版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版8年級數(shù)學下冊《平行四邊形》章節(jié)練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,點E是△ABC內(nèi)一點,∠AEB=90°,D是邊AB的中點,延長線段DE交邊BC于點F,點F是邊BC的中點.若AB=6,EF=1,則線段AC的長為()A.7 B. C.8 D.92、如圖,已知菱形ABCD的對角線AC,BD的長分別為6,8,AE⊥BC,垂足為點E,則AE的長是()A.5 B.2 C. D.3、如圖所示,在ABCD中,對角線AC,BD相交于點O,過點O的直線EF分別交AD于點E,BC于點F,,則ABCD的面積為(
)A.24 B.32 C.40 D.484、如圖,已知正方形ABCD的邊長為6,點E,F(xiàn)分別在邊AB,BC上,BE=CF=2,CE與DF交于點H,點G為DE的中點,連接GH,則GH的長為()A. B. C.4.5 D.4.35、如圖,以O(shè)為圓心,長為半徑畫弧別交于A、B兩點,再分別以A、B為圓心,以長為半徑畫弧,兩弧交于點C,分別連接、,則四邊形一定是()A.梯形 B.菱形 C.矩形 D.正方形第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、已知Rt△ABC的周長是24,斜邊上的中線長是5,則S△ABC=_____.2、如圖,在矩形ABCD中,對角線AC、BD相交于點O,點E、F分別是AO、AD的中點,若AB=6cm,BC=8cm,則EF=_____cm.3、一個矩形的兩條對角線所夾的銳角是60°,這個角所對的邊長為10cm,則該矩形的面積為_______.4、如圖,在矩形ABCD中,AB=2,AD=2,E為BC邊上一動點,F(xiàn)、G為AD邊上兩個動點,且∠FEG=30°,則線段FG的長度最大值為_____.5、正方形ABCD的邊長為4,則圖中陰影部分的面積為_____.三、解答題(5小題,每小題10分,共計50分)1、如圖,在平行四邊形ABCD中,E為BC的中點,連接AE并延長交DC的延長線于點F,連接BF,AC,且AD=AF.(1)判斷四邊形ABFC的形狀并證明;(2)若AB=3,∠ABC=60°,求EF的長.2、如圖,在中,對角線AC、BD交于點O,AB=10,AD=8,AC⊥BC,求(1)的面積;(2)△AOD的周長.
3、如圖,在中,過點作于點,點在邊上,,連接,.(1)求證:四邊形是矩形;(2)若,,,求證:平分.4、(閱讀材料)材料一:我們在小學學習過正方形,知道:正方形的四條邊都相等,四個角都是直角;材料二:如圖1,由一個等腰直角三角形和一個正方形組成的圖形,我們要判斷等腰直角三角形的面積與正方形的面積的大小關(guān)系,可以這樣做:如圖2,連接AC,BD,把正方形分成四個與等腰三角形ADE全等的三角形,所以.(解決問題)如圖3,圖中由三個正方形組成的圖形(1)請你直接寫出圖中所有的全等三角形;(2)任意選擇一組全等三角形進行證明;(3)設(shè)圖中兩個小正方形的面積分別為S1和S2,若,求S1和S2的值.5、如圖,等腰△ABC中,AB=AC,∠BAC=90°,BE平分∠ABC交AC于E,過C作CD⊥BE于D,(1)如圖1,求證:CD=BE(2)如圖2,過點A作AF⊥BE,寫出AF,BD,CD之間的數(shù)量關(guān)系并說明理由.-參考答案-一、單選題1、C【解析】【分析】根據(jù)直角三角形的性質(zhì)求出DE,由EF=1,得到DF,再根據(jù)三角形中位線定理即可求出線段AC的長.【詳解】解:∵∠AEB=90,D是邊AB的中點,AB=6,∴DE=AB=3,∵EF=1,∴DF=DE+EF=3+1=4.∵D是邊AB的中點,點F是邊BC的中點,∴DF是ABC的中位線,∴AC=2DF=8.故選:C.