(fā)沿河岸畫一條射線BF,在BF上截取,過點D作,取點E使E,C,A在同一條直線上,則DE的長就是A,B之間的距離,說明他設計的道理.-參考答案-一、單選題1、B【解析】【分析】本題應先假定選擇哪塊,再對應三角形全等判定的條件進行驗證.【詳解】解:1、3、4塊玻璃不同時具備包括一完整邊在內的三個證明全等的要素,所以不能帶它們去,只有第2塊有完整的兩角及夾邊,符合ASA,滿足題目要求的條件,是符合題意的.故選:B.【考點】本題主要考查三角形全等的判定,看這4塊玻璃中哪個包含的條件符合某個判定.判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.2、D【解析】【分析】根據OB平分∠AOC得∠AOB=∠BOC,又因為OE是公共邊,根據全等三角形的判斷即可得出結果.【詳解】解:∵OB平分∠AOC∴∠AOB=∠BOC當△DOE≌△FOE時,可得以下結論:OD=OF,DE=EF,∠ODE=∠OFE,∠OED=∠OEF.A答案中OD與OE不是△DOE≌△FOE的對應邊,A不正確;B答案中OE與OF不是△DOE≌△FOE的對應邊,B不正確;C答案中,∠ODE與∠OED不是△DOE≌△FOE的對應角,C不正確;D答案中,若∠ODE=∠OFE,在△DOE和△FOE中,∴△DOE≌△FOE(AAS)∴D答案正確.故選:D.【考點】本題考查三角形全等的判斷,理解全等圖形中邊和角的對應關系是解題的關鍵.3、B【解析】【分析】根據全等圖形的定義,逐一判斷選項,即可.【詳解】A.兩個圖形不能完全重合,不是全等圖形,不符合題意,B.兩個圖形能完全重合,是全等圖形,符合題意,C.兩個圖形不能完全重合,不是全等圖形,不符合題意,D.兩個圖形不能完全重合,不是全等圖形,不符合題意,故選B【考點】本題主要考查全等圖形的定義,熟練掌握“能完全重合的兩個圖形,是全等圖形”是解題的關鍵.4、D【解析】【分析】利用等邊三角形的性質,BC∥DE,再根據平行線的性質得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,得出A正確;根據△CQB≌△CPA(ASA),得出B正確;由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根據∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=∠DCE,根據內錯角相等,兩直線平行,得出C正確;根據∠CDE=60°,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,可知∠DQE≠∠CDE,得出D錯誤.【詳解】解:∵等邊△ABC和等邊△CDE,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,在△ACD與△BCE中,,∴△ACD≌△BCE(SAS),∴∠CBE=∠DAC,又∵∠ACB=∠DCE=60°,∴∠BCD=60°,即∠ACP=∠BCQ,又∵AC=BC,在△CQB與△CPA中,,∴△CQB≌△CPA(ASA),∴CP=CQ,又∵∠PCQ=60°可知△PCQ為等邊三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE,故C正確,∵△CQB≌△CPA,∴AP=BQ,故B正確,∵AD=BE,AP=BQ,∴AD-AP=BE-BQ,即DP=QE,∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,故D錯誤;∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等邊△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,故A正確.故選:D.【考點】本題考查了等邊三角形的性質、全等三角形的判定與性質,利用旋轉不變性,解題的關鍵是找到不變量.5、A【解析】【分析】連接AE,由線段垂直平分線的性質得出OA=OC,AE=CE,證明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=4,再由勾股定理求出AC即可.【詳解】解:如圖,連結AE,設AC交EF于O,依題意,有AO=OC,∠AOF=∠COE,∠OAF=∠OCE,所以,△OAF≌△OCE(ASA),所以,EC=AF=5,因為EF為線段AC的中垂線,所以,EA=EC=5,又BE=3,由勾股定理,得:AB=4,所以,AC=【考點】本題考查了全等三角形的判定、勾股定理,熟練掌握是解題的關鍵.二、填空題1、或【解析】【分析】作DE⊥AB于E,如圖,先根據勾股定理計算出BC=8,再利用角平分線的性質得到DE=DC,設DE=DC=x,利用面積法得到10x=6(8-x),然后解方程即可.【詳解】解:作DE⊥AB于E,如圖,∵AD是△ABC的一條角平分線,DC⊥AC,DE⊥AB,∴DE=DC,設DE=DC=x,S△ABD=DE?AB=AC?BD,即10x=8(6-x),解得x=,即點D到AB邊的距離為.故答案為:.【考點】本題考查了角平分線的性質:角的平分線上的點到角的兩邊的距離相等,由已知能夠注意到D到AB的距離即為DE長是解決的關鍵.2、27【解析】【分析】由作圖步驟可知BG為∠ABC的角平分線,過G作GH⊥BC,GM⊥AB,可得GM=GH,然后再結合已知條件和三角形的面積公式求得GH,最后運用三角形的面積公式解答即可.【詳解】解:由作圖作法可知:BG為∠ABC的角平分線過G作GH⊥BC,GM⊥AB∴GM=GH∴,故答案為27.【考點】本題考查了角平分線定理和三角形面積公式的應用,通過作法發(fā)現角平分線并靈活應用角平分線定理是解答本題的關鍵.3、AD=AC(∠D=∠C或∠ABD=∠ABC等)【解析】【分析】利用全等三角形的判定方法添加條件即可求解.【詳解】解:∵∠DAB=∠CAB,AB=AB,∴當添加AD=AC時,可根據“SAS”判斷△ABD≌△ABC;當添加∠D=∠C時,可根據“AAS”判斷△ABD≌△ABC;當添加∠ABD=∠ABC時,可根據“ASA”判斷△ABD≌△ABC.故答案為AD=AC(∠D=∠C或∠ABD=∠ABC等).【考點】本題考查了全等三角形的判定:熟練掌握全等三角形的5種判定方法,選用哪一種方法,取決于題目中的已知條件.4、4:3【解析】【分析】根據角平分線的性質,可得出△ABD的邊AB上的高與△ACD的AC上的高相等,估計三角形的面積公式,即可得出△ABD與△ACD的面積之比等于對應邊之比.【詳解】∵AD是△ABC的角平分線,∴設△ABD的邊AB上的高與△ACD的AC上的高分別為h1,h2,∴h1=h2,∴△ABD與△ACD的面積之比=AB:AC=4:3,故答案為4:3.5、2【解析】【分析】根據尺規(guī)作圖可知,點C在∠AOB角平分線上,所以C點的橫坐標和縱坐標相等,即可以求出a的值.【詳解】解:根據題目尺規(guī)作圖可知,交點C是∠AOB角平分線上的一點,∵點C在第一象限,∴點C的橫坐標和縱坐標都是正數且橫坐標等于縱坐標,即3a=-a+8,得a=2,故答案為:2.【考點】本題考查了角平分線尺規(guī)作圖,角平分線的性質,以及平面直角坐標系的知識,結合直角坐標系的知識列方程求解是解答本題的關鍵.三、解答題1、見解析【解析】【分析】根據HL證明Rt△ABC與Rt△DCB全等,再利用全等三角形的性質證明即可.【詳解】證明:∵,∴∠A=∠D=90°在Rt△ABC和Rt△DCB中,∵∴

