解析卷人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專題測(cè)評(píng)練習(xí)題_第1頁(yè)
解析卷人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專題測(cè)評(píng)練習(xí)題_第2頁(yè)
解析卷人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專題測(cè)評(píng)練習(xí)題_第3頁(yè)
解析卷人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專題測(cè)評(píng)練習(xí)題_第4頁(yè)
解析卷人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專題測(cè)評(píng)練習(xí)題_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專題測(cè)評(píng)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、下列各組的兩個(gè)圖形屬于全等圖形的是(

)A. B. C. D.2、如圖是用直尺和圓規(guī)作一個(gè)角等于已知角的示意圖,說(shuō)明的依據(jù)是(

)A. B. C. D.3、如圖所示,是的邊上的中線,cm,cm,則邊的長(zhǎng)度可能是(

)A.3cm B.5cm C.14cm D.13cm4、作平分線的作圖過程如下:作法:(1)在和上分別截取、,使.(2)分別以,為圓心,大于的長(zhǎng)為半徑作弧,兩弧交于點(diǎn).(3)作射線,則就是的平分線.用下面的三角形全等的判定解釋作圖原理,最為恰當(dāng)?shù)氖牵?/p>

)A. B. C. D.5、如圖,與相交于點(diǎn)O,,不添加輔助線,判定的依據(jù)是(

)A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,AD,BE是的兩條高線,只需添加一個(gè)條件即可證明(不添加其它字母及輔助線),這個(gè)條件可以是______(寫出一個(gè)即可).2、已知∠AOB=60°,以O(shè)為圓心,以任意長(zhǎng)為半徑作弧,交OA,OB于點(diǎn)M,N,分別以點(diǎn)M,N為圓心,以大于MN的長(zhǎng)度為半徑作弧,兩弧在∠AOB內(nèi)交于點(diǎn)P,以O(shè)P為邊作∠POC=15°,則∠BOC的度數(shù)為__________.3、如圖是由九個(gè)邊長(zhǎng)為1的小正方形拼成的大正方形,圖中∠1+∠2+∠3+∠4+∠5的度數(shù)為______.4、如圖,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分線交于點(diǎn)E,則∠ABE=_____°.5、如圖,ADBC,,,連接AC,過點(diǎn)D作于E,過點(diǎn)B作于F.(1)若,則∠ADE為___°(2)寫出線段BF、EF、DE三者間的數(shù)量關(guān)系___.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,AB=AD=BC=DC,∠C=∠D=∠ABE=∠BAD=90°,點(diǎn)E、F分別在邊BC、CD上,∠EAF=45°,過點(diǎn)A作∠GAB=∠FAD,且點(diǎn)G在CB的延長(zhǎng)線上.(1)△GAB與△FAD全等嗎?為什么?(2)若DF=2,BE=3,求EF的長(zhǎng).2、如圖AB=AC,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點(diǎn)O.(1)求證AD=AE;(2)連接OA,BC,試判斷直線OA,BC的關(guān)系并說(shuō)明理由.3、如圖,在四邊形ABCD中,已知BD平分∠ABC,∠BAD+∠C=180°,求證:AD=CD.4、中,,,過點(diǎn)作,連接,,為平面內(nèi)一動(dòng)點(diǎn).(1)如圖1,點(diǎn)在上,連接,,過點(diǎn)作于點(diǎn),為中點(diǎn),連接并延長(zhǎng),交于點(diǎn).①若,,則;②求證:.(2)如圖2,連接,,過點(diǎn)作于點(diǎn),且滿足,連接,,過點(diǎn)作于點(diǎn),若,,,請(qǐng)求出線段的取值范圍.5、小明的學(xué)習(xí)過程中,對(duì)教材中的一個(gè)有趣問題做如下探究:(1)【習(xí)題回顧】已知:如圖1,在中,,是角平分線,是高,相交于點(diǎn).求證:;(2)【變式思考】如圖2,在中,,是邊上的高,若的外角的平分線交的延長(zhǎng)線于點(diǎn),其反向延長(zhǎng)線與邊的延長(zhǎng)線交于點(diǎn),若,求和的度數(shù);(3)【探究延伸】如圖3,在中,在上存在一點(diǎn),使得,角平分線交于點(diǎn).的外角的平分線所在直線與的延長(zhǎng)線交于點(diǎn).若,求的度數(shù).-參考答案-一、單選題1、D【解析】【分析】根據(jù)全等圖形的定義,逐一判斷選項(xiàng),即可.