版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、下面的圖形中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.2、如圖是由幾個小立方體所搭成的幾何體從上面看到的平面圖形,小正方形中的數(shù)字表示在該位置小立方體的個數(shù),則這個幾何體從正面看到的平面圖形為()A. B. C. D.3、如圖,點P是等邊三角形ABC內一點,且PA=3,PB=4,PC=5,則∠APB的度數(shù)是().A.90° B.100° C.120° D.150°4、如圖,AB是的直徑,CD是的弦,且,,,則圖中陰影部分的面積為()A. B. C. D.5、小張同學去展覽館看展覽,該展覽館有A、B兩個驗票口(可進可出),另外還有C、D兩個出口(只出不進).則小張從不同的出入口進出的概率是()A. B. C. D.6、如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.將△ABC繞點C按順時針方向旋轉到點D落在AB邊上,此時得到△EDC,斜邊DE交AC邊于點F,則圖中陰影部分的面積為()A.3 B.1 C. D.7、如圖,在△ABC中,∠CAB=64°,將△ABC在平面內繞點A旋轉到△AB′C′的位置,使CC′AB,則旋轉角的度數(shù)為()A.64° B.52° C.42° D.36°8、下列事件是確定事件的是()A.方程有實數(shù)根 B.買一張體育彩票中大獎C.拋擲一枚硬幣正面朝上 D.上海明天下雨第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖AB為⊙O的直徑,點P為AB延長線上的點,過點P作⊙O的切線PE,切點為M,過A、B兩點分別作PE垂線AC、BD,垂足分別為C、D,連接AM,則下列結論正確的是______(寫所有正確論的號)①AM平分∠CAB;②;③若AB=4,∠APE=30°,則的長為;④若AC=3BD,則有tan∠MAP=.2、在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1,如圖所示,將△ABC繞點A按逆時針方向旋轉90°后得到△AB′C′.則圖中陰影部分的面積為_____.3、半徑為6cm的扇形的圓心角所對的弧長為cm,這個圓心角______度.4、如圖,PA,PB是的切線,切點分別為A,B.若,,則AB的長為______.5、如圖,點A,B,C在⊙O上,四邊形OABC是平行四邊形,若對角線AC=2,則的長為_____.6、若扇形的圓心角為60°,半徑為2,則該扇形的弧長是_____(結果保留)7、在一個不透明的袋子里,有2個白球和2個紅球,它們只有顏色上的區(qū)別,從袋子里隨機摸出兩個球,則摸到兩個都是紅球的概率是_______.三、解答題(7小題,每小題0分,共計0分)1、如圖,在Rt△ABC中,∠B=90°,∠BAC的平分線AD交BC于點D,點E在AC上,以AE為直徑的⊙O經過點D.(1)求證:①BC是⊙O的切線;②;(2)若點F是劣弧AD的中點,且CE=3,試求陰影部分的面積.2、某商家銷售一批盲盒,每一個看上去無差別的盲盒內含有A,B,C,D四種玩具中的一種,抽到玩具B的有關統(tǒng)計量如表所示:抽盲盒總數(shù)50010001500200025003000頻數(shù)130273414566695843頻率0.2600.2730.2760.2830.2780.281(1)估計從這批盲盒中任意抽取一個是玩具B的概率是;(結果保留小數(shù)點后兩位)(2)小明從分別裝有A,B,C,D四種玩具的四個盲盒中隨機抽取兩個,請利用畫樹狀圖或列表的方法,求抽到的兩個玩具恰為玩具A和玩具C的概率.3、在平面內,給定不在同一直線上的點A,B,C,如圖所示.