版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
遼寧省大石橋市中考數(shù)學(xué)真題分類(勾股定理)匯編定向攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖是一個三級臺階,它的每一級的長、寬和高分別為9、3和1,A和B是這個臺階兩個相對的端點,A點有一只螞蟻,想到B點去吃可口的食物.則這只螞蟻沿著臺階面爬行的最短路程是(
)A.6 B.8 C.9 D.152、在△ABC中,,那么△ABC是(
)A.等腰三角形 B.鈍角三角形 C.直角三角形 D.等腰直角三角形3、如圖,三角形紙片ABC,點D是BC邊上一點,連接AD,把△ABD沿著AD翻折,得到△AED,DE與AC交于點G,連接BE交AD于點F.若DG=GE,AF=6,BF=4,△ADG的面積為8,則點F到BC的距離為()A. B. C. D.4、如圖,矩形中,的平分線交于點E,,垂足為F,連接.下列結(jié)論:①;②;③;④;⑤若,則.其中正確的結(jié)論有(
)A.2個 B.3個 C.4個 D.5個5、如圖是由四個全等的直角三角形和一個小正方形拼成的一個大正方形,設(shè)直角三角形的兩直角邊分別是a、b,且,大正方形的面積是9,則小正方形的面積是(
)A.3 B.4 C.5 D.66、如圖,將△ABC放在正方形網(wǎng)格圖中(圖中每個小正方形的邊長均為1),點A,B,C恰好在網(wǎng)格圖中的格點上,那么△ABC中BC邊上的高是(
)A. B. C. D.7、如圖,有一塊直角三角形紙片,∠C=90°,AC=8,BC=6,將斜邊AB翻折,使點B落在直角邊AC的延長線上的點E處,折痕為AD,則BD的長為(
)A.2 B. C. D.4第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、已知a、b、c是一個三角形的三邊長,如果滿足,則這個三角形的形狀是_______.2、如圖,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的長為_______3、我國古代九章算術(shù)中有數(shù)學(xué)發(fā)展史上著名的“葭生池中”問題:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問:葭長幾何?(1丈=10尺).意思是:有一個長方體池子,底面是邊長為1丈的正方形,中間有蘆葦,把高出水面1尺的蘆葦拉向池邊(蘆葦沒有折斷),剛好貼在池邊上,問:蘆葦長多少尺?答:蘆葦長____________尺.4、云頂滑雪公園是北京2022年冬奧會7個雪上競賽場館中唯一利用現(xiàn)有雪場改造而成的.下圖左右兩幅圖分別是公園內(nèi)云頂滑雪場U型池的實景圖和示意圖,該場地可以看作是從一個長方體中挖去了半個圓柱而成,它的橫截面圖中半圓的半徑為,其邊緣,點E在上,.一名滑雪愛好者從點A滑到點E,他滑行的最短路線長為_________m.5、已知一直角三角形的兩條直角邊分別為6cm、8cm,則此直角三角形斜邊上的高為____.6、如圖,某農(nóng)舍的大門是一個木制的長方形柵欄,它的高為2m,寬為1.5m,現(xiàn)需要在相對的頂點間用一塊木板加固,則木板的長為________.7、《九章算術(shù)》中有“折竹抵地”問題:“今有竹高一丈,末折抵地,去根三尺,問折者高幾何?”題意是:有一根竹子原來高1丈(1丈=10尺),中部有一處折斷,竹梢觸地面處離竹根3尺,試問折斷處離地面多高?如圖,設(shè)折斷處距離地面x尺,根據(jù)題意,可列方程為______.8、無蓋圓柱形杯子的展開圖如圖所示.