【詳解】解:A、兩個(gè)圖形不能完全重合,不是全等圖形,不符合題意,B.兩個(gè)圖形不能完全重合,不是全等圖形,符合題意,C.兩個(gè)圖形不能完全重合,不是全等圖形,不符合題意,D.兩個(gè)圖形能完全重合,是全等圖形,不符合題意,故選D.【考點(diǎn)】本題主要考查全等圖形的定義,熟練掌握“能完全重合的兩個(gè)圖形,是全等圖形”是解題的關(guān)鍵.2、B【解析】【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依據(jù)SSS可判定△COD≌△C'O'D'.【詳解】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依據(jù)SSS可判定△COD≌△C'O'D',故選B.【考點(diǎn)】本題主要考查了尺規(guī)作圖—作已知角相等的角,解題的關(guān)鍵在于能夠熟練掌握全等三角形的判定條件.3、B【解析】【分析】延長(zhǎng)AD至M使DM=AD,連接CM,根據(jù)SAS得出,得出AB=CM=4cm,再根據(jù)三角形的三邊關(guān)系得出AC的范圍,從而得出結(jié)論.【詳解】解:延長(zhǎng)AD至M使DM=AD,連接CM,∵是的邊上的中線,∴BD=CD,∵∠ADB=∠CDM,∴,∴MC=AB=5cm,AD=DM=4cm,∴AM=8cm在中,即:3<AC<13,故選:B【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì)以及三角形的三邊關(guān)系,根據(jù)三角形的三邊關(guān)系找出AC長(zhǎng)度的取值范圍是解題的關(guān)鍵.4、A【解析】【分析】根據(jù)作圖過程可得OD=OE,CE=CD,根據(jù)OC為公共邊,利用SSS即可證明△OCE≌△OCD,即可得答案.【詳解】∵分別以,為圓心,大于的長(zhǎng)為半徑作弧,兩弧交于點(diǎn);∴CE=CD,在△OCE和△OCD中,,∴△OCE≌△OCD(SSS),故選:A.【考點(diǎn)】本題考查全等三角形的判定,正確找出相等的線段并熟練掌握全等三角形的判定定理是解題關(guān)鍵.5、B【解析】【分析】根據(jù),,正好是兩邊一夾角,即可得出答案.【詳解】解:∵在△ABO和△DCO中,,∴,故B正確.故選:B.【考點(diǎn)】本題主要考查了全等三角形的判定,熟練掌握兩邊對(duì)應(yīng)相等,且其夾角也對(duì)應(yīng)相等的兩個(gè)三角形全等,是解題的關(guān)鍵.二、填空題1、(答案不唯一)【解析】【分析】根據(jù)已知條件可知,故只要添加一條邊相等即可證明.【詳解】解:添加,AD,BE是的兩條高線,,在與中,.故答案為:(答案不唯一).【考點(diǎn)】本題考查了三角形全等的判定,掌握三角形全等的判定是解題的關(guān)鍵.2、或【解析】【分析】以O(shè)為圓心,以任意長(zhǎng)為半徑作弧,交OA,OB于點(diǎn)M,N,分別以點(diǎn)M,N為圓心,以大于MN的長(zhǎng)度為半徑作弧,兩弧在內(nèi)交于點(diǎn)P,則OP為的平分線,以O(shè)P為邊作,則為作或的角平分線,即可求解.【詳解】解:以O(shè)為圓心,以任意長(zhǎng)為半徑作弧,交OA,OB于點(diǎn)M,N,分別以點(diǎn)M,N為圓心,以大于MN的長(zhǎng)度為半徑作弧,兩弧在內(nèi)交于點(diǎn)P,得到OP為的平分線,再以O(shè)P為邊作,則為作或的角平分線,所以或.故答案為:或.【考點(diǎn)】本題考查的是復(fù)雜作圖,主要要理解作圖是在作角的平分線,同時(shí)要考慮以O(shè)P為邊作的兩種情況,避免遺漏.3、225°【解析】【分析】首先判定△ABC≌△AEF,△ABD≌△AEH,可得∠5=∠BCA,∠4=∠BDA,然后可得∠1+∠5=∠1+∠BCA=90°,∠2+∠4=∠2+∠BDA=90°,即可求得∠1+∠2+∠3+∠4+∠5的值.【詳解】解:如圖所示:在△ABC和△AEF中,∴△ABC≌△AEF(SAS),∴∠5=∠BCA,∴∠1+∠5=∠1+∠BCA=90°,在Rt△ABD和Rt△AEH中,∴Rt△ABD≌Rt△AEH(HL),∴∠4=∠BDA,∴∠2+∠4=∠2+∠BDA=90°,∵∠3=45°,∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°.故答案為:225°.【考點(diǎn)】此題主要考查了全等三角形的判定和性質(zhì),關(guān)鍵是掌握全等三角形的性質(zhì):全等三角形對(duì)應(yīng)角相等即可求解.4、23.5或【解析】【分析】首先作EM⊥BD、EN⊥BF、EO⊥AC垂足分別為M、N、O,再利用角平分線的性質(zhì)得出BE為∠ABC的角平分線,即可求解.【詳解】解:作EM⊥BD、EN⊥BF、EO⊥AC垂足分別為M、N、O,如圖所示,∵AE、CE是∠DAC和∠ACF的平分線,∴EM=EO,EO=EN,∴EM=EN,∴BE是∠ABC的角平分線,∴∠ABE=∠ABC=23.5°.故答案為:23.5.【考點(diǎn)】此題考查角平分線的性質(zhì):在角的內(nèi)部,到角的兩邊距離相等的點(diǎn)在角的平分線上,反之也是成立的.解題關(guān)鍵是利用角平分線的判定定理.5、

