版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖是一個含有3個正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,將它鑲嵌在一個圓形的金屬框上,使A,G,H三點剛好在金屬框上,則該金屬框的半徑是()A. B. C. D.2、如圖是由5個相同的小正方體搭成的幾何體,它的左視圖是().A. B. C. D.3、下列汽車標(biāo)志中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.4、如圖,從⊙O外一點P引圓的兩條切線PA,PB,切點分別是A,B,若∠APB=60°,PA=5,則弦AB的長是()A. B. C.5 D.55、的邊經(jīng)過圓心,與圓相切于點,若,則的大小等于()A. B. C. D.6、下列圖形中,可以看作是中心對稱圖形的是()A. B.C. D.7、如圖,與的兩邊分別相切,其中OA邊與相切于點P.若,,則OC的長為()A.8 B. C. D.8、中國有悠久的金石文化,印信是金石文化的代表之一.南北朝時期的官員獨孤信的印信是迄今發(fā)現(xiàn)的中國古代唯一一枚楷書?。谋砻婢烧叫魏偷冗吶切谓M成(如圖1),可以看成圖2所示的幾何體.從正面看該幾何體得到的平面圖形是()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,把分成相等的六段弧,依次連接各分點得到正六邊形ABCDEF,如果的周長為,那么該正六邊形的邊長是______.2、點(2,-3)關(guān)于原點的對稱點的坐標(biāo)為_____.3、如圖,將半徑為的圓形紙片沿一條弦折疊,折疊后弧的中點與圓心重疊,則弦的長度為________.4、在平面直角坐標(biāo)系中,將點繞坐標(biāo)原點順時針旋轉(zhuǎn)后得到點Q,則點Q的坐標(biāo)是___________.5、如圖,AB為的弦,半徑于點C.若,,則的半徑長為______.6、已知⊙A的半徑為5,圓心A(4,3),坐標(biāo)原點O與⊙A的位置關(guān)系是______.7、如圖,將矩形繞點A順時針旋轉(zhuǎn)到矩形的位置,旋轉(zhuǎn)角為.若,則的大小為________(度).三、解答題(7小題,每小題0分,共計0分)1、隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻?、便捷.某校?shù)學(xué)興趣小組設(shè)計了一份調(diào)查問卷,要求每人選且只選一種最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進行統(tǒng)計并繪制成如下兩幅不完整的統(tǒng)計圖.請結(jié)合圖中所給的信息解答下列問題:(1)這次活動共調(diào)查了______人,并補充完整條形統(tǒng)計圖;(2)在扇形統(tǒng)計圖中,表示“支付寶”支付的扇形圓心角的度數(shù)為______;(3)在一次購物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種方式中選一種方式進行支付,請用畫樹狀圖或列表的方法,求出兩人恰好選擇同一種支付方式的概率.2、如圖,點A是外一點,過點A作出的一條切線.(使用尺規(guī)作圖,作出一條即可,不要求寫出作法,不要求證明,但要保留作圖痕跡)3、如圖,在⊙O中,點E是弦CD的中點,過點O,E作直徑AB(AE>BE),連接BD,過點C作CFBD交AB于點G,交⊙O于點F,連接AF.求證:AG=AF.4、電影《長津湖》以抗美援朝戰(zhàn)爭第二次戰(zhàn)役中的長津湖戰(zhàn)役為背景,講述71年前,中國人民志愿軍赴朝作戰(zhàn),在極寒嚴(yán)酷環(huán)境下,東線作戰(zhàn)部隊?wèi){著鋼鐵意志和英勇無畏的戰(zhàn)斗精神一路追擊,奮勇殺敵的真實歷史.為紀(jì)念歷史,緬懷先烈,我校團委將電影中的四位歷史英雄人物頭像制成編號為A、B、C、D的四張卡片(除編號和頭像外其余完全相同),活動時學(xué)生根據(jù)所抽取的卡片來講述他們在影片中波瀾壯闊、可歌可泣的歷史事跡.