點O到點A,B,C的距離均等于r(r為常數(shù)),到點O的距離等于r的所有點組成圖形G,ABC的平分線交圖形G于點D,連接AD,CD.求證:AD=CD.4、隨著“新冠肺炎”疫情防控形勢日漸好轉,各地開始復工復學,某校復學后成立“防疫志愿者服務隊”,設立四個“服務監(jiān)督崗”:①洗手監(jiān)督崗,②戴口罩監(jiān)督崗,③就餐監(jiān)督崗,④操場活動監(jiān)督崗.李老師和王老師報名參加了志愿者服務工作,學校將報名的志愿者隨機分配到四個監(jiān)督崗.(1)王老師被分配到“就餐監(jiān)督崗”的概率為;(2)用列表法或畫樹狀圖法,求李老師和王老師被分配到同一個監(jiān)督崗的概率.5、綜合與實踐“利用尺規(guī)作圖三等分一個任意角”曾是數(shù)學史上一大難題,之后被數(shù)學家證明是不可能完成的.人們根據實際需要,發(fā)明了一種簡易操作工具——三分角器.圖1是它的示意圖,其中與半圓的直徑在同一直線上,且的長度與半圓的半徑相等;與垂直于點,足夠長.使用方法如圖2所示,若要把三等分,只需適當放置三分角器,使經過的頂點,點落在邊上,半圓與另一邊恰好相切,切點為,則,就把三等分了.為了說明這一方法的正確性,需要對其進行證明.獨立思考:(1)如下給出了不完整的“已知”和“求證”,請補充完整.已知:如圖2,點,,,在同一直線上,,垂足為點,________,切半圓于.求證:________________.探究解決:(2)請完成證明過程.應用實踐:(3)若半圓的直徑為,,求的長度.6、如圖,內接于,BC是的直徑,D是AC延長線上一點.(1)請用尺規(guī)完成基本作圖:作出的角平分線交于點P.(保留作圖痕跡,不寫作法)(2)在(1)所作的圖形中,過點P作,垂足為E.則PE與有怎樣的位置關系?請說明理由.7、對于平面直角坐標系xOy中的圖形M,N,給出如下定義:若圖形M和圖形N有且只有一個公共點P,則稱點P是圖形M和圖形N的“關聯(lián)點”.已知點,,,.(1)直線l經過點A,的半徑為2,在點A,C,D中,直線l和的“關聯(lián)點”是______;(2)G為線段OA中點,Q為線段DG上一點(不與點D,G重合),若和有“關聯(lián)點”,求半徑r的取值范圍;(3)的圓心為點,半徑為t,直線m過點A且不與x軸重合.若和直線m的“關聯(lián)點”在直線上,請直接寫出b的取值范圍.-參考答案-一、單選題1、A【詳解】解:A、既是軸對稱圖形又是中心對稱圖形,此項符合題意;B、是中心對稱圖形,不是軸對稱圖形,此項不符題意;C、是軸對稱圖形,不是中心對稱圖形,此項不符題意;D、是軸對稱圖形,不是中心對稱圖形,此項不符題意;故選:A.【點睛】本題考查了中心對稱圖形和軸對稱圖形,熟記中心對稱圖形的定義(在平面內,把一個圖形繞某點旋轉,如果旋轉后的圖形與另一個圖形重合,那么這兩個圖形互為中心對稱圖形)和軸對稱圖形的定義(如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,那么這個圖形叫做軸對稱圖形)是解題關鍵.2、B【分析】幾何體從上面看到的每個數(shù)字是該位置小立方體的個數(shù),可得從正面看共有3列,2層,從左往右的每列的小立方體的個數(shù)為1,2,1,從上往下的每層的小立方體的個數(shù)為1,3,即可求解【詳解】解:幾何體從上面看到的每個數(shù)字是該位置小立方體的個數(shù),可得從正面看共有3列,2層,從左往右每列的小立方體的個數(shù)為1,2,1,從上往下每層的小立方體的個數(shù)為1,3,所以這個幾何體從正面看到的平面圖形為故選:B【點睛】本題主要考查了幾何體的三視圖,熟練掌握三視圖是觀測者從三個不同位置觀察同一個幾何體,畫出的平面圖形;(1)從正面看:從物體前面向后面正投影得到的投影圖,它反映了空間幾何體的高度和長度;(2)從側面看:從物體左面向右面正投影得到的投影圖,它反映了空間幾何體的高度和寬度;(3)從上面看:從物體上面向下面正投影得到的投影圖,它反應了空間幾何體的長度和寬度是解題的關鍵.3、D【分析】將繞點逆時針旋轉得,根據旋轉的性質得,,,則為等邊三角形,得到,,在中,,,,根據勾股定理的逆定理可得到為直角三角形,且,即可得到的度數(shù).