版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)下冊《平行四邊形》必考點(diǎn)解析考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,把矩形紙片沿對角線折疊,若重疊部分為,那么下列說法錯誤的是()A.是等腰三角形 B.和全等C.折疊后得到的圖形是軸對稱圖形 D.折疊后和相等2、已知,四邊形ABCD的對角線AC和BD相交于點(diǎn)O.設(shè)有以下條件:①AB=AD;②AC=BD;③AO=CO,BO=DO;④四邊形ABCD是矩形;⑤四邊形ABCD是菱形;⑥四邊形ABCD是正方形.那么,下列推理不成立的是()A.①④?⑥ B.①③?⑤ C.①②?⑥ D.②③?④3、如圖,在△ABC中,AC=BC=8,∠BCA=60°,直線AD⊥BC于點(diǎn)D,E是AD上的一個動點(diǎn),連接EC,將線段EC繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)60°得到FC,連接DF,則在點(diǎn)E的運(yùn)動過程中,DF的最小值是()A.1 B.1.5 C.2 D.44、如圖,菱形ABCD的對角線AC、BD的長分別為6和8,O為AC、BD的交點(diǎn),H為AB上的中點(diǎn),則OH的長度為()A.3 B.4 C.2.5 D.55、平行四邊形中,,則的度數(shù)是()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,已知在矩形中,,,將沿對角線AC翻折,點(diǎn)B落在點(diǎn)E處,連接,則的長為_________.2、如圖,在邊長為1的菱形ABCD中,∠ABC=60°,將△ABD沿射線BD的方向平移得到△A'B'D',分別連接A'C,A'D,B'C,則A'C+B'C的最小值為_____.3、在四邊形ABCD中,AB=BC=CD=DA=5cm,對角線AC,BD相交于點(diǎn)O,且AC=8cm,則四邊形ABCD的面積為______cm2.4、如圖,在正方形ABCD中,AB=4,E為對角線AC上與A,C不重合的一個動點(diǎn),過點(diǎn)E作EF⊥AB于點(diǎn)F,EG⊥BC于點(diǎn)G,連接DE,F(xiàn)G,下列結(jié)論:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值為3.其中正確結(jié)論的序號為__.5、如圖所示,正方形ABCD的面積為6,△CDE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對角線BD上有一動點(diǎn)K,則KA+KE的最小值為_____________.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,已知在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線,點(diǎn)E是邊BC延長線上一點(diǎn),連接AE、DE,過點(diǎn)C作CF⊥DE于點(diǎn)F,且DF=EF.(1)求證:AD=CE.(2)若CD=5,AC=6,求△AEB的面積.2、如圖1,正方形ABCD的邊長為a,E為邊CD上一動點(diǎn)(點(diǎn)E與點(diǎn)C、D不重合),連接AE交對角線BD于點(diǎn)P,過點(diǎn)P作PF⊥AE交BC于點(diǎn)F.(1)求證:PA=PF;(2)如圖2,過點(diǎn)F作FQ⊥BD于Q,在點(diǎn)E的運(yùn)動過程中,PQ的長度是否發(fā)生變化?若不變,求出PQ的長;若變化,請說明變化規(guī)律.