規(guī)則如下:先將四張卡片背面朝上,洗勻放好,小強從中隨機抽取一張,然后放回并洗勻,小葉再從中隨機抽取一張.請用列表或畫樹狀圖的方法求小強和小葉抽到的兩張卡片恰好是同一英雄人物的概率.5、如圖1,在平面直角坐標(biāo)系中,二次函數(shù)的圖象經(jīng)過點,過點A作軸,做直線AC平行x軸,點D是二次函數(shù)的圖象與x軸的一個公共點(點D與點O不重合).(1)求點D的橫坐標(biāo)(用含b的代數(shù)式表示)(2)求的最大值及取得最大值時的二次函數(shù)表達式.(3)在(2)的條件下,如圖2,P為OC的中點,在直線AC上取一點M,連接PM,做點C關(guān)于PM的對稱點N,①連接AN,求AN的最小值.②當(dāng)點N落在拋物線的對稱軸上,求直線MN的函數(shù)表達式.6、如圖,ABC是⊙O的內(nèi)接三角形,,,連接AO并延長交⊙O于點D,過點C作⊙O的切線,與BA的延長線相交于點E.(1)求證:AD∥EC;(2)若AD=6,求線段AE的長.7、如圖,在直角坐標(biāo)平面內(nèi),已知點A的坐標(biāo)(﹣2,0).(1)圖中點B的坐標(biāo)是______;(2)點B關(guān)于原點對稱的點C的坐標(biāo)是_____;點A關(guān)于y軸對稱的點D的坐標(biāo)是______;(3)四邊形ABDC的面積是______;(4)在y軸上找一點F,使,那么點F的所有可能位置是______.-參考答案-一、單選題1、A【分析】如圖,記過A,G,H三點的圓為則是,的垂直平分線的交點,記的交點為的交點為延長交于為的垂直平分線,結(jié)合正方形的性質(zhì)可得:再設(shè)利用勾股定理建立方程,再解方程即可得到答案.【詳解】解:如圖,記過A,G,H三點的圓為則是,的垂直平分線的交點,記的交點為的交點為延長交于為的垂直平分線,結(jié)合正方形的性質(zhì)可得:四邊形為正方形,則設(shè)而AB=2,CD=3,EF=5,結(jié)合正方形的性質(zhì)可得:而又而解得:故選A【點睛】本題考查的是正方形的性質(zhì),三角形外接圓圓心的確定,圓的基本性質(zhì),勾股定理的應(yīng)用,二次根式的化簡,確定過A,G,H三點的圓的圓心是解本題的關(guān)鍵.2、B【分析】找到從左面看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在左視圖中.【詳解】從左面看,第一層有2個正方形,第二層左側(cè)有1個正方形.故選:B.【點睛】本題考查了三視圖的知識,熟知左視圖是從物體的左面看得到的視圖是解答本題的關(guān)鍵.3、C【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;C、是軸對稱圖形,是中心對稱圖形,故此選項符合題意;D、不是軸對稱圖形,是中心對稱圖形,故此選項不符合題意;故選:C.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.4、C【分析】先利用切線長定理得到PA=PB,再利用∠APB=60°可判斷△APB為等邊三角形,然后根據(jù)等邊三角形的性質(zhì)求解.【詳解】解:∵PA,PB為⊙O的切線,∴PA=PB,∵∠APB=60°,∴△APB為等邊三角形,∴AB=PA=5.故選:C.【點睛】本題考查了切線長定理以及等邊三角形的判定與性質(zhì).此題比較簡單,注意掌握數(shù)形結(jié)合思想的應(yīng)用.5、A【分析】連接,根據(jù)圓周角定理求出,根據(jù)切線的性質(zhì)得到,根據(jù)直角三角形的性質(zhì)計算,得到答案.【詳解】解:連接,,,與圓相切于點,,,故選:A.【點睛】本題考查的是切線的性質(zhì)、圓周角定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關(guān)鍵.6、C【分析】根據(jù)中心對稱圖形的定義進行逐一判斷即可.【詳解】解:A、不是中心對稱圖形,故此選項不符合題意;B、不是中心對稱圖形,故此選項不符合題意;C、是中心對稱圖形,故此選項符合題意;D、不是中心對稱圖形,故此選項不符合題意;故選C.