【詳解】解:為等邊三角形,,可將繞點逆時針旋轉得,如圖,連接,,,,為等邊三角形,,,在中,,,,,為直角三角形,且,.故選:D.【點睛】本題考查了旋轉的性質、等邊三角形,解題的關鍵是掌握旋轉前后的兩個圖形全等,對應點與旋轉中心的連線段的夾角等于旋轉角,對應點到旋轉中心的距離相等.4、C【分析】如圖,連接OC,OD,可知是等邊三角形,,,,計算求解即可.【詳解】解:如圖連接OC,OD∵∴是等邊三角形∴由題意知,故選C.【點睛】本題考查了扇形的面積,等邊三角形等知識.解題的關鍵在于用扇形表示陰影面積.5、D【分析】先畫樹狀圖得到所有的等可能性的結果數(shù),然后找到小張從不同的出入口進出的結果數(shù),最后根據概率公式求解即可.【詳解】解:列樹狀圖如下所示:由樹狀圖可知一共有8種等可能性的結果數(shù),其中小張從不同的出入口進出的結果數(shù)有6種,∴P小張從不同的出入口進出的結果數(shù),故選D.【點睛】本題主要考查了用列表法或樹狀圖法求解概率,解題的關鍵在于能夠熟練掌握用列表法或樹狀圖法求解概率.6、D【分析】根據題意及旋轉的性質可得是等邊三角形,則,,根據含30度角的直角三角形的性質,即可求得,由勾股定理即可求得,進而求得陰影部分的面積.【詳解】解:如圖,設與相交于點,,,,旋轉,,是等邊三角形,,,,,,,,陰影部分的面積為故選D【點睛】本題考查了等邊三角形的性質,勾股定理,含30度角的直角三角形的性質,旋轉的性質,利用含30度角的直角三角形的性質是解題的關鍵.7、B【分析】先根據平行線的性質得∠ACC′=∠CAB=64°,再根據旋轉的性質得∠CAC′等于旋轉角,AC=AC′,則利用等腰三角形的性質得∠ACC′=∠AC′C=64°,然后根據三角形內角和定理可計算出∠CAC′的度數(shù),從而得到旋轉角的度數(shù).【詳解】解:∵CC′∥AB,∴∠ACC′=∠CAB=64°∵△ABC在平面內繞點A旋轉到△AB′C′的位置,∴∠CAC′等于旋轉角,AC=AC′,∴∠ACC′=∠AC′C=64°,∴∠CAC′=180°-∠ACC′-∠AC′C=180°-2×64°=52°,∴旋轉角為52°.故選:B.【點睛】本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.8、A【分析】隨機事件:是指在一定條件下可能發(fā)生也可能不發(fā)生的事件,根據隨機事件的分類對各個選項逐個分析,即可得到答案【詳解】解:.方程無實數(shù)根,因此“方程有實數(shù)”是不可能事件,所以選項符合題意;B.買一張體育彩票可能中大獎,有可能不中,因此是隨機事件,所以選項B不符合題意;C.拋擲一枚硬幣,可能正面朝上,有可能反面朝上,因此是隨機事件,所以選項C不符合題意;D.上海明天可能下雨,有可能不下雨,因此是隨機事件,所以選項D不符合題意;故選:.【點睛】本題考查的是確定事件與隨機事件的概念,掌握確定事件分為必然事件,不可能事件,及隨機事件的概念是解題的關鍵.二、填空題1、①②④【分析】連接OM,由切線的性質可得,繼而得,再根據平行線的性質以及等邊對等角即可求得,由此可判斷①;通過證明,根據相似三角形的對應邊成比例可判斷②;求出,利用弧長公式求得的長可判斷③;由,,,可得,繼而可得,,進而有,在中,利用勾股定理求出PD的長,可得,由此可判斷④.