解析卷-人教版8年級數(shù)學下冊《平行四邊形》專題測試試卷(含答案詳解版)_第1頁
解析卷-人教版8年級數(shù)學下冊《平行四邊形》專題測試試卷(含答案詳解版)_第2頁
解析卷-人教版8年級數(shù)學下冊《平行四邊形》專題測試試卷(含答案詳解版)_第3頁
解析卷-人教版8年級數(shù)學下冊《平行四邊形》專題測試試卷(含答案詳解版)_第4頁
解析卷-人教版8年級數(shù)學下冊《平行四邊形》專題測試試卷(含答案詳解版)_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

人教版8年級數(shù)學下冊《平行四邊形》專題測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、已知中,,,CD是斜邊AB上的中線,則的度數(shù)是()A. B. C. D.2、如圖,在中,,,AD平分,E是AD中點,若,則CE的長為()A. B. C. D.3、如圖,DE是ABC的中位線,點F在DE上,且∠AFB=90°,若AB=5,BC=8,則EF的長為()A.2.5 B.1.5 C.4 D.54、如圖,菱形ABCD的對角線AC、BD的長分別為6和8,O為AC、BD的交點,H為AB上的中點,則OH的長度為()A.3 B.4 C.2.5 D.55、平行四邊形中,,則的度數(shù)是()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在□中,⊥于點,⊥于點.若,,且的周長為40,則的面積為________.2、如圖,菱形ABCD的兩條對角線長分別為AC=6,BD=8,點P是BC邊上的一動點,則AP的最小值為__.3、點D、E分別是△ABC邊AB、AC的中點,已知BC=12,則DE=_____4、如圖,已知正方形ABCD的邊長為6,E、F分別是AB、BC邊上的點,且∠EDF=45°,將△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM若AE=2,則FM的長為___.5、如圖,在正方形ABCD中,AB=4,E為對角線AC上與A,C不重合的一個動點,過點E作EF⊥AB于點F,EG⊥BC于點G,連接DE,F(xiàn)G,下列結(jié)論:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值為3.其中正確結(jié)論的序號為__.三、解答題(5小題,每小題10分,共計50分)1、如圖,中,.(1)作點A關于的對稱點C;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)(2)在(1)所作的圖中,連接,,連接,交于點O.求證:四邊形是菱形.2、如圖,在中,AE平分,于點E,點F是BC的中點(1)如圖1,BE的延長線與AC邊相交于點D,求證:(2)如圖2,中,,求線段EF的長.3、如圖1,在平面直角坐標系中,且;(1)試說明是等腰三角形;(2)已知.寫出各點的坐標:A(,),B(,),C(,).(3)在(2)的條件下,若一動點M從點B出發(fā)沿線段BA向點A運動,同時動點N從點A出發(fā)以相同速度沿線段AC向點C運動,當其中一點到達終點時整個運動都停止.①若的一條邊與BC平行,求此時點M的坐標;②若點E是邊AC的中點,在點M運動的過程中,能否成為等腰三角形?若能,求出此時點M的坐標;若不能,請說明理由.4、如圖,ABCD是平行四邊形,AD=4,AB=5,點A的坐標為(-2,0),求點B、C、D的坐標.5、如圖1,正方形ABCD的邊長為a,E為邊CD上一動點(點E與點C、D不重合),連接AE交對角線BD于點P,過點P作PF⊥AE交BC于點F.(1)求證:PA=PF;(2)如圖2,過點F作FQ⊥BD于Q,在點E的運動過程中,PQ的長度是否發(fā)生變化?若不變,求出PQ的長;若變化,請說明變化規(guī)律.(3)請寫出線段AB、BF、BP之間滿足的數(shù)量關系,不必說明理由.-參考答案-一、單選題1、B【解析】【分析】由題意根據(jù)三角形的內(nèi)角和得到∠A=36°,由CD是斜邊AB上的中線,得到CD=AD,根據(jù)等腰三角形的性質(zhì)即可得到結(jié)論.【詳解】解:∵∠ACB=90°,∠B=54°,∴∠A=36°,∵CD是斜邊AB上的中線,∴CD=AD,∴∠ACD=∠A=36°.故選:B.【點睛】本題考查直角三角形的性質(zhì)與三角形的內(nèi)角和,熟練掌握直角三角形的性質(zhì)即直角三角形斜邊的中線等于斜邊的一半是解題的關鍵.2、B【解析】【分析】根據(jù)三角形內(nèi)角和定理求出∠BAC,根據(jù)角平分線的定義∠DAB=∠B,求出AD,根據(jù)直角三角形的性質(zhì)解答即可.