【點睛】本題主要考查了中心對稱圖形的識別,解題的關(guān)鍵在于能夠熟練掌握中心對稱圖形的定義:把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心.7、C【分析】如圖所示,連接CP,由切線的性質(zhì)和切線長定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根據(jù)勾股定理求解即可.【詳解】解:如圖所示,連接CP,∵OA,OB都是圓C的切線,∠AOB=90°,P為切點,∴∠CPO=90°,∠COP=45°,∴∠PCO=∠COP=45°,∴CP=OP=4,∴,故選C.【點睛】本題主要考查了切線的性質(zhì),切線長定理,等腰直角三角形的性質(zhì)與判定,勾股定理,熟知切線長定理是解題的關(guān)鍵.8、D【分析】找到從正面看所得到的圖形即可.【詳解】解:從正面看是一個正六邊形,里面有2個矩形,故選D.【點睛】本題靈活考查了三種視圖之間的關(guān)系以及視圖和實物之間的關(guān)系,同時還考查了對圖形的想象力,難度適中.二、填空題1、6【分析】如圖,連接OA、OB、OC、OD、OE、OF,證明△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等邊三角形,再求出圓的半徑即可.【詳解】解:如圖,連接OA、OB、OC、OD、OE、OF.∵正六邊形ABCDEF,∴AB=BC=CD=DE=EF=FA,∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠FOA=60°,∴△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等邊三角形,∵的周長為,∴的半徑為,正六邊形的邊長是6;【點睛】本題考查正多邊形與圓的關(guān)系、等邊三角形的判定和性質(zhì)等知識,明確正六邊形的邊長和半徑相等是解題的關(guān)鍵.2、(-2,3)【分析】根據(jù)“關(guān)于原點對稱的點的坐標(biāo)關(guān)系,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù)”,即可求解.【詳解】點(2,-3)關(guān)于原點的對稱點的坐標(biāo)是(-2,3).故答案為:
(-2,3).【點睛】本題主要考查點關(guān)于原點對稱,解決本題的關(guān)鍵是要熟練掌握關(guān)于原點對稱點的坐標(biāo)的關(guān)系.3、【分析】連接OC交AB于點D,再連接OA.根據(jù)軸對稱的性質(zhì)確定,OD=CD;再根據(jù)垂徑定理確定AD=BD;再根據(jù)勾股定理求出AD的長度,進而即可求出AB的長度.【詳解】解:如下圖所示,連接OC交AB于點D,再連接OA.∵折疊后弧的中點與圓心重疊,∴,OD=CD.∴AD=BD.∵圓形紙片的半徑為10cm,∴OA=OC=10cm.∴OD=5cm.∴cm.∴BD=cm.∴cm.故答案為:.【點睛】本題考查軸對稱的性質(zhì),垂徑定理,勾股定理,綜合應(yīng)用這些知識點是解題關(guān)鍵.4、【分析】繞坐標(biāo)原點順時針旋轉(zhuǎn)即關(guān)于原點中心對稱,找到關(guān)于原點中心對稱的點的坐標(biāo)即可,根據(jù)關(guān)于原點對稱的兩個點,橫坐標(biāo)、縱坐標(biāo)分別互為相反數(shù),即可求解.【詳解】解:將點繞坐標(biāo)原點順時針旋轉(zhuǎn)后得到點Q,則點Q的坐標(biāo)是故答案為:【點睛】本題考查了求一個點關(guān)于原點中心對稱的點的坐標(biāo),掌握關(guān)于原點中心對稱的點的坐標(biāo)特征是解題的關(guān)鍵.關(guān)于原點對稱的兩個點,橫坐標(biāo)、縱坐標(biāo)分別互為相反數(shù).5、5【分析】先根據(jù)垂徑定理求出AC的長,設(shè)⊙O的半徑為r,再連接OA,在Rt△OAC中利用勾股定理求出r的值即可.【詳解】解:∵⊙O的弦AB=8,半徑OD⊥AB,∴AC=AB=×8=4,設(shè)⊙O的半徑為r,則OC=r-CD=r-2,連接OA,在Rt△OAC中,OA2=OC2+AC2,即r2=(r-2)2+42,解得r=5.