【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),三角形中位線定理,求出DF的長是解題的關(guān)鍵.2、D【解析】【分析】根據(jù)菱形的性質(zhì)得出BO、CO的長,在Rt△BOC中求出BC,利用菱形面積等于對角線乘積的一半,也等于BC×AE,可得出AE的長度.【詳解】解:∵四邊形ABCD是菱形,∴CO=AC=3,BO=BD=4,AO⊥BO,∴BC==5,∴S菱形ABCD=,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=,故選:D.【點睛】此題考查了菱形的性質(zhì),也涉及了勾股定理,要求我們掌握菱形的面積的兩種表示方法,及菱形的對角線互相垂直且平分.3、B【解析】【分析】先根據(jù)平行四邊形的性質(zhì)可得,再根據(jù)三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)可得,從而可得,然后根據(jù)平行四邊形的性質(zhì)即可得.【詳解】解:∵四邊形是平行四邊形,,,在和中,∵,,,,則的面積為,故選:B.【點睛】本題考查了平行四邊形的性質(zhì)、三角形全等的判定定理與性質(zhì)等知識點,熟練掌握平行四邊形的性質(zhì)是解題關(guān)鍵.4、A【解析】【分析】根據(jù)正方形的四條邊都相等可得BC=DC,每一個角都是直角可得∠B=∠DCF=90°,然后利用“邊角邊”證明△CBE≌△DCF,得∠BCE=∠CDF,進一步得∠DHC=∠DHE=90°,從而知GH=DE,利用勾股定理求出DE的長即可得出答案.【詳解】解:∵四邊形ABCD為正方形,∴∠B=∠DCF=90°,BC=DC,在△CBE和△DCF中,,∴△CBE≌△DCF(SAS),∴∠BCE=∠CDF,∵∠BCE+∠DCH=90°,∴∠CDF+∠DCH=90°,∴∠DHC=∠DHE=90°,∵點G為DE的中點,∴GH=DE,∵AD=AB=6,AE=AB﹣BE=6﹣2=4,∴,∴GH=.故選A.【點睛】本題主要考查了正方形的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,直角三角形斜邊上的中線,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進行求解.5、B【解析】【分析】根據(jù)題意得到,然后根據(jù)菱形的判定方法求解即可.【詳解】解:由題意可得:,∴四邊形是菱形.故選:B.【點睛】此題考查了菱形的判定,解題的關(guān)鍵是熟練掌握菱形的判定方法.菱形的判定定理:①四條邊都相等四邊形是菱形;②一組鄰邊相等的平行四邊形是菱形;③對角線垂直的平行四邊形是菱形.二、填空題1、24【解析】【分析】先根據(jù)直角三角形的性質(zhì)求解,再利用周長求解,兩邊平方結(jié)合勾股定理可得,利用三角形面積公式求解即可.【詳解】解:如圖Rt△ABC,∠C=90°,點D為AB中點,為RtABC斜邊上的中線,,,,,,,由,,∴S△ABC=.故答案為:24.【點睛】本題考查的是直角三角形斜邊上的中線的性質(zhì),勾股定理的應(yīng)用,完全平方公式,三角形面積公式,掌握以上知識是解題的關(guān)鍵.2、####【解析】【分析】根據(jù)勾股定理求出AC,根據(jù)矩形性質(zhì)得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根據(jù)三角形中位線求出即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:(cm),∴DO=5cm,∵點E、F分別是AO、AD的中點,∴EF=OD=2.5cm,故答案為:2.5.【點睛】本題考查了矩形的性質(zhì)的應(yīng)用,勾股定理,三角形中位線的應(yīng)用,解本題的關(guān)鍵是求出OD長及證明EF=OD.3、【解析】【分析】先根據(jù)矩形的性質(zhì)證明△ABC是等邊三角形,得到,則,然后根據(jù)勾股定理求出,最后根據(jù)矩形面積公式求解即可.