基礎強化滬科版9年級下冊期末試卷附完整答案詳解(名師系列)_第1頁
基礎強化滬科版9年級下冊期末試卷附完整答案詳解(名師系列)_第2頁
基礎強化滬科版9年級下冊期末試卷附完整答案詳解(名師系列)_第3頁
基礎強化滬科版9年級下冊期末試卷附完整答案詳解(名師系列)_第4頁
基礎強化滬科版9年級下冊期末試卷附完整答案詳解(名師系列)_第5頁
已閱讀5頁,還剩42頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

滬科版9年級下冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,邊長為5的等邊三角形中,M是高所在直線上的一個動點,連接,將線段繞點B逆時針旋轉(zhuǎn)得到,連接.則在點M運動過程中,線段長度的最小值是()A. B.1 C.2 D.2、下面是由一些完全相同的小立方塊搭成的幾何體從三個方向看到的形狀圖.搭成這個幾何體所用的小立方塊的個數(shù)是()A.個 B.個 C.個 D.個3、如圖是由幾個小立方體所搭成的幾何體從上面看到的平面圖形,小正方形中的數(shù)字表示在該位置小立方體的個數(shù),則這個幾何體從正面看到的平面圖形為()A. B. C. D.4、同時拋擲兩枚質(zhì)地均勻的硬幣,兩枚硬幣全部正面向上的概率是()A. B. C. D.5、如圖,在Rt△ABC中,,,點D、E分別是AB、AC的中點.將△ADE繞點A順時針旋轉(zhuǎn)60°,射線BD與射線CE交于點P,在這個旋轉(zhuǎn)過程中有下列結(jié)論:①△AEC≌△ADB;②CP存在最大值為;③BP存在最小值為;④點P運動的路徑長為.其中,正確的()A.①②③ B.①②④ C.①③④ D.②③④6、如圖,AB為的直徑,,,劣弧BC的長是劣弧BD長的2倍,則AC的長為()A. B. C.3 D.7、如圖,該幾何體的左視圖是()A. B. C. D.8、在一個不透明的盒子中裝有紅球、白球、黑球共40個,這些球除顏色外無其他差別,在看不見球的條件下,隨機從盒子中摸出一個球記錄顏色后放回.經(jīng)過多次試驗,發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定在30%左右,則盒子中紅球的個數(shù)約為()A.12 B.15 C.18 D.23第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、已知中,,,,以為圓心,長度為半徑畫圓,則直線與的位置關系是__________.2、不透明的袋子里裝有一個黑球,兩個紅球,這些球除顏色外無其它差別,從袋子中取出一個球,不放回,再取出一個球,記下顏色,兩次摸出的球是一紅—黑的概率是________.3、現(xiàn)有A、B兩個不透明的袋子,各裝有三個小球,A袋中的三個小球上分別標記數(shù)字1,2,3;B袋中的三個小球上分別標記數(shù)字2,3,4.這六個小球除標記的數(shù)字外,其余完全相同.將A、B兩個袋子中的小球搖勻,然后從A、B袋中各隨機摸出一個小球,則摸出的這兩個小球標記的數(shù)字之和為5的概率為______.4、如圖,已知,外心為,,,分別以,為腰向形外作等腰直角三角形與,連接,交于點,則的最小值是______.5、已知如圖,AB=8,AC=4,∠BAC=60°,BC所在圓的圓心是點O,∠BOC=60°,分別在、線段AB和AC上選取點P、E、F,則PE+EF+FP的最小值為____________.6、圓錐的底面直徑是80cm,母線長90cm.它的側(cè)面展開圖的圓心角和圓錐的全面積依次是______.7、有四張完全相同的卡片,正面分別標有數(shù)字,,,,將四張卡片背面朝上,任抽一張卡片,卡片上的數(shù)字記為,再從剩下卡片中抽一張,卡片上的數(shù)字記為,則二次函數(shù)的對稱軸在軸左側(cè)的概率是__________.