故答案為:5【點睛】本題考查的是垂徑定理及勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形,利用勾股定理求解是解答此題的關(guān)鍵.6、在⊙A上【分析】先根據(jù)兩點間的距離公式計算出OA,然后根據(jù)點與圓的位置關(guān)系的判定方法判斷點O與⊙A的位置關(guān)系.【詳解】解:∵點A的坐標(biāo)為(4,3),∴OA==5,∵半徑為5,∴OA=r,∴點O在⊙A上.故答案為:在⊙A上.【點睛】本題考查了點與圓的位置關(guān)系:點與圓的位置關(guān)系有3種.設(shè)⊙O的半徑為r,點P到圓心的距離OP=d,當(dāng)點P在圓外?d>r;當(dāng)點P在圓上?d=r;當(dāng)點P在圓內(nèi)?d<r.7、20【分析】先利用旋轉(zhuǎn)的性質(zhì)得到∠ADC=∠D=90°,∠DAD′=α,再利用四邊形內(nèi)角和計算出∠BAD‘=70°,然后利用互余計算出∠DAD′,從而得到α的值.【詳解】∵矩形ABCD繞點A順時針旋轉(zhuǎn)到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD’=180°-∠1=180°-110°=70°,∴∠DAD′=90°-70°=20°,即α=20°.故答案為20.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.三、解答題1、(1)200;補圖見解析;(2)81°;(3)【分析】(1)根據(jù)使用支付方式為銀行卡的占比為15%,人數(shù)為30人即可求得總?cè)藬?shù),根據(jù)微信支付所占的百分比為乘以總?cè)藬?shù)即可求得,根據(jù)總?cè)藬?shù)減去微信支付,銀行卡,現(xiàn)金,其他方式支付的人數(shù)即可求得支付寶支付的人數(shù);(2)先求得支付寶支付的人數(shù)所占比乘以360°即可求得扇形圓心角的度數(shù);(3)根據(jù)列表法求概率即可.【詳解】解:(1)(人)故答案為:200其中使用微信支付的有:(人)使用支付寶支付的有:(人)(2)故答案為:81°(3)將微信記為A,支付寶記為B,銀行卡記為C,列表格如下:ABCABC共有9種等可能性的結(jié)果,其中兩人恰好選擇同一種支付方式的結(jié)果有3種,則P(兩人恰好選擇同一種支付方式)【點睛】本題考查了扇形統(tǒng)計圖與條形統(tǒng)計圖信息關(guān)聯(lián),求條形統(tǒng)計圖某項數(shù)據(jù),求扇形統(tǒng)計圖圓心角,列表法求概率,掌握以上知識是解題的關(guān)鍵.2、見解析【分析】先作線段的垂直平分線.確定的中點,再以中點為圓心,一半為半徑作圓交于點,然后作直線,則根據(jù)圓周角定理可得為所求.【詳解】如圖,直線AB就是所求作的,(作法不唯一,作出一條即可,需要有作圖痕跡)【點睛】本題考查了作圖復(fù)雜作圖,解題的關(guān)鍵是掌握復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.3、見解析【分析】由題意易得AB⊥CD,,則有,由平行線的性質(zhì)可得,然后可得,進而問題可求證.【詳解】證明:∵AB為⊙O的直徑,點E是弦CD的中點,∴AB⊥CD,∴,∴,∵CF∥BD,∴,∴,∴.【點睛】本題主要考查垂徑定理、平行線的性質(zhì)及圓周角定理,熟練掌握垂徑定理、平行線的性質(zhì)及圓周角定理是解題的關(guān)鍵.4、【分析】根據(jù)題意列出樹狀圖,根據(jù)概率公式即可求解.【詳解】由題意做樹狀圖如下:故小強和小葉抽到的兩張卡片恰好是同一英雄人物的概率為.【點睛】此題考查了用列表法或樹狀圖法求概率,解題時要注意此題是放回試驗還是不放回試驗,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.5、(1)2b;(2)4;;(3)①.②y=x+或.【分析】(1)令y=0,解方程即可;(2)設(shè)w=,根據(jù)OD=2b,BD=4-2b,構(gòu)造二次函數(shù)求解即可;(3)①點N在以P為圓心,以2為半徑的圓上運動,當(dāng)P、N、A同側(cè)且共線時,AN最小,用勾股定理計算即可.②分點M在對稱軸的左側(cè)和右側(cè),兩種情形求解.(1)令y=0,得,解得x=0或x=2b,∵b>0,∴x=0舍去,∴點D的橫坐標(biāo)為2b.