考點解析滬科版9年級下冊期末試題含答案詳解(考試直接用)_第1頁
考點解析滬科版9年級下冊期末試題含答案詳解(考試直接用)_第2頁
考點解析滬科版9年級下冊期末試題含答案詳解(考試直接用)_第3頁
考點解析滬科版9年級下冊期末試題含答案詳解(考試直接用)_第4頁
考點解析滬科版9年級下冊期末試題含答案詳解(考試直接用)_第5頁
已閱讀5頁,還剩27頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,ABCD是正方形,△CDE繞點C逆時針方向旋轉(zhuǎn)90°后能與△CBF重合,那么△CEF是()A..等腰三角形 B.等邊三角形C..直角三角形 D..等腰直角三角形2、如圖,邊長為5的等邊三角形中,M是高所在直線上的一個動點,連接,將線段繞點B逆時針旋轉(zhuǎn)得到,連接.則在點M運動過程中,線段長度的最小值是()A. B.1 C.2 D.3、如圖,AB是的直徑,弦CD交AB于點P,,,,則CD的長為()A. B. C. D.84、下面是由一些完全相同的小立方塊搭成的幾何體從三個方向看到的形狀圖.搭成這個幾何體所用的小立方塊的個數(shù)是()A.個 B.個 C.個 D.個5、下面的圖形中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.6、如圖,在中,,,若以點為圓心,的長為半徑的圓恰好經(jīng)過的中點,則的長等于()A. B. C. D.7、已知菱形ABCD的對角線交于原點O,點A的坐標(biāo)為,點B的坐標(biāo)為,則點D的坐標(biāo)是()A. B. C. D.8、如圖,正五邊形ABCDE內(nèi)接于⊙O,則∠CBD的度數(shù)是()A.30° B.36° C.60° D.72°第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、若扇形的圓心角為60°,半徑為2,則該扇形的弧長是_____(結(jié)果保留)2、有五張正面分別標(biāo)有數(shù)字,,0,1,2的不透明卡片,它們除數(shù)字不同外其余全部相同.現(xiàn)將它們背面朝上,洗勻后從中任取一張,將該卡片上的數(shù)字記為,將該卡片放回洗勻后從中再任取一張,將該卡片上的數(shù)字記為,則為非負(fù)數(shù)的概率為________.3、如圖,一次函數(shù)的圖象與x軸交于點A,與y軸交于點B,作的外接圓,則圖中陰影部分的面積為______.(結(jié)果保留π)4、已知一個扇形的半徑是1,圓心角是120°,則這個扇形的面積是___________.5、如圖,正方形ABCD是邊長為2,點E、F是AD邊上的兩個動點,且AE=DF,連接BE、CF,BE與對角線AC交于點G,連接DG交CF于點H,連接BH,則BH的最小值為_______.6、如圖,在中,,,.繞點B順時針方向旋轉(zhuǎn)45°得到,點A經(jīng)過的路徑為弧,點C經(jīng)過的路徑為弧,則圖中陰影部分的面積為______.(結(jié)果保留)7、數(shù)學(xué)興趣活動課上,小方將等腰的底邊BC與直線l重合,問:(1)如圖(1)已知,,點P在BC邊所在的直線l上移動,小方發(fā)現(xiàn)AP的最小值是______;(2)如圖(2)在直角中,,,,點D是CB邊上的動點,連接AD,將線段AD順時針旋轉(zhuǎn)60°,得到線段AP,連接CP,線段CP的最小值是______.三、解答題(7小題,每小題0分,共計0分)1、一個不透明的口袋中有4個完全相同的小球,把它們分別標(biāo)號為1,2,3,4隨機摸取一個小球后,不放回,再隨機摸出一個小球,分別求下列事件的概率:(1)兩次取出的小球標(biāo)號和為奇數(shù);(2)兩次取出的小球標(biāo)號和為偶數(shù).2、在一個不透明的盒子中裝有四個只有顏色不同的小球,其中兩個紅球,一個黃球,一個藍球.