基礎(chǔ)強化吉林省臨江市中考數(shù)學(xué)真題分類(平行線的證明)匯編章節(jié)練習(xí)試題(含解析)_第1頁
基礎(chǔ)強化吉林省臨江市中考數(shù)學(xué)真題分類(平行線的證明)匯編章節(jié)練習(xí)試題(含解析)_第2頁
基礎(chǔ)強化吉林省臨江市中考數(shù)學(xué)真題分類(平行線的證明)匯編章節(jié)練習(xí)試題(含解析)_第3頁
基礎(chǔ)強化吉林省臨江市中考數(shù)學(xué)真題分類(平行線的證明)匯編章節(jié)練習(xí)試題(含解析)_第4頁
基礎(chǔ)強化吉林省臨江市中考數(shù)學(xué)真題分類(平行線的證明)匯編章節(jié)練習(xí)試題(含解析)_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

吉林省臨江市中考數(shù)學(xué)真題分類(平行線的證明)匯編章節(jié)練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,直線l1∥l2,線段AB交l1,l2于D,B兩點,過點A作AC⊥AB,交直線l1于點C,若∠1=15,則∠2=()A.95 B.105 C.115 D.1252、如圖,直線,則(

).A. B. C. D.3、如下圖,在下列條件中,能判定AB//CD的是(

)A.∠1=∠3 B.∠2=∠3 C.∠1=∠4 D.∠3=∠44、如圖,直線a,b被直線c所截,下列條件中,不能判定a∥b()A.∠2=∠4 B.∠1+∠4=180° C.∠5=∠4 D.∠1=∠35、如圖,在三角形ABC中,,,D是BC上一點,將三角形ABD沿AD翻折后得到三角形AED,邊AE交射線BC于點F,若,則(

)A.120° B.135° C.110° D.150°6、如圖,∠B=∠C,則∠ADC與∠AEB的大小關(guān)系是(

)A.∠ADC>∠AEB B.∠ADC<∠AEBC.∠ADC=∠AEB D.大小關(guān)系不確定7、一把直尺和一塊三角板(含、角)如圖所示擺放,直尺一邊與三角板的兩直角邊分別交于點和點,另一邊與三角板的兩直角邊分別交于點和點,且,那么的大小為()A. B. C. D.8、如圖四邊形ABCD中,,將四邊形沿對角線AC折疊,使點B落在點處,若∠1=∠2=44°,則∠B為(

).A.66° B.104° C.114° D.124°第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,點D是△ABC兩條角平分線AP、CE的交點,如果∠BAC+∠BCA=140°,那么∠ADC=_____°.2、一大門欄桿的平面示意圖如圖所示,BA垂直地面AE于點A,CD平行于地面AE,若∠BCD=150°,則∠ABC=_____度.3、如圖,,的平分線交于點,是上的一點,的平分線交于點,且,下列結(jié)論:①平分;②;③與互余的角有個;④若,則.其中正確的是________.(請把正確結(jié)論的序號都填上)4、如圖,將三角形紙片ABC沿EF折疊,使得A點落在BC上點D處,連接DE,DF,.設(shè),,則α與β之間的數(shù)量關(guān)系是________.5、“等邊三角形是銳角三角形”的逆命題是_________.6、如圖,若AB⊥BC,BC⊥CD,則直線AB與CD的位置關(guān)系是______.7、把“對頂角相等”改寫成“如果…那么…”的形式____________________________________________.三、解答題(7小題,每小題10分,共計70分)1、如圖,已知直線AB∥DF,∠D+∠B=180°.(1)試說明DE∥BC;(2)若∠AMD=75°,求∠AGC的度數(shù).2、(1)探究:如圖1,求證:;(2)應(yīng)用:如圖2,,,求的度數(shù).