將一根長為20cm的細木筷斜放在該杯子內(nèi),木筷露在杯子外面的部分至少有__________cm.三、解答題(7小題,每小題10分,共計70分)1、如圖,某商家想在商場大樓上懸掛一塊廣告牌,廣告牌高.根據(jù)商場規(guī)定廣告牌最高點不得高于地面20m,經(jīng)測量,測角儀支架高,在F處測得廣告牌底部點B的仰角為30°,在E處測得標語牌頂部點A的仰角為45°,,請計算說明,商家這樣放廣告牌是否符合規(guī)定?(圖中點A,B,C,D,E,F(xiàn),G,H在同一平面內(nèi))2、在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積.某學(xué)習(xí)小組經(jīng)過合作交流,給出了下面的解題思路,請你按照他們的解題思路完成解答過程.3、如圖,某港口位于東西方向的海岸線上.“遠航”號、“海天”號輪船同時離開港口,各自沿一固定方向航行,“遠航”號每小時航行16海里,“海天”號每小時航行12海里.它們離開港口一個半小時后分別位于點Q,R處,且相距30海里.如果知道“遠航”號沿東北方向航行,能知道“海天”號沿哪個方向航行嗎?4、如圖所示的一塊地,已知,,,,,求這塊地的面積.5、如圖,在正方形ABCD中,E是邊AB上的一動點,點F在邊BC的延長線上,且,連接DE,DF.(1)求證:;(2)連接EF,取EF中點G,連接DG并延長交BC于H,連接BG.①依題意,補全圖形;②求證:;③若,用等式表示線段BG,HG與AE之間的數(shù)量關(guān)系,請直接寫出結(jié)論.6、已知:如圖,四邊形ABCD,∠A=90°,AD=12,AB=16,CD=15,BC=25.(1)求BD的長;(2)求四邊形ABCD的面積.7、如圖所示的一塊地,,,,,,求這塊地的面積.-參考答案-一、單選題1、D【解析】【分析】此類題目只需要將其展開便可直觀的得出解題思路.將臺階展開得到的是一個矩形,螞蟻要從B點到A點的最短距離,便是矩形的對角線,利用勾股定理即可解出答案.【詳解】解:如圖,將臺階展開,因為AC=3×3+1×3=12,BC=9,所以AB2=AC2+BC2=225,所以AB=15,所以螞蟻爬行的最短線路為15.故選:D.【考點】本題考查了勾股定理的應(yīng)用,掌握勾股定理的應(yīng)用并能得出平面展開圖是解題的關(guān)鍵.2、D【解析】【分析】根據(jù)等腰三角形的判定和勾股定理逆定理得出三角形的形狀即可.【詳解】∵a:b:c=1:1:,∴三角形ABC是等腰三角形.設(shè)三邊長為a,a,∵,∴三角形ABC是直角三角形.綜上所述:△ABC是等腰直角三角形.故選D.【考點】本題考查了等腰三角形的判定和勾股定理逆定理.此題關(guān)鍵是利用勾股定理的逆定理解答.3、C【解析】【分析】先求出△ABD的面積,根據(jù)三角形的面積公式求出DF,設(shè)點F到BD的距離為h,根據(jù)?BD?h=?BF?DF,求出BD即可解決問題.【詳解】解:∵DG=GE,∴S△ADG=S△AEG=8,∴S△ADE=16,由翻折可知,△ADB≌△ADE,BE⊥AD,∴S△ABD=S△ADE=16,∠BFD=90°,∴?(AF+DF)?BF=16,∴?(6+DF)×4=16,∴DF=2,∴DB=,設(shè)點F到BD的距離為h,則有?BD?h=?BF?DF,∴h=4×2,∴h=,∴點F到BC的距離為.故選:C【考點】此題考查了翻折變換,三角形的面積,勾股定理等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題.4、D【解析】【分析】根據(jù)AE平分∠DAE,可得,從而得到AB=BE,進而得到,可得①正確;然后證明△ABE≌△AFD,可得AB=BE=AF=FD,從而得到∠AED=∠CED,故②正確;再證得△DEF≌△DEC,可得③正確;再根據(jù)△ABF≌△DCF,可得BF=CF,故④正確;過點F作FG⊥BC于點G,可得,從而得到,進而得到,可得⑤正確;即可求解.