【詳解】解:∵∠ACB=90°,∠B=30°,∴∠BAC=90°-30°=60°,∵AD平分∠BAC,∴∠DAB=∠BAC=30°,∴∠DAB=∠B,∴AD=BD=a,在Rt△ACB中,E是AD中點,∴CE=AD=,故選:B.【點睛】本題考查的是直角三角形的性質(zhì)、角平分線的定義,掌握直角三角形斜邊上的中線是斜邊的一半是解題的關鍵.3、B【解析】【分析】根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得,再利用三角形中位線定理可得DE=4,進而可得答案.【詳解】解:∵D為AB中點,∠AFB=90°,AB=5,∴,∵DE是△ABC的中位線,BC=8,∴DE=4,∴EF=4﹣2.5=1.5,故選:B.【點睛】此題主要考查了直角三角形的性質(zhì)和三角形中位線定理,三角形的中位線平行于第三邊,并且等于第三邊的一半.4、C【解析】【分析】根據(jù)菱形的性質(zhì)求得邊長,進而根據(jù)三角形中位線定理求得的長度.【詳解】∵四邊形ABCD是菱形,∴AO=OC,OB=OD,AO⊥BO,又∵點H是AD中點,∴OH是△DAB的中位線,在Rt△AOB中,AB5,則OHAB=2.5故選C【點睛】本題考查了菱形的性質(zhì),三角形中位線定理,求得的長是解題的關鍵.5、B【解析】【分析】根據(jù)平行四邊形對角相等,即可求出的度數(shù).【詳解】解:如圖所示,∵四邊形是平行四邊形,∴,∴,∴.故:B.【點睛】本題考查了平行四邊形的性質(zhì),解題的關鍵是掌握平行四邊形的性質(zhì).二、填空題1、48【解析】【分析】根據(jù)題意可得:,再由平行四邊形的面積公式整理可得:,根據(jù)兩個等式可得:,代入平行四邊形面積公式即可得.【詳解】解:∵?ABCD的周長:,∴,∵于E,于F,,,∴,整理得:,∴,∴,∴?ABCD的面積:,故答案為:48.【點睛】題目主要考查平行四邊形的性質(zhì)及運用方程思想進行求解線段長,理解題意,熟練運用平行四邊形的性質(zhì)及其面積公式是解題關鍵.2、4.8【解析】【分析】由垂線段最短,可得AP⊥BC時,AP有最小值,由菱形的性質(zhì)和勾股定理可求BC的長,由菱形的面積公式可求解.【詳解】設AC與BD的交點為O,∵點P是BC邊上的一動點,∴AP⊥BC時,AP有最小值,∵四邊形ABCD是菱形,∴AC⊥BD,AO=CO=AC=3,BO=DO=BD=4,∴,∵,∴,故答案為:4.8.【點睛】本題考查了菱形的性質(zhì),勾股定理,確定當AP⊥BC時,AP有最小值是本題關鍵.3、6【解析】【分析】根據(jù)三角形的中位線等于第三邊的一半進行計算即可.【詳解】解:∵D、E分別是△ABC邊AB、AC的中點,∴DE是△ABC的中位線,∵BC=12,∴DE=BC=6,故答案為6.【點睛】本題主要考查了三角形中位線定理,熟知三角形中位線定理是解題的關鍵.4、5【解析】【分析】由旋轉(zhuǎn)性質(zhì)可證明△EDF≌△MDF,從而EF=FM;設FM=EF=x,則可得BF=8?x,由勾股定理建立方程即可求得x.【詳解】由旋轉(zhuǎn)的性質(zhì)可得:DE=DM,CM=AE=2,∠ADE=∠CDM,∠EDM=90゜∵四邊形ABCD是正方形∴∠ADC=∠B=90゜,AB=BC=6∴∠ADE+∠FDC=∠ADC?∠EDF=45゜∴∠FDC+∠CDM=45゜即∠MDF=45゜∴∠EDF=∠MDF在△EDF和△MDF中∴△EDF≌△MDF(SAS)∴EF=FM設EF=FM=x則∴∵在Rt△EBF中,由勾股定理得:解得:故答案為:5【點睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理等知識,運用了方程思想,關鍵是證明三角形全等.5、①②③【解析】【分析】①連接BE,可得四邊形EFBG為矩形,可得BE=FG;由△AEB≌△AED可得DE=BE,所以DE=FG;②由矩形EFBG可得OF=OB,則∠OBF=∠OFB;由∠OBF=∠ADE,則∠OFB=∠ADE;由四邊形ABCD為正方形可得∠BAD=90°,即∠AHD+∠ADH=90°,所以∠AHD+∠OFH=90°,即∠FMH=90°,可得DE⊥FG;③由②中的結(jié)論可得∠BFG=∠ADE;④由于點E為AC上一動點,當DE⊥AC時,根據(jù)垂線段最短可得此時DE最小,最小值為2,由①知FG=DE,所以FG的最小值為2.【詳解】解:①連接BE,交FG于點O,如圖,∵EF⊥AB,EG⊥BC,∴∠EFB=∠EGB=90°.∵∠ABC=90°,∴四邊形EFBG為矩形.∴FG=BE,OB=OF=OE=OG.∵四邊形ABCD為正方形,∴AB=AD,∠BAC=∠DAC=45°.