30

【解析】【分析】(1)根據(jù)直角三角形兩銳角互余進(jìn)行倒角即可求解;(2)根據(jù)ASA證明≌,即可求解.【詳解】解:(1)∵,且ADBC,,∴,∴,∴,∴;故答案為:30;(2)在和中,,∴≌,∴,,∵,∴.故答案為:【考點(diǎn)】本題考查直角三角形兩銳角互余、全等三角形的判定與性質(zhì)等內(nèi)容,根據(jù)已知條件進(jìn)行倒角是解題的關(guān)鍵.三、解答題1、(1)全等,理由詳見解析;(2)5【解析】【分析】(1)由題意易得∠ABG=90°=∠D,然后問題可求證;(2)由(1)及題意易得△GAE≌△FAE,GB=DF,進(jìn)而問題可求解.【詳解】解:(1)全等.理由如下∵∠D=∠ABE=90°,∴∠ABG=90°=∠D,在△ABG和△ADF中,,∴△GAB≌△FAD(ASA);(2)∵∠BAD=90°,∠EAF=45°,∴∠DAF+∠BAE=45°,∵△GAB≌△FAD,∴∠GAB=∠FAD,AG=AF,∴∠GAB+∠BAE=45°,∴∠GAE=45°,∴∠GAE=∠EAF,在△GAE和△FAE中,,∴△GAE≌△FAE(SAS)∴EF=GE∵△GAB≌△FAD,∴GB=DF,∴EF=GE=GB+BE=FD+BE=2+3=5.【考點(diǎn)】本題主要考查全等三角形的性質(zhì)與判定,熟練掌握全等三角形的性質(zhì)與判定是解題的關(guān)鍵.2、(1)證明見解析;(2)互相垂直,證明見解析【解析】【分析】(1)根據(jù)AAS推出△ACD≌△ABE,根據(jù)全等三角形的性質(zhì)得出即可;(2)證Rt△ADO≌Rt△AEO,推出∠DAO=∠EAO,根據(jù)等腰三角形的性質(zhì)推出即可.【詳解】(1)證明:∵CD⊥AB,BE⊥AC,∴∠ADC=∠AEB=90°,△ACD和△ABE中,∵∴△ACD≌△ABE(AAS),∴AD=AE.(2)猜想:OA⊥BC.證明:連接OA、BC,∵CD⊥AB,BE⊥AC,∴∠ADC=∠AEB=90°.在Rt△ADO和Rt△AEO中,∵∴Rt△ADO≌Rt△AEO(HL).∴∠DAO=∠EAO,又∵AB=AC,∴OA⊥BC.3、見解析【解析】【詳解】試題分析:在邊BC上截取BE=BA,連接DE,根據(jù)SAS證△ABD≌△EBD,推出AD=ED,∠A=∠BED,求出∠DEC=∠C即可.試題解析:證明:在邊BC上截取BE=BA,連接DE.∵BD平分∠ABC,∴∠ABD=∠CBD.在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴AD=ED,∠A=∠BED.∵∠A+∠C=180°,∠BED+∠CED=180°,∴∠C=∠CED,∴CD=ED,∴AD=CD.點(diǎn)睛:本題考查了等腰三角形的判定,全等三角形的性質(zhì)和判定等知識(shí)點(diǎn)的應(yīng)用,解答此題的關(guān)鍵是正確作輔助線,又是難點(diǎn),解題的思路是把AD和CD放到一個(gè)三角形中,根據(jù)等腰三角形的判定進(jìn)行證明,題型較好,有一定的難度.4、(1)①