三、解答題(7小題,每小題0分,共計0分)1、對于平面直角坐標系xOy中的圖形M,N,給出如下定義:若圖形M和圖形N有且只有一個公共點P,則稱點P是圖形M和圖形N的“關聯(lián)點”.已知點,,,.(1)直線l經(jīng)過點A,的半徑為2,在點A,C,D中,直線l和的“關聯(lián)點”是______;(2)G為線段OA中點,Q為線段DG上一點(不與點D,G重合),若和有“關聯(lián)點”,求半徑r的取值范圍;(3)的圓心為點,半徑為t,直線m過點A且不與x軸重合.若和直線m的“關聯(lián)點”在直線上,請直接寫出b的取值范圍.2、如圖,在中,,以AC為直徑的半圓交斜邊AB于點D,E為BC的中點,連結(jié)DE,CD.過點D作于點F.(1)求證:DE是的切線;(2)若,,求的半徑.3、在△ABC與△DEF中,∠BAC=∠EDF=90°,且AB=AC,DE=DF.(1)如圖1,若點D與A重合,AC與EF交于P,且∠CAE=30°,CE,求EP的長;(2)如圖2,若點D與C重合,EF與BC交于點M,且BM=CM,連接AE,且∠CAE=∠MCE,求證:AE+MF=CE;(3)如圖3,若點D與A重合,連接BE,且∠ABE∠ABC,連接BF,CE,當BF+CE最小時,直接出的值.4、如圖,在直角坐標平面內(nèi),已知點A的坐標(﹣2,0).(1)圖中點B的坐標是______;(2)點B關于原點對稱的點C的坐標是_____;點A關于y軸對稱的點D的坐標是______;(3)四邊形ABDC的面積是______;(4)在y軸上找一點F,使,那么點F的所有可能位置是______.5、某商家銷售一批盲盒,每一個看上去無差別的盲盒內(nèi)含有A,B,C,D四種玩具中的一種,抽到玩具B的有關統(tǒng)計量如表所示:抽盲盒總數(shù)50010001500200025003000頻數(shù)130273414566695843頻率0.2600.2730.2760.2830.2780.281(1)估計從這批盲盒中任意抽取一個是玩具B的概率是;(結(jié)果保留小數(shù)點后兩位)(2)小明從分別裝有A,B,C,D四種玩具的四個盲盒中隨機抽取兩個,請利用畫樹狀圖或列表的方法,求抽到的兩個玩具恰為玩具A和玩具C的概率.6、如圖,已知在中,,D、E是BC邊上的點,將繞點A旋轉(zhuǎn),得到,連接.(1)當時,時,求證:;(2)當時,與有怎樣的數(shù)量關系?請寫出,并說明理由.(3)在(2)的結(jié)論下,當,BD與DE滿足怎樣的數(shù)量關系時,是等腰直角三角形?(直接寫出結(jié)論,不必證明)7、在平面直角坐標系xOy中,的半徑為2.點P,Q為外兩點,給出如下定義:若上存在點M,N,使得P,Q,M,N為頂點的四邊形為矩形,則稱點P,Q是的“成對關聯(lián)點”.(1)如圖,點A,B,C,D橫、縱坐標都是整數(shù).在點B,C,D中,與點A組成的“成對關聯(lián)點”的點是______;(2)點在第一象限,點F與點E關于x軸對稱.若點E,F(xiàn)是的“成對關聯(lián)點”,直接寫出t的取值范圍;(3)點G在y軸上.若直線上存在點H,使得點G,H是的“成對關聯(lián)點”,直接寫出點G的縱坐標的取值范圍.-參考答案-一、單選題1、A【分析】取CB的中點G,連接MG,根據(jù)等邊三角形的性質(zhì)可得BH=BG,再求出∠HBN=∠MBG,根據(jù)旋轉(zhuǎn)的性質(zhì)可得MB=NB,然后利用“邊角邊”證明△MBG≌△NBH,再根據(jù)全等三角形對應邊相等可得HN=MG,然后根據(jù)垂線段最短可得MG⊥CH時最短,再根據(jù)∠BCH=30°求解即可.