【詳解】解:在矩形中,∠BAD=∠ADC=∠ABC=90°,AD=BC,AD∥BC,∵AE平分∠DAE,∴,∵AD∥BC,∴∠DAE=∠AEB=45°,∴∠AEB=∠BAE=45°,∴AB=BE,∴,∵,∴AE=AD,故①正確;在△ABE和△AFD中,∵∠BAE=∠DAE,∠ABE=∠AFD,AE=AD,∴△ABE≌△AFD(AAS),∴BE=DF,∴AB=BE=AF=FD,∴,∴∠AED=∠CED,故②正確;∵∠DAE=45°,DF⊥AE,∴∠ADF=45°,∴∠CDF=45°,∠EDF=∠ADE-∠ADF=22.5°,∴∠CDE=∠FDE=22.5°,∵∠AEB=45°,∠AED=67.5°,∴∠CED=67.5°,∴∠AED=∠CED,∵DE=DE,∴△DEF≌△DEC,∴DF=CD,∴DE⊥CF,故③正確;∵AB=CD,∠BAE=∠CDF=45°,AF=DF,∴△ABF≌△DCF,∴BF=CF,故④正確;如圖,過點F作FG⊥BC于點G,∴FG∥AB,∴∠EFG=∠BAE=45°,∴∠EFG=∠FEG,∴FG=GE,∵△DEF≌△DEC,∴CE=EF,∴,∴,∵BF=CF,∴BG=CG,∴,∵AB=1,,∴,,解得:,∴.故⑤正確;∴正確的有5個.故選:D【考點】本題主要考查了矩形的性質(zhì),全等三角形的判定和性質(zhì),等腰直角三角形的判定和性質(zhì),勾股定理等知識,熟練掌握相關(guān)知識點是解題的關(guān)鍵.5、A【解析】【分析】觀察圖形可知,小正方形的面積=大正方形的面積?4個直角三角形的面積,利用已知(a+b)2=15,大正方形的面積為9,可以得出直角三角形的面積,進而求出答案.【詳解】解:∵(a+b)2=15,∴a2+2ab+b2=15,∵大正方形的面積為:a2+b2=9,∴2ab=15?9=6,即ab=3,∴直角三角形的面積為:,∴小正方形的面積為:,故選:A.【考點】此題主要考查了完全平方公式及勾股定理的應(yīng)用,熟練應(yīng)用完全平方公式及勾股定理是解題關(guān)鍵.6、A【解析】【詳解】先用勾股定理耱出三角形的三邊,再根據(jù)勾股定理的逆定理判斷出△ABC是直角三角形,最后設(shè)BC邊上的高為h,利用三角形面積公式建立方程即可得出答案.解:由勾股定理得:,,,,即∴△ABC是直角三角形,設(shè)BC邊上的高為h,則,∴.故選A.點睛:本題主要考查勾股理及其逆定理.借助網(wǎng)格利用勾股定理求邊長,并用勾股定理的逆定理來判斷三角形是否是直角三角形是解題的關(guān)鍵.7、B【解析】【分析】根據(jù)勾股定理求出AB的長,利用翻折得到AE=AB=10,DE=BD,求出CE,由勾股定理得到,列得,求出BD.【詳解】解:∵∠C=90°,AC=8,BC=6,∴,由翻折得AE=AB=10,DE=BD,∴CE=AE-AC=10-8=2,在Rt△CED中,,∴,解得BD=,故選:B.【考點】此題考查了勾股定理的應(yīng)用,翻折的性質(zhì),熟記勾股定理的計算公式是解題的關(guān)鍵.二、填空題1、直角三角形【解析】【分析】根據(jù)絕對值、完全平方數(shù)和算數(shù)平方根的非負性,可求解出a、b、c的值,再根據(jù)勾股定理的逆定理判斷即可.【詳解】解:由題意得:,解得:,∵,∴三角形為直角三角形.故答案為直角三角形.【考點】本題主要考查了非負數(shù)的性質(zhì)和勾股定理的逆定理,運用非負數(shù)的性質(zhì)求出a、b、c的值是解題的關(guān)鍵.2、13【解析】【分析】先根據(jù)△BCE等腰直角三角形得出BC的長,進而可得出BD的長,根據(jù)△ABD是等腰直角三角形可知AB=BD.