4,②見解析;(2)6≤≤12【解析】【分析】(1)①根據(jù)三角形的面積公式計(jì)算即可;②先根據(jù)AAS證得△ABF≌△BCM,得出BF=MC,AF=BM,再利用AAS證得△AFD≌△CHD,得出AF=CH,即可得出結(jié)論;(2)連接CM,先利用SAS得出△≌△CBM,得出,再根據(jù)等底同高的三角形的面積相等得出,再利用三角形的面積公式得出EC的長(zhǎng),從而利用三角形的三邊關(guān)系得出的取值范圍;【詳解】解:(1)①∵,,,∴,②∵,,∴∠AFB=∠BMC=∠FMC=90°,∴∠ABF+∠BAF=90°,∵,∴∠ABF+∠CBM=90°,∴∠BAF=∠CBM,∵,∴△ABF≌△BCM,∴BF=MC,AF=BM,∵∠AFB=∠FMC=90°,∴AF//CM,∴∠FAC=∠HCD,∵為中點(diǎn),∴AD=CD,∵∠FDA=∠HDC,∴△AFD≌△CHD,∴AF=CH,∴BM=CH,∵BF=CM∴BF-BM=CM-CH∴.(2)連接CM,∵,,∴∠ABC=∠=90°,∴∠BA=∠CBM,∵,,∴△≌△CBM,∴,∵,,∴∠ABC+∠BAE=180°,∴AE//BC,∴,∵,,∴,∴EC=9在△ECM中,,則9-3≤CM≤9+3,∴6≤CM≤12,∴6≤≤12,【考點(diǎn)】本題考查了全等三角形的判定和性質(zhì)以及三角形的三邊關(guān)系,靈活運(yùn)用全等三角形的判定是解題的關(guān)鍵.5、(1)見解析;(2)25°,25°;(3)55°【解析】【分析】(1)由余角的性質(zhì)可得∠B=∠ACD,由角平分線的性質(zhì)和外角的性質(zhì)可得結(jié)論;(2)由三角形內(nèi)角和定理可求∠GAF=130°,由角平分線的性質(zhì)可求∠GAF=65°,由余角的性質(zhì)可求解;(3)由平角的性質(zhì)和角平分線的性質(zhì)可求∠EAN=90°,由外角的性質(zhì)可求解.(1)證明:∵∠ACB=90°,CD是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD,∵AE是角平分線,∴∠CAF=∠DAF,∵∠CFE=∠CAF+∠ACD∠CEF=∠DAF+∠B,∴∠CEF=∠CFE;(2)解:∵∠B=40°,∠ACB=90°,∴∠GAB=∠B+∠ACB=40°+90°=130°,∵AF為∠BAG的角平分線,∴∠GAF=∠DAF130°=65°,∵CD為AB邊上的高,∴∠ADF

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論