(3)請寫出線段AB、BF、BP之間滿足的數(shù)量關(guān)系,不必說明理由.3、在平面直角坐標(biāo)系xOy中,點(diǎn)A(x,﹣m)在第四象限,A,B兩點(diǎn)關(guān)于x軸對稱,x=+n(n為常數(shù)),點(diǎn)C在x軸正半軸上,(1)如圖1,連接AB,直接寫出AB的長為;(2)延長AC至D,使CD=AC,連接BD.①如圖2,若OA=AC,求線段OC與線段BD的關(guān)系;②如圖3,若OC=AC,連接OD.點(diǎn)P為線段OD上一點(diǎn),且∠PBD=45°,求點(diǎn)P的橫坐標(biāo).4、如圖,四邊形ABCD是平行四邊形,延長DA,BC,使得AE=CF,連接BE,DF.(1)求證:△ABE≌△CDF;(2)連接BD,若∠1=32°,∠ADB=22°,請直接寫出當(dāng)∠ABE=°時(shí),四邊形BFDE是菱形.5、(探究發(fā)現(xiàn))(1)如圖1,△ABC中,AB=AC,∠BAC=90°,點(diǎn)D為BC的中點(diǎn),E、F分別為邊AC、AB上兩點(diǎn),若滿足∠EDF=90°,則AE、AF、AB之間滿足的數(shù)量關(guān)系是.(類比應(yīng)用)(2)如圖2,△ABC中,AB=AC,∠BAC=120°,點(diǎn)D為BC的中點(diǎn),E、F分別為邊AC、AB上兩點(diǎn),若滿足∠EDF=60°,試探究AE、AF、AB之間滿足的數(shù)量關(guān)系,并說明理由.(拓展延伸)(3)在△ABC中,AB=AC=5,∠BAC=120°,點(diǎn)D為BC的中點(diǎn),E、F分別為直線AC、AB上兩點(diǎn),若滿足CE=1,∠EDF=60°,請直接寫出AF的長.-參考答案-一、單選題1、D【解析】【分析】根據(jù)題意結(jié)合圖形可以證明EB=ED,進(jìn)而證明△ABE≌△CDE;此時(shí)可以判斷選項(xiàng)A、B、D是成立的,問題即可解決.【詳解】解:由題意得:△BCD≌△BFD,∴DC=DF,∠C=∠F=90°;∠CBD=∠FBD,又∵四邊形ABCD為矩形,∴∠A=∠F=90°,DE∥BF,AB=DF,∴∠EDB=∠FBD,DC=AB,∴∠EDB=∠CBD,∴EB=ED,△EBD為等腰三角形;在△ABE與△CDE中,∵,∴△ABE≌△CDE(HL);又∵△EBD為等腰三角形,∴折疊后得到的圖形是軸對稱圖形;綜上所述,選項(xiàng)A、B、C成立,∴不能證明D是正確的,故說法錯誤的是D,故選:D.【點(diǎn)睛】本題主要考查了翻折變換及其應(yīng)用問題;解題的關(guān)鍵是靈活運(yùn)用翻折變換的性質(zhì),找出圖中隱含的等量關(guān)系;借助矩形的性質(zhì)、全等三角形的判定等幾何知識來分析、判斷、推理或解答.2、C【解析】【分析】根據(jù)已知條件以及正方形、菱形、矩形、平行四邊形的判定條件,對選項(xiàng)進(jìn)行分析判斷即可.【詳解】解:A、①④可以說明,一組鄰邊相等的矩形是正方形,故A正確.B、③可以說明四邊形是平行四邊形,再由①,一組臨邊相等的平行四邊形是菱形,故B正確.C、①②,只能說明兩組鄰邊分別相等,可能是菱形,但菱形不一定是正方形,故C錯誤.D、③可以說明四邊形是平行四邊形,再由②可得:對角線相等的平行四邊形為矩形,故D正確.故選:C.【點(diǎn)睛】本題主要是考查了特殊四邊形的判定,熟練掌握各類四邊形的判定條件,是解決本題的關(guān)鍵.3、C【解析】【分析】取線段AC的中點(diǎn)G,連接EG,根據(jù)等邊三角形的性質(zhì)以及角的計(jì)算即可得出CD=CG以及∠FCD=∠ECG,由旋轉(zhuǎn)的性質(zhì)可得出EC=FC,由此即可利用全等三角形的判定定理SAS證出△FCD≌△ECG,進(jìn)而即可得出DF=GE,再根據(jù)點(diǎn)G為AC的中點(diǎn),即可得出EG的最小值,此題得解.