3、如圖,在△ABC中,∠ABC的平分線BD交∠ACB的平分線CE于點O.(1)求證:.(2)如圖1,若∠A=60°,請直接寫出BE,CD,BC的數(shù)量關(guān)系.(3)如圖2,∠A=90°,F(xiàn)是ED的中點,連接FO.①求證:BC?BE?CD=2OF.②延長FO交BC于點G,若OF=2,△DEO的面積為10,直接寫出OG的長.4、如圖,∠ABC=31°,又∠BAC的平分線AE與∠FCB的平分線CE相交于E點,求∠AEC的度數(shù).5、如圖,在△ABC中,D為AB邊上一點,E為BC邊上一點,∠BCD=∠BDC(1)若∠ACD=15°,∠CAD=40°,則∠B=度(直接寫出答案);(2)請說明:∠EAB+∠AEB=2∠BDC的理由.6、如圖,直線DE、FM,分別交的兩邊于N、G,P、Q,若嗎?如果平行請說明理由.7、已知:如圖,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°.(1)求證:AC=BD;(2)求∠APB的度數(shù).-參考答案-一、單選題1、B【解析】【分析】利用垂直定義和三角形內(nèi)角和定理計算出∠ADC的度數(shù),再利用平行線的性質(zhì)可得∠3的度數(shù),再根據(jù)鄰補角的性質(zhì)可得答案.【詳解】解:∵AC⊥AB,∴∠A=90,∵∠1=15,∴∠ADC=180-90-15=75,∵l1∥l2,∴∠3=∠ADC=75,∴∠2=180-75=105,故選:B.【考點】此題主要運用垂直定義、三角形內(nèi)角和定理以及平行線的性質(zhì),解決角之間的關(guān)系,本題關(guān)鍵是掌握兩直線平行,同位角相等.2、D【解析】【分析】根據(jù)平行線的性質(zhì)求出∠4,根據(jù)三角形內(nèi)角和定理計算即可.【詳解】∵a∥b,∴∠4=∠1=60°,∴∠3=180°-∠4-∠2=80°故選:D.【考點】本題考查的是平行線的性質(zhì)、三角形內(nèi)角和定理,掌握兩直線平行,同位角相等是解題的關(guān)鍵.3、C【解析】【詳解】根據(jù)平行線的判定,可由∠2=∠3,根據(jù)內(nèi)錯角相等,兩直線平行,得到AD∥BC,由∠1=∠4,得到AB∥CD.故選C.4、D【解析】【分析】根據(jù)同位角相等,兩直線平行;同旁內(nèi)角互補,兩直線平行;內(nèi)錯角相等,兩直線平行,進(jìn)行判斷即可.【詳解】由∠2=∠4或∠1+∠4=180°或∠5=∠4,可得a∥b;由∠1=∠3,不能得到a∥b,故選D.【考點】本題主要考查了平行線的判定,熟記平行線的判定方法是解題的關(guān)鍵.解答此類要判定兩直線平行的題,可圍繞截線找同位角、內(nèi)錯角和同旁內(nèi)角.5、A【解析】【分析】由得到∠FDE=∠C=60°,由折疊的性質(zhì)知∠DEF=∠B=30°,得到∠DFE=180°-∠FDE-∠DEF=90°,由外角的性質(zhì)得∠ADC+60°=∠ADE=∠BDA,∠ADB+∠ADC=180°,進(jìn)一步求得∠ADC=60°,進(jìn)一步求得∠BDA.