(2)設(shè)w=,∵點D的橫坐標(biāo)為2b,A(4,m),∴OD=2b,BD=4-2b,∴w==2b(4-2b)=,∵-4<0,∴當(dāng)b=1時,w有最大值,最大值為4,此時拋物線的解析式為.(3)①∵點A(4,m)在拋物線上,∴m==4,∴OC=4,∵P為OC的中點,∴OP=PC=2,∵點C關(guān)于PM的對稱點N,∴OP=PC=PN=2,∴點N在以P為圓心,以2為半徑的圓上運動,如圖所示,當(dāng)P、N、A同側(cè)且共線時,AN最小,∵AC=4,PC=2,∴PA=,∴AN的最小值為PA-PN=.②當(dāng)點N落在拋物線的對稱軸上,且M在對稱軸的左側(cè),如圖所示,設(shè)對稱軸與AC交于點H,交x軸于點Q,過點P作PG⊥HN,垂足為G,則QG=2,∵PC=PN=2,PG=1,∴NG=,∴HN=2-,點N(1,2+),設(shè)CM=a,則MN=a,MH=1-a,∴,解得a=4-2,∴點M(4-2,4),設(shè)直線MN的解析式為y=kx+b,∴,解得,∴直線MN的解析式為y=x+;當(dāng)點N落在拋物線的對稱軸上,且M在對稱軸的右側(cè),如圖所示,設(shè)對稱軸與AC交于點T,交x軸于點R,過點P作PK⊥TN,垂足為K,則KT=KR=2,∵PC=PN=2,PK=1,∴KR=,∴NR=2-,點N(1,2-),TN=2+設(shè)CM=b,則MN=b,MT=a-1,∴,解得b=4+2,∴點M(4+2,4),設(shè)直線MN的解析式為y=mx+q,∴,解得,∴直線MN的解析式為y=x+;綜上所述,直線MN的解析式為y=x+或y=x+.【點睛】本題考查了拋物線與x軸的交點,二次函數(shù)的最值,圓的基本性質(zhì),待定系數(shù)法確定一次函數(shù)的解析式,軸對稱的性質(zhì),勾股定理,熟練掌握圓的性質(zhì),拋物線的性質(zhì),靈活運用對稱的思想和勾股定理是解題的關(guān)鍵.6、(1)見解析;(2)6【分析】(1)連接OC,根據(jù)CE是⊙O的切線,可得∠OCE=,根據(jù)圓周角定理,可得∠AOC=,從而得到∠AOC+∠OCE=,即可求證;(2)過點A作AF⊥EC交EC于點F,由∠AOC=,OA=OC,可得∠OAC=,從而得到∠BAD=,再由AD∥EC,可得,然后證
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 優(yōu)化方案高考數(shù)學(xué)文總復(fù)習(xí)人教A版省公共課全國賽課獲獎教案
- 幼兒園大班語言好擔(dān)心活動幼教教案
- 小學(xué)語文六年級下冊向往奧運教材簡析教案
- 小區(qū)物業(yè)管理服務(wù)內(nèi)容和范圍試卷教案
- 汕頭市濠江區(qū)KV濱西線開弟分支施工方案試卷教案
- 危重癥患兒的識別教案
- 銷售經(jīng)理案場管理專題培訓(xùn)教案
- 《高考導(dǎo)航》屆新課標(biāo)數(shù)學(xué)理一輪復(fù)習(xí)平面向量基本定理坐標(biāo)表示教案(2025-2026學(xué)年)
- 中年級會計職稱考試中級會計實務(wù)科目涉考點總結(jié)教案
- 細胞增殖評優(yōu)課課件
- 2026年湖南食品藥品職業(yè)學(xué)院單招職業(yè)適應(yīng)性測試題庫帶答案詳解
- 《AQ 4272-2025鋁鎂制品機械加工粉塵防爆安全規(guī)范》專題研究報告
- 2025年度威海文旅發(fā)展集團有限公司招聘工作人員25人筆試參考題庫附帶答案詳解(3卷)
- T-CNHC 4-2025 昌寧縣低質(zhì)低效茶園改造技術(shù)規(guī)程
- 雨課堂學(xué)堂在線學(xué)堂云《芊禮-謙循-送給十八歲女大學(xué)生的成人之禮(中華女子學(xué)院 )》單元測試考核答案
- 2025年手術(shù)室護理實踐指南試題(含答案)
- 2025年山東省政府采購專家入庫考試真題(附答案)
- 2025兵團連隊職工試題及答案
- 智慧農(nóng)貿(mào)市場建設(shè)項目報告與背景分析
- 護理部競選副主任
- 【10篇】新版部編六年級上冊語文課內(nèi)外閱讀理解專項練習(xí)題及答案
評論
0/150
提交評論