【詳解】解:取線段AC的中點(diǎn)G,連接EG,如圖所示.∵AC=BC=8,∠BCA=60°,∴△ABC為等邊三角形,且AD為△ABC的對稱軸,∴CD=CG=AB=4,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG,在△FCD和△ECG中,,∴△FCD≌△ECG(SAS),∴DF=GE.當(dāng)EG∥BC時(shí),EG最小,∵點(diǎn)G為AC的中點(diǎn),∴此時(shí)EG=DF=CD=BC=2.故選:C.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)以及全等三角形的判定與性質(zhì),三角形中位線的性質(zhì),解題的關(guān)鍵是通過全等三角形的性質(zhì)找出DF=GE,本題屬于中檔題,難度不大,解決該題型題目時(shí),根據(jù)全等三角形的性質(zhì)找出相等的邊是關(guān)鍵.4、C【解析】【分析】根據(jù)菱形的性質(zhì)求得邊長,進(jìn)而根據(jù)三角形中位線定理求得的長度.【詳解】∵四邊形ABCD是菱形,∴AO=OC,OB=OD,AO⊥BO,又∵點(diǎn)H是AD中點(diǎn),∴OH是△DAB的中位線,在Rt△AOB中,AB5,則OHAB=2.5故選C【點(diǎn)睛】本題考查了菱形的性質(zhì),三角形中位線定理,求得的長是解題的關(guān)鍵.5、B【解析】【分析】根據(jù)平行四邊形對角相等,即可求出的度數(shù).【詳解】解:如圖所示,∵四邊形是平行四邊形,∴,∴,∴.故:B.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),解題的關(guān)鍵是掌握平行四邊形的性質(zhì).二、填空題1、【解析】【分析】過點(diǎn)E作EF⊥AD于點(diǎn)F,先證明CG=AG,再利用勾股定理列方程,求出AG的值,結(jié)合三角形的面積法和勾股定理,即可求解.【詳解】解:如圖所示:過點(diǎn)E作EF⊥AD于點(diǎn)F,有折疊的性質(zhì)可知:∠ACB=∠ACE,∵AD∥BC,∴∠ACB=∠CAD,∴∠CAD=∠ACE,∴CG=AG,設(shè)CG=x,則DG=8-x,∵在中,,∴x=5,∴AG=5,在中,EG=,EF⊥AD,∠AEG=90°,∴,∵在中,,、∴DF=8-=,∴在中,,故答案是:.【點(diǎn)睛】本題主要考查矩形的性質(zhì),折疊的性質(zhì),勾股定理,等腰三角形的判定定理,添加輔助線構(gòu)造直角三角形,是解題的關(guān)鍵.2、【解析】【分析】根據(jù)菱形的性質(zhì)得到AB=1,∠ABD=30°,根據(jù)平移的性質(zhì)得到A′B′=AB=1,A′B′∥AB,推出四邊形A′B′CD是平行四邊形,得到A′D=B′C,于是得到A'C+B'C的最小值=A′C+A′D的最小值,根據(jù)平移的性質(zhì)得到點(diǎn)A′在過點(diǎn)A且平行于BD的定直線上,作點(diǎn)D關(guān)于定直線的對稱點(diǎn)E,連接CE交定直線于A′,則CE的長度即為A'C+B'C的最小值,求得DE=CD,得到∠E=∠DCE=30°,于是得到結(jié)論.