【詳解】解:∵,∴∠FDE=∠C=60°,∵三角形ABD沿AD翻折后得到三角形AED,∴∠DEF=∠B=30°,∴∠DFE=180°-∠FDE-∠DEF=90°,∵∠ADC+60°=∠ADE=∠BDA,∠ADB+∠ADC=180°,∴∠ADC+60°+∠ADC=180°,∴∠ADC=60°,∴∠BDA=∠ADC+60°=120°,故選:A【考點】此題考查了折疊的性質(zhì),平行線性質(zhì),外角的性質(zhì)等知識,熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.6、C【解析】【分析】首先在△ADC中有內(nèi)角和為180°,即∠A+∠C+∠ADC=180°,在△AEB中有內(nèi)角和為180°,即∠AEB+∠A+∠B=180°,又知∠B=∠C,故可得∠AEB=∠ADC.【詳解】在△ADC中有∠A+∠C+∠ADC=180°,在△AEB有∠AEB+∠A+∠B=180°,∵∠B=∠C,∴∠ADC=∠AEB.故選C.【考點】本題主要考查三角形內(nèi)角和定理的應(yīng)用,利用了三角形內(nèi)角和為180度,此題難度不大.7、B【解析】【分析】先利用三角形外角性質(zhì)得到∠FDE=∠C+∠CED=140°,然后根據(jù)平行線的性質(zhì)得到∠BFA的度數(shù).【詳解】,∵,∴.故選B.【考點】本題考查了平行線的性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補;兩直線平行,內(nèi)錯角相等.8、C【解析】【分析】根據(jù)兩直線平行,內(nèi)錯角相等可得,根據(jù)翻折變換的性質(zhì)可得,然后求出∠BAC,再根據(jù)三角形的內(nèi)角和等于180°列式計算即可得解.【詳解】解:在ABCD中,,∴,∵ABCD沿對角線AC折疊,使點B落在點處,∴,∴,在△ABC中,∠B=180°-∠BAC-∠2=180°-22°-44°=114°.故選C.【考點】本題考查了翻折變換的性質(zhì),平行線的性質(zhì),三角形的內(nèi)角和定理,掌握“翻折前后對應(yīng)邊相等,對應(yīng)角相等”是解本題的關(guān)鍵.二、填空題1、110【解析】【分析】根據(jù)CE,AP分別平分∠ACB和∠BAC,得∠CAP=∠BAC,∠ACE=∠BCA,再根據(jù)三角形內(nèi)角和定理,求出∠ADC即可.【詳解】解:∵CE,AP分別平分∠ACB和∠BAC,∴∠ACE=∠BCA,∠CAP=∠BAC,∵∠BAC+∠BCA=140°,∴∠CAP+∠ACE=70°,∴∠ADC=180°﹣(∠CAP+∠ACE)=180°﹣70°=110°,故答案為:110.【考點】本題考查了角平分線的性質(zhì)和三角形內(nèi)角和定理,熟練掌握了角平分線的性質(zhì)是解題的關(guān)鍵.2、120【解析】【分析】先過點B作BF∥CD,由CD∥AE,可得CD∥BF∥AE,繼而證得∠1+∠BCD=180°,∠2+∠BAE=180°,又由BA垂直于地面AE于A,∠BCD=150°,求得答案.【詳解】解:如圖,過點B作BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=150°,∠BAE=90°,∴∠1=30°,∠2=90°,∴∠ABC=∠1+∠2=120°.故答案為:120.