【詳解】解:如圖,取BC的中點G,連接MG,∵旋轉(zhuǎn)角為60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等邊△ABC的對稱軸,∴HB=AB,∴HB=BG,又∵MB旋轉(zhuǎn)到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根據(jù)垂線段最短,MG⊥CH時,MG最短,即HN最短,此時∵∠BCH=×60°=30°,CG=AB=×5=2.5,∴MG=CG=,∴HN=,故選A.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),垂線段最短的性質(zhì),作輔助線構(gòu)造出全等三角形是解題的關鍵,也是本題的難點.2、D【分析】從俯視圖中可以看出最底層小正方體的個數(shù)及形狀,從主視圖和左視圖可以看出每一層小正方體的層數(shù)和個數(shù),從而算出總的個數(shù).【詳解】解:綜合主視圖,俯視圖,左視圖,底層有5個正方體,第二層有1個正方體,所以搭成這個幾何體所用的小立方塊的個數(shù)是6,故選D.【點睛】考查學生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查.如果掌握口訣“俯視圖打地基,正視圖瘋狂蓋,左視圖拆違章”就更容易得到答案.3、B【分析】幾何體從上面看到的每個數(shù)字是該位置小立方體的個數(shù),可得從正面看共有3列,2層,從左往右的每列的小立方體的個數(shù)為1,2,1,從上往下的每層的小立方體的個數(shù)為1,3,即可求解【詳解】解:幾何體從上面看到的每個數(shù)字是該位置小立方體的個數(shù),可得從正面看共有3列,2層,從左往右每列的小立方體的個數(shù)為1,2,1,從上往下每層的小立方體的個數(shù)為1,3,所以這個幾何體從正面看到的平面圖形為故選:B【點睛】本題主要考查了幾何體的三視圖,熟練掌握三視圖是觀測者從三個不同位置觀察同一個幾何體,畫出的平面圖形;(1)從正面看:從物體前面向后面正投影得到的投影圖,它反映了空間幾何體的高度和長度;(2)從側(cè)面看:從物體左面向右面正投影得到的投影圖,它反映了空間幾何體的高度和寬度;(3)從上面看:從物體上面向下面正投影得到的投影圖,它反應了空間幾何體的長度和寬度是解題的關鍵.4、A【分析】首先利用列舉法可得所有等可能的結(jié)果有:正正,正反,反正,反反,然后利用概率公式求解即可求得答案.【詳解】解:∵拋擲兩枚質(zhì)地均勻的硬幣,兩枚硬幣落地后的所有等可能的結(jié)果有:正正,正反,反正,反反,∴正面都朝上的概率是:

.故選A.【點睛】本題考查了列舉法求概率的知識.此題比較簡單,注意在利用列舉法求解時,要做到不重不漏,注意概率=所求情況數(shù)與總情況數(shù)之比.5、B【分析】根據(jù),,點D、E分別是AB、AC的中點.得出∠DAE=90°,AD=AE=,可證∠DAB=∠EAC,再證△DAB≌△EAC(SAS),可判斷①△AEC≌△ADB正確;作以點A為圓心,AE為半徑的圓,當CP為⊙A的切線時,CP最大,根據(jù)△AEC≌△ADB,得出∠DBA=∠ECA,可證∠P=∠BAC=90°,CP為⊙A的切線,證明四邊形DAEP為正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判斷②CP存在最大值為正確;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判斷③BP存在最小值為不正確;取BC中點為O,連結(jié)AO,OP,AB=AC=6,∠BAC=90°,BP=CO=AO=,當AE⊥CP時,CP與以點A為圓心,AE為半徑的圓相切,此時sin∠ACE=,可求∠ACE=30°,根據(jù)圓周角定理得出∠AOP=2∠ACE=60°,當AD⊥BP′時,BP′與以點A為圓心,AE為半徑的圓相切,此時sin∠ABD=,可得∠ABD=30°根據(jù)圓周角定理得出∠AOP′=2∠ABD=60°,點P在以點O為圓心,OA長為半徑,的圓上運動軌跡為,L可判斷④點P運動的路徑長為正確即可.