【詳解】解:∵在邊長為1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵將△ABD沿射線BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四邊形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四邊形A′B′CD是平行四邊形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵點(diǎn)A′在過點(diǎn)A且平行于BD的定直線上,∴作點(diǎn)D關(guān)于定直線的對稱點(diǎn)E,連接CE交定直線于A′,則CE的長度即為A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,如圖,過點(diǎn)D作DH⊥EC于H,∴,,∴,∴CE=2CH=,故答案為:.【點(diǎn)睛】本題考查了軸對稱-最短路線問題,菱形的性質(zhì),平行四邊形的判定和性質(zhì),含30度角的直角三角形的性質(zhì),平移的性質(zhì),正確地理解題意是解題的關(guān)鍵.3、24【解析】【分析】根據(jù)題意作圖,得出四邊形為菱形,再根據(jù)菱形的性質(zhì)進(jìn)行求解面積即可.【詳解】解:根據(jù)題意作圖如下:由題意得四邊形為菱形,,且平分,,,由勾股定理:,,,故答案為:24.【點(diǎn)睛】本題考查了菱形的判定及形,勾股定理,解題的關(guān)鍵是判斷四邊形是菱形.4、①②③【解析】【分析】①連接BE,可得四邊形EFBG為矩形,可得BE=FG;由△AEB≌△AED可得DE=BE,所以DE=FG;②由矩形EFBG可得OF=OB,則∠OBF=∠OFB;由∠OBF=∠ADE,則∠OFB=∠ADE;由四邊形ABCD為正方形可得∠BAD=90°,即∠AHD+∠ADH=90°,所以∠AHD+∠OFH=90°,即∠FMH=90°,可得DE⊥FG;③由②中的結(jié)論可得∠BFG=∠ADE;④由于點(diǎn)E為AC上一動點(diǎn),當(dāng)DE⊥AC時(shí),根據(jù)垂線段最短可得此時(shí)DE最小,最小值為2,由①知FG=DE,所以FG的最小值為2.【詳解】解:①連接BE,交FG于點(diǎn)O,如圖,∵EF⊥AB,EG⊥BC,∴∠EFB=∠EGB=90°.∵∠ABC=90°,∴四邊形EFBG為矩形.∴FG=BE,OB=OF=OE=OG.∵四邊形ABCD為正方形,∴AB=AD,∠BAC=∠DAC=45°.在△ABE和△ADE中,,∴△ABE≌△ADE(SAS).∴BE=DE.∴DE=FG.∴①正確;②延長DE,交FG于M,交FB于點(diǎn)H,∵△ABE≌△ADE,∴∠ABE=∠ADE.由①知:OB=OF,∴∠OFB=∠ABE.∴∠OFB=∠ADE.∵∠BAD=90°,∴∠ADE+∠AHD=90°.∴∠OFB+∠AHD=90°.即:∠FMH=90°,∴DE⊥FG.∴②正確;③由②知:∠OFB=∠ADE.即:∠BFG=∠ADE.∴③正確;④∵點(diǎn)E為AC上一動點(diǎn),∴根據(jù)垂線段最短,當(dāng)DE⊥AC時(shí),DE最?。逜D=CD=4,∠ADC=90°,∴AC==4.∴DE=AC=2.由①知:FG=DE,∴FG的最小值為2,∴④錯誤.綜上,正確的結(jié)論為:①②③.故答案為:①②③.【點(diǎn)睛】本題考查了全等三角形的性質(zhì)與判定,正方形的性質(zhì),勾股定理,垂線段最短,掌握正方形的性質(zhì)是解題的關(guān)鍵.5、【解析】【分析】根據(jù)正方形的性質(zhì)可知C、A關(guān)于BD對稱,推出CK=AK,推出EK+AK≥CE,根據(jù)等邊三角形性質(zhì)推出CE=CD,根據(jù)正方形面積公式求出CD即可.【詳解】解:∵四邊形ABCD是正方形,∴C、A關(guān)于BD對稱,即C關(guān)于BD的對稱點(diǎn)是A,如圖,連接CK,則CK=AK,∴EK+CK≥CE,∵△CDE是等邊三角形,∴CE=CD,∵正方形ABCD的面積為6,∴CD=,∴KA+KE的最小值為,故答案為:.