(1)攪勻后從中任意摸出1個球,恰好是紅球的概率為_______;恰好是黃球的概率為________.(2)攪勻后從中任意摸出1個球,記錄下顏色后放回袋子中并攪勻,再從中任意摸出1個球,用列表法或樹形圖的方法,求兩次都是紅球的概率.3、在直角坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為、、(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).(1)將向下平移4個單位長度得到的,則點的坐標(biāo)是____________;(2)以點B為位似中心,在網(wǎng)格上畫出,使與位似,且位似比為2:1,求點的坐標(biāo);(3)若是外接圓,求的半徑.4、如圖,在△ABC是⊙O的內(nèi)接三角形,∠B=45°,連接OC,過點A作AD∥OC,交BC的延長線于D.(1)求證:AD是⊙O的切線;(2)若⊙O的半徑為2,∠OCB=75°,求△ABC邊AB的長.5、如圖,在△ABC中,∠ACB=90°,AC=BC,D是AB邊上一點(與A、B不重合),連接CD,將線段CD繞點C按逆時針方向旋轉(zhuǎn)90°得到線段CE,連接DE、BE(1)求證:△ACD≌△BCE;(2)若BE=5,DE=13,求AB的長6、如圖1,點O為直線AB上一點,將兩個含60°角的三角板MON和三角板OPQ如圖擺放,使三角板的一條直角邊OM、OP在直線AB上,其中.(1)將圖1中的三角板OPQ繞點O按逆時針方向旋轉(zhuǎn)至圖2的位置,使得邊OP在的內(nèi)部且平分,此時三角板OPQ旋轉(zhuǎn)的角度為______度;(2)三角板OPQ在繞點O按逆時針方向旋轉(zhuǎn)時,若OP在的內(nèi)部.試探究與之間滿足什么等量關(guān)系,并說明理由;(3)如圖3,將圖1中的三角板MON繞點O以每秒2°的速度按順時針方向旋轉(zhuǎn),同時將三角板OPQ繞點O以每秒3°的速度按逆時針方向旋轉(zhuǎn),將射線OB繞點O以每秒5°的速度沿逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)后的射線OB記為OE,射線OC平分,射線OD平分,當(dāng)射線OC、OD重合時,射線OE改為繞點O以原速按順時針方向旋轉(zhuǎn),在OC與OD第二次相遇前,當(dāng)時,直接寫出旋轉(zhuǎn)時間t的值.7、如圖,在平面直角坐標(biāo)系中,△ABC的頂點坐標(biāo)分別為A(﹣1,0),B(﹣4,1),C(﹣2,2).(1)直接寫出點B關(guān)于原點對稱的點B′的坐標(biāo):;(2)平移△ABC,使平移后點A的對應(yīng)點A1的坐標(biāo)為(2,1),請畫出平移后的△A1B1C1;(3)畫出△ABC繞原點O逆時針旋轉(zhuǎn)90°后得到的△A2B2C2.-參考答案-一、單選題1、D【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)推出相等的邊CE=CF,旋轉(zhuǎn)角推出∠ECF=90°,即可得到△CEF為等腰直角三角形.【詳解】解:∵△CDE繞點C逆時針方向旋轉(zhuǎn)90°后能與△CBF重合,∴∠ECF=90°,CE=CF,∴△CEF是等腰直角三角形,故選:D.【點睛】本題主要考查旋轉(zhuǎn)的性質(zhì),掌握圖形旋轉(zhuǎn)前后的大小和形狀不變是解決問題的關(guān)鍵.2、A【分析】取CB的中點G,連接MG,根據(jù)等邊三角形的性質(zhì)可得BH=BG,再求出∠HBN=∠MBG,根據(jù)旋轉(zhuǎn)的性質(zhì)可得MB=NB,然后利用“邊角邊”證明△MBG≌△NBH,再根據(jù)全等三角形對應(yīng)邊相等可得HN=MG,然后根據(jù)垂線段最短可得MG⊥CH時最短,再根據(jù)∠BCH=30°求解即可.