【詳解】解:∵,,點D、E分別是AB、AC的中點.∴∠DAE=90°,AD=AE=,∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC(SAS),故①△AEC≌△ADB正確;作以點A為圓心,AE為半徑的圓,當CP為⊙A的切線時,CP最大,∵△AEC≌△ADB,∴∠DBA=∠ECA,∴∠PBA+∠P=∠ECP+∠BAC,∴∠P=∠BAC=90°,∵CP為⊙A的切線,∴AE⊥CP,∴∠DPE=∠PEA=∠DAE=90°,∴四邊形DAEP為矩形,∵AD=AE,∴四邊形DAEP為正方形,∴PE=AE=3,在Rt△AEC中,CE=,∴CP最大=PE+EC=3+,故②CP存在最大值為正確;∵△AEC≌△ADB,∴BD=CE=,在Rt△BPC中,BP最小=,BP最短=BD-PD=-3,故③BP存在最小值為不正確;取BC中點為O,連結(jié)AO,OP,∵AB=AC=6,∠BAC=90°,∴BP=CO=AO=,當AE⊥CP時,CP與以點A為圓心,AE為半徑的圓相切,此時sin∠ACE=,∴∠ACE=30°,∴∠AOP=2∠ACE=60°,當AD⊥BP′時,BP′與以點A為圓心,AE為半徑的圓相切,此時sin∠ABD=,∴∠ABD=30°,∴∠AOP′=2∠ABD=60°,∴點P在以點O為圓心,OA長為半徑,的圓上運動軌跡為,∵∠POP=∠POA+∠AOP′=60°+60°=120°,∴L.故④點P運動的路徑長為正確;正確的是①②④.故選B.【點睛】本題考查圖形旋轉(zhuǎn)性質(zhì),線段中點定義,三角形全等判定與性質(zhì),圓的切線,正方形判定與性質(zhì),勾股定理,銳角三角函數(shù),弧長公式,本題難度大,利用輔助線最長準確圖形是解題關鍵.6、D【分析】連接,根據(jù)求得半徑,進而根據(jù)的長,勾股定理的逆定理證明,根據(jù)弧長關系可得,即可證明是等邊三角形,求得,進而由勾股定理即可求得【詳解】如圖,連接,,是直角三角形,且是等邊三角形是直徑,故選D【點睛】本題考查了弧與圓心角的關系,直徑所對的圓周角是90度,勾股定理,等邊三角形的判定,求得的長是解題的關鍵.7、C【分析】根據(jù)從左邊看得到的圖形是左視圖解答即可.【詳解】解:從左邊看是一個正方形被水平的分成3部分,中間的兩條分線是虛線,故C正確.故選C.【點睛】本題主要考查了簡單組合體的三視圖,掌握三視圖的定義成為解答本題的關鍵.8、A【分析】由題意可設盒子中紅球的個數(shù)x,則盒子中球的總個數(shù)x,摸到紅球的頻率穩(wěn)定在30%左右,根據(jù)頻率與概率的關系可得出摸到紅球的概率為30%,再根據(jù)概率的計算公式計算即可.【詳解】解:設盒子中紅球的個數(shù)x,根據(jù)題意,得:解得x=12,所以盒子中紅球的個數(shù)是12,故選:A.【點睛】本題主要考查了利用頻率估計概率以及概率求法的運用,利用概率的求法估計總體個數(shù),利用如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=;頻率與概率的關系生:一般地,在大量的重復試驗中,隨著試驗次數(shù)的增加,事件A發(fā)生的頻率會穩(wěn)定于某個常數(shù)p,我們稱事件A發(fā)生的概率為p.