【點(diǎn)睛】本題考查了正方形的性質(zhì),軸對稱-最短路徑問題,等邊三角形的性質(zhì)等知識點(diǎn)的應(yīng)用,解此題的關(guān)鍵是確定K的位置和求出KA+KE的最小值是CE.三、解答題1、(1)見解析;(2)39【分析】(1)首先根據(jù)CF⊥DE,DF=EF得出CF為DE的中垂線,然后根據(jù)垂直平分線的性質(zhì)得到CD=CE,然后根據(jù)直角三角形斜邊上的中線等于斜邊的一半得到CD=AD,即可證明AD=CE;(2)由(1)得CD=CE=AB=5,由勾股定理求出BC,然后結(jié)合三角形的面積公式進(jìn)行計(jì)算.【詳解】(1)證明:∵DF=EF∴點(diǎn)F為DE的中點(diǎn)又∵CF⊥DE∴CF為DE的中垂線∴CD=CE又∵在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線∴CD==AD∴AD=CE(2)解:由(1)得CD=CE==5∴AB=10∴在Rt△ABC中,BC==8∴EB=EC+BC=13∴.【點(diǎn)睛】此題考查了垂直平分線的判定和性質(zhì),直角三角形性質(zhì),三角形面積公式等知識,解題的關(guān)鍵是熟練掌握垂直平分線的判定和性質(zhì),直角三角形性質(zhì),三角形面積公式.2、(1)見解析;(2)PQ的長不變,見解析;(3)AB+BF=PB【分析】(1)連接PC,由正方形的性質(zhì)得到,,然后依據(jù)全等三角形的判定定理證明,由全等三角形的性質(zhì)可知,,接下來利用四邊形的內(nèi)角和為360°可證明,于是得到,故此可證明;(2)連接AC交BD于點(diǎn)O,依據(jù)正方形的性質(zhì)可知為等腰直角三角形,于是可求得AO的長,接下來,證明,依據(jù)全等三角形的性質(zhì)可得到;(3)過點(diǎn)P作,,垂足分別為M,N,首先證明為等腰直角三角形于是得到,由角平分線的性質(zhì)可得到,然后再依據(jù)直角三角形全等的證明方法證明可得到,,于是將可轉(zhuǎn)化為的長.【詳解】解:(1)證明:連接PC,如圖所示:∵ABCD為正方形,∴,,在和中,,∴,∴,,∵,∴.∵,∴.∴.∴,∴;(2)PQ的長不變.理由:連接AC交BD于點(diǎn)O,如圖所示:∵,∴.∵,∴.∴.又∵四邊形ABCD為正方形,∴,.在和中,,∴.∴;(3)如圖所示:過點(diǎn)P作,,垂足分別為M,N.∵四邊形ABCD為正方形,∴.∵,∴,∴.∵BD平分,,,∴.在和中,,∴.∴.∵,∴.∴.【點(diǎn)睛】題目主要考查正方形的性質(zhì),全等三角形的判定和性質(zhì),勾股定理解三角形,等腰三角形的性質(zhì)等,理解題意,作出相應(yīng)輔助線,綜合運(yùn)用這些性質(zhì)定理是解題關(guān)鍵.3、(1)6;(2)①OC=BD,OC∥BD;②3.【分析】(1)利用二次根式的被開方數(shù)是非負(fù)數(shù),求出m=3,判斷出A,B兩點(diǎn)坐標(biāo),可得結(jié)論;(2)①結(jié)論:OC=BD,OC∥BD.連接AB交x軸于點(diǎn)T.利用等腰三角形的三線合一的性質(zhì)得出OC=2CT,利用三角形中位線定理得出CT∥BD,BD=2CT,由此即可得;②連接AB交OC于點(diǎn)T,過點(diǎn)P作PH⊥OC于H.證明△OTB≌△PHO(AAS),推出BT=OH=3,即可得出結(jié)論.【詳解】解:(1)由題意,,∴m=3,∴x=n,∴A(n,﹣3),∵A,B關(guān)于x軸對稱,∴B(n,3),∴AB=3﹣(﹣3)=6,故答案為:6;(2)①結(jié)論:OC=BD,OC∥BD.理由:如圖,連接AB交x軸于點(diǎn)T.