【詳解】解:連接OM,∵PE為的切線,∴,∵,∴,∴,∵,,∴,即AM平分,故①正確;∵AB為的直徑,∴,∵,,∴,∴,∴,故②正確;∵,∴,∵,∴,∴的長為,故③錯誤;∵,,,∴,∴,∴,∴,又∵,,,∴,又∵,∴,設,則,∴,在中,,∴,∴,由①可得,,故④正確,故答案為:①②④.【點睛】本題考查了切線的性質,平行線分線段成比例定理,相似三角形的判定與性質,勾股定理等,正確添加輔助線,熟練掌握和靈活運用相關知識是解題的關鍵.2、【分析】利用勾股定理求出AC及AB的長,根據陰影面積等于求出答案.【詳解】解:由旋轉得,,=∠BAC=30°,∵∠ABC=90°,∠BAC=30°,BC=1,∴AC=2BC=2,AB=,,∴陰影部分的面積==,故答案為:..【點睛】此題考查了求不規(guī)則圖形的面積,正確掌握勾股定理、30度角直角三角形的性質、扇形面積計算公式及分析出陰影面積的構成特點是解題的關鍵.3、60【分析】根據弧長公式求解即可.【詳解】解:,解得,,故答案為:60.【點睛】本題考查了弧長公式,靈活應用弧長公式是解題的關鍵.4、3【分析】由切線長定理和,可得為等邊三角形,則.【詳解】解:連接,如下圖:,分別為的切線,,為等腰三角形,,,為等邊三角形,,,.故答案為:3.【點睛】本題考查了等邊三角形的判定和切線長定理,解題的關鍵是作出相應輔助線.5、【分析】連接OB,交AC于點D,根據有一組鄰邊相等的平行四邊形是菱形,可得四邊形OABC為菱形,根據菱形的性質可得:,,,根據等邊三角形的判定得出為等邊三角形,由此得出,在直角三角形中利用勾股定理即可確定圓的半徑,然后代入弧長公式求解即可.【詳解】解:如圖所示,連接OB,交AC于點D,∵四邊形OABC為平行四邊形,,∴四邊形OABC為菱形,∴,,,∵,∴為等邊三角形,∴,∴,在中,設,則,∴,即,解得:或(舍去),∴的長為:,故答案為:.【點睛】題目主要考查菱形的判定和性質,等邊三角形的判定和性質,勾股定理,弧長公式等,熟練掌握各個定理和公式是解題關鍵.6、【分析】已知扇形的圓心角為,半徑為2,代入弧長公式計算.【詳解】解:依題意,n=,r=2,∴扇形的弧長=.故答案為:.【點睛】本題考查了弧長公式的運用.關鍵是熟悉公式:扇形的弧長=.7、【分析】先用列表法分析所有等可能的結果和摸到兩個都是紅球的結果數(shù),然后根據概率公式求解即可.【詳解】解:記紅球為,白球為,列表得:∵一共有12種情況,摸到兩個都是紅球有2種,∴P(兩個球都是紅球),故答案是.【點睛】本題主要考查了用列表法或畫樹狀圖法求概率,列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件.三、解答題1、(1)①見解析;②見解析;(2).【分析】(1)①連接OD,由角平分線的性質解得,再根據內錯角相等,兩直線平行,證明,繼而由兩直線平行,同旁內角互補證明即可解題;②連接DE,由弦切角定理得到,再證明,由相似三角形對應邊成比例解題;(2)證明是等邊三角形,四邊形DOAF是菱形,,結合扇形面積公式解題.【詳解】解:(1)①連接OD,是∠BAC的平分線是⊙O的切線;②連接DE,是⊙O的切線,是直徑(2)連接DE、OD、DF、OF,設圓的半徑為R,點F是劣弧AD的中點,OF是DA中垂線DF=AF,是等邊三角形,四邊形DOAF是菱形,.【點睛】本題考查圓的綜合題,涉及切線的判定與性質、平行四邊形的性質、等邊三角形的判定與性質、相似三角形的判定與性質、扇形面積等知識,綜合性較強,有難度,掌握相關知識是解題關鍵.2、(1)0.28;(2)【分析】(1)由表中數(shù)據可判斷頻率在0.28左右擺動,利用頻率估計概率可判斷任意抽取一個毛絨玩具是優(yōu)等品的概率為0.28;(2)先列表得出所有等可能結果,從中找到符合條件的結果數(shù),再根據概率公式求解可得.(1)解:從這批盲盒中任意抽取一個是玩具B的概率是0.28,故答案為0.28.