在Rt△ABC中利用勾股定理即可求出AC的長.【詳解】∵△BCE等腰直角三角形,BE=5,∴BC=5.∵CD=17,∴DB=CD﹣BE=17﹣5=12.∵△ABD是等腰直角三角形,∴AB=BD=12.在Rt△ABC中,∵AB=12,BC=5,∴AC13.故答案為13.【考點】本題考查了等腰直角三角形的性質(zhì)及勾股定理,熟知等腰三角形兩腰相等的性質(zhì)是解答此題的關(guān)鍵.3、13【解析】【分析】設(shè)水深OB=x尺,則蘆葦長OA'=(x+1)尺,根據(jù)勾股定理列方程求解即可.【詳解】解:根據(jù)題意,設(shè)水深OB=x尺,則蘆葦長OA'=(x+1)尺,根據(jù)題意列方程得:x2+52=(x+1)2,解得:x=12∴OA'=13尺.故答案為:13.【考點】此題考查了勾股定理的實際應(yīng)用,解題的關(guān)鍵是根據(jù)題意設(shè)出未知數(shù),根據(jù)勾股定理列方程求解.4、【解析】【分析】根據(jù)題意可得,AD=12m,DE=CD﹣CE=24﹣4=20m,線段AE即為滑行的最短路線長.在Rt△ADE中,根據(jù)勾股定理即可求出滑行的最短路線長.【詳解】解:如圖,根據(jù)題意可知:AD==12,DE=CD﹣CE=24﹣4=20,線段AE即為滑行的最短路線長.在Tt△ADE中,根據(jù)勾股定理,得AE=(m).故答案為:【考點】本題考查了平面展開﹣最短路徑問題,解決本題的關(guān)鍵是掌握圓柱的側(cè)面展開圖是矩形,利用勾股定理求最短距離.5、4.8cm.【解析】【分析】根據(jù)勾股定理可求出斜邊.然后由于同一三角形面積一定,可列方程直接解答.【詳解】∵直角三角形的兩條直角邊分別為6cm,8cm,∴斜邊為=10(cm),設(shè)斜邊上的高為h,則直角三角形的面積為×6×8=×10h,解得:h=4.8cm,這個直角三角形斜邊上的高為4.8cm.故答案為4.8cm.【考點】此題考查勾股定理,解題關(guān)鍵在于列出方程.6、2.5m【解析】【詳解】設(shè)木棒的長為xm,根據(jù)勾股定理可得:x2=22+1.52,解得x=2.5.故木棒的長為2.5m.故答案為2.5m.7、【解析】【分析】根據(jù)勾股定理即可得出結(jié)論.【詳解】解:設(shè)未折斷的竹干長為尺,根據(jù)題意可列方程為:.故答案為:.【考點】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實際問題時勾股定理與方程的結(jié)合是解決實際問題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準確的示意圖.領(lǐng)會數(shù)形結(jié)合的思想的應(yīng)用.8、5【解析】【分析】根據(jù)題意直接利用勾股定理得出杯子內(nèi)的筷子長度,進而得出答案.【詳解】解:由題意可得:杯子內(nèi)的筷子長度為:=15,則木筷露在杯子外面的部分至少有:20?15=5(cm).故答案為5.【考點】此題主要考查了勾股定理的應(yīng)用,正確得出杯子內(nèi)筷子的長是解決問題的關(guān)鍵.三、解答題1、,不符合規(guī)定【解析】【分析】根據(jù)勾股定理即可求解.【詳解】解:設(shè)且解得:商家這樣放廣告牌不符合規(guī)定.【考點】本題考查了勾股定理、一元一方程等內(nèi)容,解決問題的關(guān)鍵在于理解題意,找到等量關(guān)系,列出方程.2、84.【解析】【詳解】解:作AD⊥BC于D,如圖所示:設(shè)BD=x,則.
在Rt△ABD中,由勾股定理得:,在Rt△ACD中,由勾股定理得:,∴,
解之得:.
∴.