【詳解】:如圖所示,在矩形ABCD中,∠AOB=60°,,∵四邊形ABCD是矩形,∴∠ABC=90°,,∴△ABC是等邊三角形,∴,∴,∴,∴,故答案為:.【點睛】本題主要考查了矩形的性質(zhì),勾股定理,等邊三角形的性質(zhì)與判定,解題的關(guān)鍵在于能夠熟練掌握矩形的性質(zhì).4、【解析】【分析】如圖所示,在中,F(xiàn)G邊的高為AB=2,∠FEG=30°,為定角定高的三角形,故當E與B點或C點重合,G與D點重合或F與A點重合時,F(xiàn)G的長度最大,則由矩形ABCD中,AB=2,AD=2可知,∠ABD=60°,故∠ABF=60°-30°=30°,則AF=,則FG=AD-AF=.【詳解】如圖所示,在中,F(xiàn)G邊的高為AB=2,∠FEG=30°,為定角定高的三角形故當E與B點或C點重合,G與D點重合或F與A點重合時,F(xiàn)G的長度最大∵矩形ABCD中,AB=2,AD=2∴∠ABD=60°∴∠ABF=60°-30°=30°∴AF=∴FG=AD-AF=.故答案為:.【點睛】本題考查了四邊形中動點問題,圖解法數(shù)學思想依據(jù)是數(shù)形結(jié)合思想.它的應(yīng)用能使復雜問題簡單化、抽象問題具體化.特殊四邊形的幾何問題,很多困難源于問題中的可動點.如何合理運用各動點之間的關(guān)系,同學們往往缺乏思路,常常導致思維混亂.實際上求解特殊四邊形的動點問題,關(guān)鍵是是利用圖解法抓住它運動中的某一瞬間,尋找合理的代數(shù)關(guān)系式,確定運動變化過程中的數(shù)量關(guān)系,圖形位置關(guān)系,分類畫出符合題設(shè)條件的圖形進行討論,就能找到解決的途徑,有效避免思維混亂.5、8【解析】【分析】正方形的對角線是它的一條對稱軸,對應(yīng)點到兩邊的都是垂直的,距離也都相等,左邊梯形面積和右邊梯形面積相等,所以圖中陰影部分的面積正好為正方形面積的一半.然后列式進行計算即可得解.【詳解】解:由圖形可得:S=×4×4=8,所以陰影部分的面積為8.故答案是:8.【點睛】本題考查正方形的性質(zhì),軸對稱的性質(zhì),將陰影面積轉(zhuǎn)化為三角形面積是解題的關(guān)鍵,學會于轉(zhuǎn)化的思想思考問題.三、解答題1、(1)矩形,見解析;(2)3【分析】(1)利用AAS判定△ABE≌△FCE,從而得到AB=CF;由已知可得四邊形ABFC是平行四邊形,BC=AF,根據(jù)對角線相等的平行四邊形是矩形,可得到四邊形ABFC是矩形;(2)先證△ABE是等邊三角形,可得AB=AE=EF=3.【詳解】解:(1)四邊形ABFC是矩形,理由如下:∵四邊形ABCD是平行四邊形,∴,∴∠BAE=∠CFE,∠ABE=∠FCE,∵E為BC的中點,∴EB=EC,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS),∴AB=CF.∵,∴四邊形ABFC是平行四邊形,∵AD=BC,AD=AF,∴BC=AF,∴四邊形ABFC是矩形.(2)∵四邊形ABFC是矩形,∴BC=AF,AE=EF,BE=CE,∴AE=BE,∵∠ABC=60°,∴△ABE是等邊三角形,∴AB=AE=3,∴EF=3.【點睛】本題考查了平行四邊形的性質(zhì)與判定,矩形的判定,三角形全等的性質(zhì)與判定,等邊三角形的性質(zhì)與判定,掌握以上性質(zhì)定理是解題的關(guān)鍵.2、(1)48(2)【分析】(1)利用勾股定理先求出高AC,故可求解面積;(2)根據(jù)平行四邊形的性質(zhì)求出AO,再利用勾股定理求出OB的長,故可求解.【詳解】解:(1)∵四邊形ABCD是平行四邊形,且AD=8