二、填空題1、相切【分析】過點C作CD⊥AB于D,在Rt△ABC中,根據(jù)勾股定理AB=cm,利用面積得出CD·AB=AC·BC,即10CD=6×8,求出CD=4.8cm,根據(jù)CD=r=4.8cm,得出直線與的位置關系是相切.【詳解】解:過點C作CD⊥AB于D,在Rt△ABC中,根據(jù)勾股定理AB=cm,∴S△ABC=CD·AB=AC·BC,即10CD=6×8,解得CD=4.8cm,∴CD=r=4.8cm,∴直線與的位置關系是相切.故答案為:相切.【點睛】本題考查勾股定理,直角三角形面積,圓的切判定,掌握勾股定理,直角三角形面積,圓的切判定是解題關鍵.2、【分析】根據(jù)題意列出表格,可得6種等可能結(jié)果,其中一紅—黑的有4種,再利用概率公式,即可求解.【詳解】解:根據(jù)題意列出表格如下:黑球紅球1紅球2黑球紅球1、黑球紅球2、黑球紅球1黑球、紅球1紅球2、紅球1紅球2黑球、紅球2紅球1、紅球2得到6種等可能結(jié)果,其中一紅—黑的有4種,所以兩次摸出的球是一紅—黑的概率是.故答案為:【點睛】本題主要考查了求概率,能夠利用畫樹狀圖或列表格的方法解答是解題的關鍵.3、【分析】先列表,再利用表格信息得到所有的等可能的結(jié)果數(shù)與符合條件的結(jié)果數(shù),再利用概率公式進行計算即可.【詳解】解:列表如下:12321+2=32+2=42+3=533+1=43+2=53+3=644+1=54+2=64+3=7可得:所有的等可能的結(jié)果數(shù)有9種,而和為5的結(jié)果數(shù)有3種,摸出的這兩個小球標記的數(shù)字之和為5的概率為:故答案為:【點睛】本題考查的是利用列表法或畫樹狀圖的方法求解簡單隨機事件的概率,掌握“列表或畫樹狀圖的方法”是解本題的關鍵.4、【分析】由與是等腰直角三角形,得到,,根據(jù)全等三角形的性質(zhì)得到,求得在以為直徑的圓上,由的外心為,,得到,如圖,當時,的值最小,解直角三角形即可得到結(jié)論.【詳解】解:與是等腰直角三角形,,,在與中,,≌,,,,在以為直徑的圓上,的外心為,,,如圖,當時,的值最小,,,,,.則的最小值是,故答案為:.【點睛】本題考查了三角形的外接圓與外心,全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),正確的作出輔助線是解題的關鍵.5、12【分析】如圖,連接BC,AO,作點P關于AB的對稱點M,作點P關于AC的對稱點N,連接MN交AB于E,交AC于F,此時△PEF的周長=PE+PF+EF=EM+EF+FM=MN,想辦法求出MN的最小值即可解決問題.【詳解】解:如圖,連接BC,AO,作點P關于AB的對稱點M,作點P關于AC的對稱點N,連接MN交AB于E,交AC于F,此時△PEF的周長=PE+PF+EF=EM+EF+FM=MN,∴當MN的值最小時,△PEF的值最小,∵AP=AM=AN,∠BAM=∠BAP,∠CAP=∠CAN,∠BAC=60°,∴∠MAN=120°,∴MN=AM=PA,∴當PA的值最小時,MN的值最小,取AB的中點J,連接CJ.∵AB=8,AC=4,∴AJ=JB=AC=4,∵∠JAC=60°,∴△JAC是等邊三角形,∴JC=JA=JB,∴∠ACB=90°,∴BC=,∵∠BOC=60°,OB=OC,∴△OBC是等邊三角形,∴OB=OC=BC=4,∠BCO=60°,∴∠ACH=30°,∵AH⊥OH,AH=AC=2,CH=AH=2,∴OH=6,∴OA==4,∵當點P在直線OA上時,PA的值最小,最小值為-,∴MN的最小值為?(-)=-12.故答案:-12.【點睛】本題考查了圓周角定理,垂徑定理,軸對稱-最短問題等知識,解題的關鍵是學會利用軸對稱解決最短問題,屬于中考填空題中的壓軸題.6、160°,5200【分析】由題意知,圓錐的展開圖扇形的r半徑為90cm,弧長l為.代入扇形弧長公式求解圓心角;代入扇形面積公式求出圓錐側(cè)面積,然后加上底面面積即可求出全面積.