在△ABE和△ADE中,,∴△ABE≌△ADE(SAS).∴BE=DE.∴DE=FG.∴①正確;②延長DE,交FG于M,交FB于點H,∵△ABE≌△ADE,∴∠ABE=∠ADE.由①知:OB=OF,∴∠OFB=∠ABE.∴∠OFB=∠ADE.∵∠BAD=90°,∴∠ADE+∠AHD=90°.∴∠OFB+∠AHD=90°.即:∠FMH=90°,∴DE⊥FG.∴②正確;③由②知:∠OFB=∠ADE.即:∠BFG=∠ADE.∴③正確;④∵點E為AC上一動點,∴根據(jù)垂線段最短,當DE⊥AC時,DE最?。逜D=CD=4,∠ADC=90°,∴AC==4.∴DE=AC=2.由①知:FG=DE,∴FG的最小值為2,∴④錯誤.綜上,正確的結(jié)論為:①②③.故答案為:①②③.【點睛】本題考查了全等三角形的性質(zhì)與判定,正方形的性質(zhì),勾股定理,垂線段最短,掌握正方形的性質(zhì)是解題的關鍵.三、解答題1、(1)見解析;(2)見解析【分析】(1)作BD的垂直平分線,再截取即可;(2)先證明三角形全等,然后根據(jù)全等三角形的性質(zhì)可得:,依據(jù)菱形的判定定理即可證明.【詳解】(1)解:如圖所示,作BD的垂直平分線,再截取,點即為所求.(2)證明:如圖所示:∵,,∴,在與中,,∴;∴,又∵,∴四邊形是菱形.【點睛】本題考查了尺規(guī)作圖和菱形的證明,解題關鍵是熟練運用尺規(guī)作圖方法和菱形的判定定理進行作圖與證明.2、(1)見解析;(2)2【分析】(1)利用ASA定理證明△AEB≌△AED,得到BE=ED,AD=AB,根據(jù)三角形中位線定理解答;(2)分別延長BE、AC交于點H,仿照(1)的過程解答.【詳解】解:(1)證明:∵AE平分,,∴∠BAE=∠DAE,∠AEB=∠AED=90°,在△AEB和△AED中,,∴△AEB≌△AED(ASA)∴BE=ED,AD=AB,∵點F是BC的中點,∴BF=FC,∴EF是△BCD的中位線,∴EF=CD=(AC-AD)=(AC-AB);(2)解:分別延長BE、AC交于點H,∵AE平分,,∴∠BAE=∠DAE,∠AEB=∠AED=90°,在△AEB和△AEH中,,∴△AEB≌△AEH(ASA)∴BE=EH,AH=AB=9,∵點F是BC的中點,∴BF=FC,∴EF是△BCD的中位線,∴EF=CH=(AH-AC)=2.【點睛】本題考查的是三角形中位線定理、全等三角形的判定和性質(zhì),掌握三角形的中位線平行于第三邊,且等于第三邊的一半是解題的關鍵.3、(1)見解析;(2)12,0;-8,0;0,16;(3)①當M的坐標為(2,0)或(4,0)時,△OMN的一條邊與BC平行;②當M的坐標為(0,10)或(12,0)或(,0)時,,△MOE是等腰三角形.

【分析】(1)設,,,則,由勾股定理求出,即可得出結(jié)論;(2)由的面積求出m的值,從而得到、、的長,即可得到A、B、C的坐標;(3)①分當時,;當時,;得出方程,解方程即可;②由直角三角形的性質(zhì)得出,根據(jù)題意得出為等腰三角形,有3種可能:如果;如果;如果;分別得出方程,解方程即可.【詳解】解:(1)證明:設,,,則,在中,,,∴是等腰三角形;(2)∵,,∴,∴,,,.∴A點坐標為(12,0),B點坐標為(-8,0),C點坐標為(0,16),故答案為:12,0;-8,0;0,16;(3)①如圖3-1所示,當MN∥BC時,∵AB=AC,∴∠ABC=∠ACB,∵MN∥BC,∴∠AMN=∠ABC,∠ANM=∠ACB,∴∠AMN=∠ANM,∴AM=AN,∴AM=BM,∴M為AB的中點,∵,∴,∴,∴點M的坐標為(2,0);如圖3-2所示,當ON∥BC時,同理可得,∴,∴M點的坐標為(4,0);∴綜上所述,當M的坐標為(2,0)或(4,0)時,△OMN的一條邊與BC平行;

②如圖3-3所示,當OM=OE時,∵E是AC的中點,∠AOC=90°,,∴,∴此時M的坐標為(0,10);如圖3-4所示,當時,∴此時M點與A點重合,∴M點的坐標為(12,0);如圖3-5所示,當OM=ME時,過點E作EF⊥x軸于F,∵OE=AE,EF⊥OA,∴,∴,設,則,∵,∴,解得,∴M點的坐標為(,0);綜上所述,當M的坐標為(0,10)或(12,0)或(,0)時,,△MOE是等腰三角形.【點睛】本題主要考查了坐標與圖形,勾股定理,等腰三角形的性質(zhì)與判定,直角三角形斜邊上的直線,三角形面積等等,解題的關鍵在于能夠利用數(shù)形結(jié)合和分類討論的思想求解.4、、、【分析】根據(jù),即可求得點,勾股定理求得即可求得點,再根據(jù)平行四邊形的性質(zhì)可得點坐標.【詳解】解:ABCD是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論