(2)列表為:ABCDA--BACADABAB--CBDBCACBC--DCDADBDCD--由上表可知,從四種玩具的四個盲盒中隨機抽取兩個共有12種等可能結果,其中恰為玩具A和玩具C的結果有2種,所以恰為玩具A和玩具C的概率P=.【點睛】本題考查了利用頻率估計概率及用列表法或樹狀圖法求概率,大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.列表法或樹狀圖法求概率,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.3、見解析【分析】由題意畫圖,再根據圓周角定理的推論即可得證結論.【詳解】證明:根據題意作圖如下:∵BD是圓周角ABC的角平分線,∴∠ABD=∠CBD,∴,∴AD=CD.【點睛】本題考查了角,弧,弦之間的關系,熟練掌握三者的關系定理是解題的關鍵.4、(1);(2)李老師和王老師被分配到同一個監(jiān)督崗的概率為.【分析】(1)直接利用概率公式計算;(2)畫樹狀圖展示所有16種等可能的結果,找出李老師和王老師被分配到同一個監(jiān)督崗的結果數(shù),然后根據概率公式計算.【詳解】解:(1)因為設立了四個“服務監(jiān)督崗”:“洗手監(jiān)督崗”,“戴口罩監(jiān)督崗”,“戴口罩監(jiān)督崗”,“就餐監(jiān)督崗”而“操場活動監(jiān)督崗”是其中之一,∴王老師被分配到“就餐監(jiān)督崗”的概率=;故答案為:;(2)畫樹狀圖為:由樹狀圖可知共有16種等可能的結果,其中李老師和王老師被分配到同一個監(jiān)督崗的結果數(shù)為4,∴李老師和王老師被分配到同一個監(jiān)督崗的概率==.【點睛】本題考查了列舉法求解概率,列表法與樹狀圖法求解概率:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.5、(1),,將三等分;(2)見解析;(3)【分析】(1)根據題意即可得;(2)先證明與全等,然后根據全等的性質可得,再由圓的切線的性質可得,可得三個角相等,即可證明結論;(3)連,延長與相交于點,由(2)結論可得,再由切線的性質,,然后利用勾股定理及線段間的數(shù)量關系可得,最后利用相似三角形的判定和性質求解即可得.【詳解】解:(1),,將三等分,故答案為:;,將三等分,(2)證明:在與中,,,.,是的切線.、都是的切線,,,,將三等分.(3)如圖,連,延長與相交于
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 術后并發(fā)癥預防性康復策略研究
- 引水渠防滲施工方案設計
- 特定病癥督脈灸護理
- 風電場化學監(jiān)督培訓課件
- 外墻板吊裝模擬施工方案
- 天康集團校招面試題目及答案
- 四聯(lián)創(chuàng)業(yè)集團招聘面試題及答案
- 腦血管病康復護理
- 術中自體血回收在燒傷創(chuàng)面手術中的應用策略
- 地縫清潔測評方案范本
- 山東省委黨校在職研究生法學理論考試真題(附答案)
- GJB2460A-2020軍用夾布橡膠軟管規(guī)范
- 公路概論考試試題及答案
- 《創(chuàng)新創(chuàng)業(yè)基礎》 課件 第4章 創(chuàng)業(yè)團隊
- 2025年版《煤礦安全規(guī)程》考試題庫附答案(含各題型)
- 2025云南溫泉山谷康養(yǎng)度假運營開發(fā)(集團)有限公司社會招聘19人筆試參考題庫附帶答案詳解
- 食品加工工藝技術課件
- 數(shù)據資產會計核算的現(xiàn)狀與問題研究
- 監(jiān)理履約考核管理辦法
- 艾梅乙培訓課件
- 智能施工升降機安全管理培訓
評論
0/150
提交評論