【詳解】解:圓錐的展開圖扇形的r半徑為90cm,弧長l為∵∴解得∵∴故答案為:160°,.【點睛】本題考查了扇形的圓心角與面積.解題的關鍵在于運用扇形的弧長與面積公式進行求解.難點在于求出公式中的未知量.7、【分析】根據(jù)二次函數(shù)的性質(zhì),對稱軸為,進而可得同號,根據(jù)列表法即可求得二次函數(shù)的對稱軸在軸左側(cè)的概率【詳解】解:二次函數(shù)的對稱軸在軸左側(cè)對稱軸為,即同號,列表如下共有12種等可能結(jié)果,其中同號的結(jié)果有4種則二次函數(shù)的對稱軸在軸左側(cè)的概率為故答案為:【點睛】本題考查了二次函數(shù)圖象的性質(zhì),列表法求概率,掌握二次函數(shù)的圖象與系數(shù)的關系以及列表法求概率是解題的關鍵.三、解答題1、(1)C(2)(3)【分析】(1)作出圖形,根據(jù)切線的定義結(jié)合“關聯(lián)點”即可求解;(2)根據(jù)題意,為等邊三角形,則僅與相切時,和有“關聯(lián)點”,進而求得半徑r的取值范圍;(3)根據(jù)關聯(lián)點以及切線的性質(zhì),直徑所對的角是直角,找到點的運動軌跡是以為圓心半徑為的半圓在軸上的部分,進而即可求得的值.(1)解:如圖,,,,,,軸,.的半徑為2,直線與相切直線l和的“關聯(lián)點”是點故答案為:(2)如圖,根據(jù)題意與有“關聯(lián)點”,則與相切,且與相離,是等邊三角形為的中點,則當與相切時,則點為的內(nèi)心半徑r的取值范圍為:(3)如圖,設和直線m的“關聯(lián)點”為,,交軸于點,是的切線,的圓心為點,半徑為t,軸是的切線點的運動軌跡是以為圓心半徑為的半圓在軸上的部分,則點,在直線上,當直線與相切時,即當點與點重合時,最大,此時與軸交于點,當點運動到點時,則過點,則解得b的取值范圍為:【點睛】本題考查了切線的性質(zhì)與判定,切線長定理,勾股定理,一次函數(shù)與坐標軸交點問題,等邊三角形的性質(zhì),等邊三角形的內(nèi)心的性質(zhì),掌握以上知識是解題的關鍵.2、(1)見解析(2)【分析】(1)連接,先根據(jù)等腰三角形的性質(zhì)可得,再根據(jù)圓周角定理可得,然后根據(jù)直角三角形的性質(zhì)可得,根據(jù)等腰三角形的性質(zhì)可得,從而可得,最后根據(jù)圓的切線的判定即可得證;(2)連接,先利用勾股定理可得,設的半徑為,從而可得,再在中,利用勾股定理即可得.(1)證明:如圖,連接,,,是的直徑,,,點是的中點,,,,即,又是的半徑,是的切線;(2)解:如圖,連接,,,設的半徑為,則,在中,,即,解得,故的半徑為.【點睛】本題考查了圓周角定理、等腰三角形的性質(zhì)、圓的切線的判定、勾股定理等知識點,熟練掌握圓周角定理和圓的切線的判定是解題關鍵.3、(1);(2)證明見詳解;(3).【分析】(1)過點P作PG⊥EC于G,根據(jù)等腰直角三角形得出∠B=∠C=45°,根據(jù)PG⊥EC,可取∠GPC=90°-∠C=45°,可得PG=GC,根據(jù)三角形外角性質(zhì)∠EPC=75°,可求∠EPG=30°,根據(jù)30°直角三角形性質(zhì)得出EP=2EG,根據(jù)勾股定理根據(jù)EC=EG+GC=EG+,可求EG=即可;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,根據(jù)∠MAH=45°=∠HEC,可得點A、M、C、E四點共圓,得出∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,可得△AEJ為等腰直角三角形,根據(jù)根據(jù)勾股定理AJ=,得出∠CAE=∠MCE,可證∠JAC=∠JCA,可得AJ=JC=,先證△CHM∽△ECM,再證△AEM≌△HEC(AAS),得出EM=EC,再證△AME≌△MCF(AAS),得出AE=MF即可;(3)分兩種情況,當BE在∠ABC的平分線上時,與BE在△ABC外部時,當BE在∠ABC的平分線上時,作∠ABC的平分線交AC于O,將△AEC逆時針旋轉(zhuǎn)90°得到△AFC′,過點O作OP⊥BC于P,則點E在BO上,有∠ABE=∠ABC,先證B、A、C′三點共線,根據(jù)兩點之交線段最短可得BF+CE=BF+C′F≥BC′,當點F在BC′上時,BF+CE最短=BC′,此時點E在AC上與點O重合,然后利用勾股定理EC=,BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF在Rt△ABE中,根據(jù)勾股定理,當BE在△ABC外部時,∠EBA=,將△EAC逆時針旋轉(zhuǎn)90°得到△FAC′,先證B、A、C′三點共線,根據(jù)兩點之間線段最短可得BF+CE=BF+FC′≥BC′,當點F在BC′上時,BF+CE最短=BC′,再證EF=BF,然后根據(jù)勾股定理BF=CE=AE+AC=AF+AB=在Rt△EAB中,根據(jù)勾股定理即可.【詳解】解:(1)過點P作PG⊥EC于G,∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵PG⊥EC,∴∠GPC=90°-∠C=45°,∴PG=GC,∵∠EAC=30°,∠EDF=90°,DE=DF,∴∠DEF=∠F=45°,∴∠EPC=∠AEF+∠EAC=30°+45°=75°,∴∠EPG=∠EPC-∠GPC=75°-45°=30°,∴EP=2EG,在Rt△EPG中,根據(jù)勾股定理∴GC=PG=∴EC=EG+GC=EG+,∴EG=,∴EP=2EG=;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,∵BM=CM,AB=AC,∠BAC=90°,∴AM⊥BC,AM=BM=CM,∴∠MAH=45°=∠HEC,∴點A、M、C、E四點共圓,∴∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,∴∠AEJ=∠AEM+∠HEC=45°+45°=90°,∵AE=JE,∴∠EAJ=∠EJA=45°,在Rt△AEJ中,根據(jù)勾股定理AJ=,∵∠CAE=∠MCE,∴∠JAC+45°=∠JCA+45°,∴∠JAC=∠JCA,∴AJ=JC=,∵∠HCM=∠CEM=45°,∠HMC=∠CME,∴△CHM∽△ECM,∴∠MHC=∠MCE,∵∠EHA=∠MHC=∠MCE=∠EAH∴AE=HE,在△AEM和△HEC中,,∴△AEM≌△HEC(AAS),∴EM=EC,∴∠EMC=∠ECM,∵∠AME+∠EMC=∠ECM+∠MCF=90°,∴∠AME=∠MCF,在△AME和△MCF中,∴△AME≌△MCF(AAS),∴AE=MF,∴CE=EJ+JC=MF+AE;(3)分兩種情況,當BE在∠ABC的平分線上時,與BE在△ABC外部時,當當BE在∠ABC的平分線上時,作∠ABC的平分線交AC于O,將△AEC逆時針旋轉(zhuǎn)90°得到△AFC′,過點O作OP⊥BC于P,則點E在BO上,有∠ABE=∠ABC,∵△AEC≌△AFC′,∴∠CAE=∠C′AF,∵∠BAC′=∠BAC+∠OAC′=∠BAC+∠FAC′+∠OAF=∠BAC+∠EAC+∠OAF=∠BAC+∠EAF=180°,∴B、A、C′三點共線,∴BF+CE=BF+C′F≥BC′,當點F在BC′上時,BF+CE最短=BC′,此時點E在AC上與點O重合,∵BO為∠ABC的平分線,OA⊥AB,OP⊥BC,∴OP=AO=AF,