【考點】此題考查了平行線的性質(zhì),解題的關(guān)鍵是注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.3、①②【解析】【分析】由BD⊥BC及BD平分∠GBE,可判斷①正確;由CB平分∠ACF、AE∥CF及①的結(jié)論可判斷②正確;由前兩個的結(jié)論可對③作出判斷;由AE∥CF及AC∥BG、三角形外角的性質(zhì)可求得∠BDF,從而可對④作出判斷.【詳解】∵BD平分∠GBE∴∠EBD=∠GBD=∠GBE∵BD⊥BC∴∠GBD+∠GBC=∠CBD=90°∴∠DBE+∠ABC=90°∴∠GBC=∠ABC∴BC平分∠ABG故①正確∵CB平分∠ACF∴∠ACB=∠GCB∵AE∥CF∴∠ABC=∠GCB∴∠ACB=∠GCB=∠ABC=∠GBC∴AC∥BG故②正確∵∠DBE+∠ABC=90°,∠ACB=∠GCB=∠ABC=∠GBC∴與∠DBE互余的角共有4個故③錯誤∵AC∥BG,∠A=α∴∠GBE=α∴∵AE∥CF∴∠BGD=180°-∠GBE=180°?α∴∠BDF=∠GBD+∠BGD=故④錯誤即正確的結(jié)論有①②故答案為:①②【考點】本題考查了平行線的判定與性質(zhì),互余概念,垂直的定義,角平分線的性質(zhì)等知識,掌握這些知識并正確運用是關(guān)鍵.4、【解析】【分析】由折疊的性質(zhì)可知:,再利用三角形內(nèi)角和定理及角之間的關(guān)系證明,,即可找出α與β之間的數(shù)量關(guān)系.【詳解】解:由折疊的性質(zhì)可知:,∵,∴,∴,∵,,∴,∴,故答案為:.【考點】本題考查折疊的性質(zhì),三角形內(nèi)角和定理,解題的關(guān)鍵是根據(jù)折疊的性質(zhì)求出,根據(jù)角之間的關(guān)系求出,.5、銳角三角形是等邊三角形【解析】【分析】交換題目中的題設(shè)和結(jié)論即可.【詳解】解:原命題“等邊三角形是銳角三角形”的條件是“一個三角形是等邊三角形”,結(jié)論是“這個三角形是銳角三角形”,互換條件和結(jié)論可得到逆命題“如果一個三角形是銳角三角形,那么這個三角形是等邊三角形”.簡化為“銳角三角形是等邊三角形”,故答案為:銳角三角形是等邊三角形.【考點】本題考查了命題與逆命題,能準(zhǔn)確找到命題中的題設(shè)和結(jié)論是解題的關(guān)鍵.6、AB∥CD【解析】【詳解】∵AB⊥BC,BC⊥CD,∴∠ABC=∠BCD=90°,∴AB∥CD,故答案為AB∥CD.7、如果兩個角是對頂角,那么它們相等【解析】【分析】先找到命題的題設(shè)和結(jié)論,再寫成“如果…那么…”的形式.【詳解】解:∵原命題的條件是:“兩個角是對頂角”,結(jié)論是:“它們相等”,∴命題“對頂角相等”寫成“如果…那么…”的形式為:“如果兩個角是對頂角,那么它們相等”.故答案為:如果兩個角是對頂角,那么它們相等.【考點】本題考查了命題的條件和結(jié)論的敘述,注意確定一個命題的條件與結(jié)論的方法是首先把這個命題寫成:“如果…,那么…”的形式.三、解答題1、(1)證明見解析;(2)105°.【解析】【詳解】(1)根據(jù)平行線的性質(zhì)得出∠D+∠BHD=180°,等量代換得出∠B=∠DHB,根據(jù)平行線的判定得出即可;(2)根據(jù)平行線的性質(zhì)求出∠AGB=∠AMD=75°,再根據(jù)鄰補角的定義即可求出∠AGC的度數(shù).(1)證明:∵AB∥DF,