Rt△ABC≌Rt△DCB

(HL)∴

∠1=∠2【考點】此題考查全等三角形的判定和性質,關鍵是根據HL證明Rt△ABC與Rt△DCB全等.2、詳見解析【解析】【分析】先證明,再利用全等三角形的性質得到,然后利用等腰三角形三線合一的性質,即可證明.【詳解】證明:在與中,∴∴(全等三角形的對應角相等)∵(已知)∴(等腰三角形的三線合一)【考點】本題考查全等三角形的判定和性質、等腰三角形的性質等知識,解題的關鍵是正確尋找全等三角形解決問題和等腰三角形三線合一性質的運用.3、(1)見解析;(2)7.【解析】【分析】(1)因為G為BC的中點,且DG⊥BC,則DG是線段BC的垂直平分線,考慮連接DB、DC,利用線段的垂直平分線的性質,又因為DE⊥AB,DF⊥AC,可通過DE=DF說明AD是∠BAC的平分線;(2)先通過△AED與△ADF的全等關系,說明AE與AF的關系,利用線段的和差關系,通過線段的加減求出AE的長.【詳解】(1)連接BD、DC∵DG⊥BC,G為BC的中點,∴BD=CD,∵DG⊥BC,DE⊥AB∴∠BED=∠CFD,在Rt△DBE和Rt△DFC中,∴△DBE≌△DFC∴DE=DF,∴∠BAD=∠FAD∴AD是∠BAC的平分線;(2)∵DE=DF,∠BAD=∠FAD,AD=AD∴△AED≌△ADF,∴AE=AF∵AB=AE+BE,AC=AF-CF,∴AB+AC=AE+AF,∵AB=8,AC=6,∴8+6=2AE,∴AE=7.【考點】本題考查了全等三角形的判定與性質、角平分線與線段垂直平分線的性質,解題的關鍵是熟練的掌握全等三角形的判定與性質以及角平分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論