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°,∴∠PEC=180°-∠EPC-∠C=45°,∴PC=EP=AF,∴EC=,∴AC=AE+EC=AF+=(1+)AF,∴BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF,在Rt△ABE中,根據(jù)勾股定理,∴;當BE在△ABC外部時,∠EBA=,將△EAC逆時針旋轉(zhuǎn)90°得到△FAC′,則△EAC≌△FAC′,∴AC′=AC,EC=FC′,∠EAC=∠FAC′,∵∠FEB+∠EAC=360°-∠EAF-∠BAC=360°-90°-90°=180°,∴∠FAB+∠FAC′=∠FAB+∠EAC=180°,∴B、A、C′三點共線,∴BF+CE=BF+FC′≥BC′,∴點F在BC′上時,BF+CE最短=BC′,∵∠EBA=,∠EFA=45°,∴∠EFA=∠EBA+∠BEF=45°,∴∠BEF=45°-∠EBA=45°-22.5°=22.5°,∴EF=BF,在Rt△EAF中,,∴BF=,∴AB=BF+AF=+AF=,∴CE=AE+AC=AF+AB=,在Rt△EAB中,根據(jù)勾股定理,∴.綜合.【點睛】本題考查等腰直角三角形性質(zhì),三角形外角性質(zhì),30°直角三角形性質(zhì),勾股定理,三角形全等判定與性質(zhì),四點共圓,同弧所對圓周角性質(zhì),三角形相似判定與性質(zhì),圖形旋轉(zhuǎn)性質(zhì),最短路徑問題,角平分線性質(zhì),分類討論思想,本題難度大,應用知識多,是中考壓軸題,利用輔助線作出正確圖形是解題關鍵.4、(1)(﹣3,4)(2)(3,﹣4),(2,0)(3)16(4)(0,4)或(0,﹣4)【分析】(1)根據(jù)坐標的定義,判定即可;(2)根據(jù)原點對稱,y軸對稱的點的坐標特點計算即可;(3)把四邊形的面積分割成三角形的面積計算;(4)根據(jù)面積相等,確定OF的長,從而確定坐標.(1)過點B作x軸的垂線,垂足所對應的數(shù)為﹣3,因此點B的橫坐標為﹣3,過點B作y軸的垂線,垂足所對應的數(shù)為4,因此點B的縱坐標為4,所以點B(﹣3,4);故答案為:(﹣3,4);(2)由于關于原點對稱的兩個點坐標縱橫坐標均為互為相反數(shù),所以點B(﹣3,4)關于原點對稱點C(3,﹣4),由于關于y軸對稱的兩個點,其橫坐標互為相反數(shù),其縱坐標不變,所以點A(﹣2,0)關于y軸對稱點D(2,0),故答案為:(3,﹣4),(2,0);(3)=2××4×4=16,故答案為:16;(4)∵==8=,∴AD?OF=8,∴OF=4,又∵點F在y軸上,∴點F(0,4)或(0,﹣4),故答案為:(0,4)或(0,﹣4).【點睛】本題考查了坐標系中對稱點的坐標確定,圖形的面積計算,正確理解坐標的意義,適當分割圖形是解題的關鍵.5、(1)0.28;(2)【分析】(1)由表中數(shù)據(jù)可判斷頻率在0.28左右擺動,利用頻率估計概率可判斷任意抽取一個毛絨玩具是優(yōu)等品的概率為0.28;(2)先列表得出所有等可能結(jié)果,從中找到符合條件的結(jié)果數(shù),再根據(jù)概率公式求解可得.(1)解:從這批盲盒中任意抽取一個是玩具B的概率是0.28,故答案為0.28.(2)列表為:ABCDA--BACADABAB--CBDBCACBC--DCDADBDCD--由上表可知,從四種玩具的四個盲盒中隨機抽取兩個共有12種等可能結(jié)果,其中恰為玩具A和玩具C的結(jié)果有2種,所以恰為玩具A和玩具C的概率P=.【點睛】本題考查了利用頻率估計概率及用列表法或樹狀圖法求概率,大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論