∴∠D+∠BHD=180°,∵∠D+∠B=180°,∴∠B=∠DHB,∴DE∥BC.(2)解:∵DE∥BC,∠AMD=75°,∴∠AGB=∠AMD=75°,∴∠AGC=180°﹣∠AGB=180°﹣75°=105°.【考點】本題涉及的知識點是平行線的判定及性質(zhì).熟練掌握平行線的性質(zhì)及判定并能準(zhǔn)確識圖是解題的關(guān)鍵.2、230°【解析】【分析】(1)連接OA并延長,由三角形外角的性質(zhì)可知∠1+∠B=∠3,∠2+∠C=∠4,兩式相加即可得出結(jié)論;(2)連接AD,由(1)的結(jié)論可知∠F+∠2+∠3=∠DEF,∠1+∠4+∠C=∠ABC,兩式相加即可得出結(jié)論.【詳解】(1)如圖1,連接AO并延長,∵是的外角,∴.①;∵是的外角,∴②;①+②,得,∴.(2)如圖2,連接AD.由(1),得③;④;③+④得:,∵,,∴.

【考點】本題考查的是三角形外角的性質(zhì),根據(jù)題意作出輔助線,構(gòu)造出三角形是解答此題的關(guān)鍵.3、(1)見解析(2)BE+CD=BC,(3)①見解析;②【解析】【分析】(1)先根據(jù)三角形內(nèi)角和得:∠BOC=180°?(∠OBC+∠OCB),由角平分線定義得:∠OBC=∠ABC,∠OCB=∠ACB,最后由三角形內(nèi)角和可得結(jié)論;(2)在BC上截取BM=BE,證明△BOE≌△BOM,推出∠BOE=∠BOM=60°,再證明△DCO≌△MCO可得結(jié)論;(3)①延長OF到點M,使MF=OF,證明△ODF≌△MEF(SAS),推出OD=EM.過點O作CE,BD的垂線,證明△OBE≌△OBK(AAS)和△ODC≌△OHC,推出EO=OK,OD=OH=EM,BE=BK,CD=CH.據(jù)此即可證明結(jié)論;②利用①的結(jié)論以及三角形面積公式即可求解.(1)證明:∵BD平分∠ABC,CE平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠BOC=180°?(∠OBC+∠OCB)=180°?(∠ABC+∠ACB)=180°?(180°?∠A)=∠A+90°;(2)解:BE+CD=BC.在BC上截取BM=BE,連接OM,如圖:∵∠BOC=∠A+90°=120°,∴∠BOE=60°,∵BD平分∠ABC,∴∠EBO=∠MBO,∴△BOE≌△BOM,∴∠BOE=∠BOM=60°,∴∠MOC=∠DOC=60°,∵OC為∠DCM的角平分線,∴∠DCO=∠MCO,在△DCO與△MCO中,,∴△DCO≌△MCO(ASA),∴CM=CD,∴BC=BM+CM=BE+CD;(3)①證明:如圖,延長OF到點M,使MF=OF,連接EM,∴OM=2OF.∵F是ED的中點,∴EF=DF,∵∠DFO=∠EFM,∴△ODF≌△MEF(SAS),∴OD=EM.過點O作CE,BD的垂線,分別交BC于點K,H,∴∠OCK+∠OKC=90°.∵∠A=90°,∴∠ACE+∠AEC=90°∵∠ACE=∠OCK,∴∠AEO=∠OKC,∴∠BEO=∠BKO,∴△OBE≌△OBK(AAS),同理可得△ODC≌△OHC,∴EO=OK,OD=OH=EM,BE=BK,CD=CH.由(1)可知∠DOE=∠BOC=×90°+90°=135°,∴∠BOE=∠COD=45°,∴∠OEM=∠KOH=45°,∴△OME≌△KHO,∴KH=OM,∴KH=2OF.∵BC?BK?CH=KH=2OE,∴BC?BE?CD=KH=2OF;②解:∵△OME≌△KHO,∴∠EOM=∠OKH,∴FG⊥BC.由①可知KH=2OF=4,△ODF≌△MEF,∴S△DEO=S△OME=S△KHO=10,∴KH×OG×=10,∴OG=5.【考點】本題考查了角平分線的定義、三角形內(nèi)角和定理、三角形全等的性質(zhì)和判定.解題的關(guān)鍵是靈活運用所學(xué)知識解決問題.4、∠AEC的度數(shù)為15.5°.【解析】【分析】根據(jù)角平分線的定義可得∠EAC=∠BAC,∠ECF=∠BCF,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和可得∠BCF=∠ABC+∠BAC,∠ECF=∠AEC+∠EAC,然后整理即可得到∠AEC=∠ABC.【詳解】解:∵AE、CE分別是∠BAC和∠BCF的平分線,∴∠EAC=∠BAC,∠ECF=∠BCF,由三角形的外角性質(zhì)得,∠BCF=∠ABC+∠BAC,∠ECF=∠AEC+∠EAC,∴∠AEC+∠EAC=(∠ABC+∠BAC),∴∠AEC=∠ABC,∵∠ABC=31°,∴∠AEC=×31=15.5°.【考點】本題考查了三角形的內(nèi)角和定理,三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),角平分線的定義,熟記性質(zhì)與定理并求出∠AEC=∠ABC是解題的關(guān)鍵.5、(1)70(2)見解析【解析】【分析】(1)利用三角形的外角性質(zhì)可求出∠BDC的度數(shù),結(jié)合∠BCD=∠BDC可得出∠BCD的度數(shù),再在△BCD中,利用三角形內(nèi)角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論