∴BC=AD=8∵AC⊥BC∴∠ACB=90°在Rt△ABC中,由勾股定理得AC2=AB2-BC2∴∴(2)∵四邊形ABCD是平行四邊形,且AC=6∴∵∠ACB=90°,BC=8∴,∴∴.【點睛】此題主要考查平行四邊形的性質(zhì),解題的關(guān)鍵是熟知平行四邊形的性質(zhì)及勾股定理的應(yīng)用.3、(1)見解析;(2)見解析【分析】(1)先證明四邊形是平行四邊形,結(jié)合,從而可得結(jié)論;(2)先證明,再求解證明證明從而可得結(jié)論.【詳解】(1)證明:四邊形是平行四邊形,.即,,四邊形是平行四邊形.,,四邊形是矩形;(2)四邊形是平行四邊形,,.四邊形是矩形;在中,由勾股定理,得,,,,即平分.【點睛】本題考查的是勾股定理的應(yīng)用,角平分線的定義,平行四邊形的判定與性質(zhì),矩形的判定,證明四邊形是平行四邊形是解(1)的關(guān)鍵,證明是解(2)的關(guān)鍵.4、(1);;;(2)證明;證明見解析;(3),【分析】(1)根據(jù)圖形可得出三對全等三角形;(2)根據(jù)正方形的性質(zhì)及全等三角形的判定定理對(1)中全等三角形依次證明即可;(3)連接BG,由材料二可得,被分成4個面積相等的等腰直角三角形,即可得出;連接HJ,KI,過點H作HM⊥AD于點M,過點I作IN⊥CD于點N,則被分為9個面積相等的等腰直角三角形,即可得出.【詳解】解:(1);;(2)證明;由題意得,在正方形ABCD中,∵,,在和中;證明:;由題意得,在正方形HIJK中,,,∵AC為正方形ABCD的對角線,∴,在和中,∴;證明:由題意得,在正方形EBFG中,,,∵AC為正方形ABCD的對角線,∴,在和中,∴;(3)如圖,連接BG,由材料二可得,被分成4個面積相等的等腰直角三角形,.∴連接HJ,KI,過點H作HM⊥AD于點M,過點I作IN⊥CD于點N,則被分為9個面積相等的等腰直角三角形,∴.∴,.【點睛】題目主要考查正方形的性質(zhì)、全等三角形的判定定理及對題意的理解能力,熟練掌握全等三角形的判定定理及理解題意是解題關(guān)鍵.5、(1)證明見解析;(2)BD=CD+2AF,理由見解析【分析】(1)延長BA與CD的延長線交于點G,先證明△ABE≌△ACG得到BE=CG,由BD是∠ABC的角平分線,得到∠GBD=∠CBD,即可證明△BDG≌△BDC得到CD=GD,則;(2)如圖所示,連接AD,取BE中點H,連接AH,由直角三角形斜邊上的中線等于斜邊的一半可得,,則,再由∠BAC=90°,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 從理論到實踐紀檢監(jiān)察案例管理面試題庫
- 會計職稱考試備考資料與重點難點解析
- 電氣工程師面試題及答案詳解
- 2025年數(shù)字醫(yī)療設(shè)備市場拓展項目可行性研究報告
- 2025年城鄉(xiāng)一體化產(chǎn)業(yè)扶貧項目可行性研究報告
- 2025年健康飲品品牌推廣計劃可行性研究報告
- 2025年西南地區(qū)特色農(nóng)產(chǎn)品品牌建設(shè)可行性研究報告
- 2025年區(qū)塊鏈在金融行業(yè)應(yīng)用可行性研究報告
- 2026年河南對外經(jīng)濟貿(mào)易職業(yè)學院單招職業(yè)適應(yīng)性測試題庫參考答案詳解
- 2026年江西軟件職業(yè)技術(shù)大學單招職業(yè)技能測試題庫及參考答案詳解一套
- 2025年6月浙江省高考化學試卷真題(含答案及解析)
- 天車安全培訓教學課件
- 2025年丹梔逍遙丸行業(yè)研究報告及未來行業(yè)發(fā)展趨勢預(yù)測
- 醫(yī)院清潔消毒培訓
- 安全事故三要素培訓總結(jié)課件
- 儲能項目并網(wǎng)消防專篇
- 智能投資顧問課件
- 2025-2030中國農(nóng)村電子商務(wù)人才培養(yǎng)與需求預(yù)測報告
- 2025年高校后勤管理崗位應(yīng)聘筆試指南及模擬題答案解析
- 2025年70周歲以上老年人換長久駕照三力測試題庫(含答案)
- 羽毛的作用教學課件
評論
0/150
提交評論