∴.3、北偏西45°(或西北)【解析】【分析】直接得出RP=18海里,PQ=24海里,QR=30海里,利用勾股定理逆定理以及方向角即可得到“海
天”號航行方向.【詳解】解:由題意可得:RP=18海里,PQ=24海里,QR=30海里,∵182+242=302,∴△RPQ是直角三角形,∴∠RPQ=90°,∵“遠航”號沿東北方向航行,即沿北偏東45°方向航行,∴∠RPS=45°,∴“海天”號沿北偏西45°(或西北)方向航行.【考點】本題考查了勾股定理的應(yīng)用,解題的重點主要是能夠根據(jù)勾股定理的逆定理發(fā)現(xiàn)直角三角形,關(guān)鍵是從實際問題中抽象出直角三角形,難度不大.4、【解析】【分析】根據(jù)勾股定理求得的長,再根據(jù)勾股定理的逆定理判定為直角三角形,從而不難求得這塊地的面積.【詳解】解:連接.,,為直角三角形,,這塊地的面積.【考點】本題考查了學(xué)生對勾股定理及其逆定理的理解及運用能力,解題的關(guān)鍵是掌握勾股定理的知識.5、(1)見解析(2)①見解析;②見解析;③BG2+HG2=4AE2.【解析】【分析】(1)證△ADE≌△CDF(SAS),得∠ADE=∠CDF,再證∠EDF=90°,即可得出結(jié)論;(2)①依題意,補全圖形即可;②由直角三角形斜邊上的中線性質(zhì)得DG=EF,BG=EF,即可得出結(jié)論;③先證△DEF是等腰直角三角形,得∠DEG=45°,再證DG⊥EF,DG=EF=EG,BG=EF=EG=FG,得∠GDF=45°,∠EDG=∠DEG=45°,∠GBF=∠GFB,然后證△CDH≌△CDF(ASA),得CH=CF,再由勾股定理即可求解.(1)證明:∵四邊形ABCD是正方形,∴AD=CD,∠A=∠B=∠BCD=∠ADC=90°,∴∠DCF=90°,即∠A=∠DCF,又∵AE=CF,∴△ADE≌△CDF(SAS),∴∠ADE=∠CDF,∵∠ADE+∠CDE=90°,∴∠CDF+∠CDE=90°,即∠EDF=90°,∴DE⊥DF;(2)①解:依題意,補全圖形如圖所示:②證明:由(1)可知,△DEF和△BEF都是直角三角形,∵G是EF的中點,∴DG=EF,BG=EF,∴BG=DG;③BG2+HG2=4AE2,證明:由(1)可知,△ADE≌△CDF,DE⊥DF,∴DE=DF,∴△DEF是等腰直角三角形,∴∠DEG=45°,∵G為EF的中點,∴DG⊥EF,DG=EF=EG,BG=EF=EG=FG,∴∠EGD=∠HGF=∠DGF=90°,∠GDF=45°,∠EDG=∠DEG=45°,∠GBF=∠GFB,∵∠EGB=45°,∴∠GBF=∠GFB=22.5°,∵∠DHF+∠HFG=∠DHF+∠CDH=90°,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 施工現(xiàn)場施工防生物災(zāi)害威脅制度
- 教職工勞動保護制度
- 罕見腫瘤的個體化疫苗研發(fā)進展
- 罕見腫瘤的個體化治療藥物相互作用管理策略與個體化治療-1-1
- 2026上半年云南事業(yè)單位聯(lián)考國土資源職業(yè)學(xué)院招聘39人備考題庫及一套參考答案詳解
- 2026中華人民共和國打洛海關(guān)城鎮(zhèn)公益性崗位人員招聘2人備考題庫(云南)及完整答案詳解一套
- 2026廣東惠州市博羅縣醫(yī)療保障局招聘編外人員1人備考題庫及完整答案詳解1套
- 出納兼采購違反財務(wù)制度
- 造林專業(yè)合作社財務(wù)制度
- 小公司財務(wù)制度大全
- 攻擊面管理技術(shù)應(yīng)用指南 2024
- 波形護欄施工質(zhì)量控制方案
- 電梯井道腳手架搭設(shè)方案
- DL∕T 622-2012 立式水輪發(fā)電機彈性金屬塑料推力軸瓦技術(shù)條件
- 傳染病學(xué)-病毒性肝炎
- 重慶市沙坪壩小學(xué)小學(xué)語文五年級上冊期末試卷
- 陶瓷巖板應(yīng)用技術(shù)規(guī)程
- 中藥制劑技術(shù)中職PPT完整全套教學(xué)課件
- 龍虎山正一日誦早晚課
- WORD版A4橫版密封條打印模板(可編輯)
- 1比較思想政治教育
評論
0/150
提交評論