∵A,B關(guān)于x軸對稱,∴AB⊥OC,AT=TB,∵AO=AC,∴OT=CT(等腰三角形的三線合一),∴OC=2CT,∵AC=CD,AT=TB,∴CT∥BD,BD=2CT,∴OC=BD,OC∥BD;②如圖,連接AB交OC于點(diǎn)T,過點(diǎn)作于點(diǎn),,,∵AC=OC=CD,∴∠COA=∠OAC,∠COD=∠CDO,∴2∠OAC+2∠CDO=180°,∴∠OAC+∠CDO=90°,∴∠AOD=90°,∵A,B關(guān)于x軸對稱,∴OT⊥AB,OA=OB,∴∠OBT=∠OAT,∵∠COD+∠AOC=90°,∠AOC+∠OAT=90°,∴∠OAT=∠COD,∴∠OBT=∠COD,即∠OBT=∠POH,∵BD∥OC,∴∠PDB=∠POH=∠OBT,∠ABD=90°,∵∠PBD=45°,∴∠ABP=45°,∵∠OBP=∠OBT+∠ABP=∠OBT+45°,∠OPB=∠PBD+∠PDB=45°+∠PDB,∴∠OBP=∠OPB,∴OB=PO,在和中,,∴△OTB≌△PHO(AAS),∴BT=OH=3,故點(diǎn)P的橫坐標(biāo)為3.【點(diǎn)睛】本題考查了坐標(biāo)與軸對稱變化、三角形中位線定理、等腰三角形的三線合一等知識點(diǎn),較難的是題(2)②,通過作輔助線,構(gòu)造全等三角形是解題關(guān)鍵.4、(1)見解析;(2)12【分析】(1)由“SAS”可證△ABE≌△CDF;
(2)通過證明BE=DE,可得結(jié)論.【詳解】證明:(1)∵四邊形ABCD是平行四邊形,
∴AB=CD,∠BAD=∠BCD,
∴∠1=∠DCF,
在△ABE和△CDF中,,
∴△ABE≌△CDF(SAS);
(2)當(dāng)∠ABE=10°時(shí),四邊形BFDE是菱形,
理由如下:∵△ABE≌△CDF,
∴BE=DF,AE=CF,∵四邊形ABCD是平行四邊形,
∴AD=BC,
∴AD+AE=BC+CF,
∴BF=DE,
∴四邊形BFDE是平行四邊形,
∵∠1=32°,∠ADB=22°,
∴∠ABD=∠1-∠ADB=10°,
∵∠ABE=12°,
∴∠DBE=22°,
∴∠DBE=∠ADB=22°,
∴BE=DE,
∴平行四邊形BFDE是菱形,
故答案為:12.【點(diǎn)睛】本題考查了菱形的判定,平行四邊形的判定和性質(zhì),全等三角形的判定和性質(zhì),掌握
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年廣西藍(lán)天航空職業(yè)學(xué)院單招職業(yè)傾向性測試題庫及答案詳解1套
- 2026年襄陽科技職業(yè)學(xué)院單招職業(yè)傾向性考試題庫及參考答案詳解
- 2026年九州職業(yè)技術(shù)學(xué)院單招職業(yè)傾向性考試題庫及參考答案詳解1套
- 2026年四川三河職業(yè)學(xué)院單招職業(yè)技能測試題庫參考答案詳解
- 2026年海南軟件職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫及參考答案詳解
- 2026年湖南理工職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫及答案詳解1套
- 銀行綜合崗面試題及答案
- 消防隊(duì)職業(yè)規(guī)劃面試題及答案
- 新冠護(hù)理面試題目及答案
- 2025年寧波和豐產(chǎn)業(yè)園(集團(tuán))有限公司招聘備考題庫及完整答案詳解一套
- 生命倫理學(xué):生命醫(yī)學(xué)科技與倫理 知到智慧樹網(wǎng)課答案
- (正式版)JTT 1218.4-2024 城市軌道交通運(yùn)營設(shè)備維修與更新技術(shù)規(guī)范 第4部分:軌道
- 國測省測四年級勞動質(zhì)量檢測試卷
- 計(jì)算機(jī)講義-圖靈測試課件
- 保護(hù)信息安全守衛(wèi)個人隱私
- 高等數(shù)學(xué)(上)(長春工程學(xué)院)智慧樹知到課后章節(jié)答案2023年下長春工程學(xué)院
- 關(guān)于建立英國常任文官制度的報(bào)告
- 2023年考研考博考博英語東北大學(xué)考試歷年高頻考試題專家版答案
- 商場保安隊(duì)夜間清場安全檢查制度
- 世界近代史超經(jīng)典課件(北京大學(xué))全版
- 馬克思主義基本原理概論知到章節(jié)答案智慧樹2023年北京師范大學(xué)等跨校共建
評論
0/150
提交評論