【詳解】解:如圖,取BC的中點G,連接MG,∵旋轉(zhuǎn)角為60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等邊△ABC的對稱軸,∴HB=AB,∴HB=BG,又∵MB旋轉(zhuǎn)到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根據(jù)垂線段最短,MG⊥CH時,MG最短,即HN最短,此時∵∠BCH=×60°=30°,CG=AB=×5=2.5,∴MG=CG=,∴HN=,故選A.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),垂線段最短的性質(zhì),作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵,也是本題的難點.3、A【分析】過點作于點,連接,根據(jù)已知條件即可求得,根據(jù)含30度角的直角三角形的性質(zhì)即可求得,根據(jù)勾股定理即可求得,根據(jù)垂徑定理即可求得的長.【詳解】解:如圖,過點作于點,連接,AB是的直徑,,,,在中,故選A【點睛】本題考查了勾股定理,含30度角的直角三角形的性質(zhì),垂徑定理,掌握以上定理是解題的關(guān)鍵.4、D【分析】從俯視圖中可以看出最底層小正方體的個數(shù)及形狀,從主視圖和左視圖可以看出每一層小正方體的層數(shù)和個數(shù),從而算出總的個數(shù).【詳解】解:綜合主視圖,俯視圖,左視圖,底層有5個正方體,第二層有1個正方體,所以搭成這個幾何體所用的小立方塊的個數(shù)是6,故選D.【點睛】考查學(xué)生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查.如果掌握口訣“俯視圖打地基,正視圖瘋狂蓋,左視圖拆違章”就更容易得到答案.5、A【詳解】解:A、既是軸對稱圖形又是中心對稱圖形,此項符合題意;B、是中心對稱圖形,不是軸對稱圖形,此項不符題意;C、是軸對稱圖形,不是中心對稱圖形,此項不符題意;D、是軸對稱圖形,不是中心對稱圖形,此項不符題意;故選:A.【點睛】本題考查了中心對稱圖形和軸對稱圖形,熟記中心對稱圖形的定義(在平面內(nèi),把一個圖形繞某點旋轉(zhuǎn),如果旋轉(zhuǎn)后的圖形與另一個圖形重合,那么這兩個圖形互為中心對稱圖形)和軸對稱圖形的定義(如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,那么這個圖形叫做軸對稱圖形)是解題關(guān)鍵.6、D【分析】連接CD,由直角三角形斜邊中線定理可得CD=BD,然后可得△CDB是等邊三角形,則有BD=BC=5cm,進而根據(jù)勾股定理可求解.【詳解】解:連接CD,如圖所示:∵點D是AB的中點,,,∴,∵,∴,在Rt△ACB中,由勾股定理可得;故選D.【點睛】本題主要考查圓的基本性質(zhì)、直角三角形斜邊中線定理及勾股定理,熟練掌握圓的基本性質(zhì)、直角三角形斜邊中線定理及勾股定理是解題的關(guān)鍵.7、A【分析】根據(jù)菱形是中心對稱圖形,菱形ABCD的對角線交于原點O,則點與點關(guān)于原點中心對稱,根據(jù)中心對稱的點的坐標(biāo)特征進行求解即可【詳解】解:∵菱形是中心對稱圖形,菱形ABCD的對角線交于原點O,∴與點關(guān)于原點中心對稱,點B的坐標(biāo)為,點D的坐標(biāo)是故選A【點睛】本題考查了菱形的性質(zhì),求關(guān)于原點中心對稱的點的坐標(biāo),掌握菱形的性質(zhì)是解題的關(guān)鍵.8、B【分析】求出正五邊形的一個內(nèi)角的度數(shù),再根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理計算即可.【詳解】解:∵正五邊形ABCDE中,∴∠BCD==108°,CB=CD,∴∠CBD=∠CDB=(180°-108°)=36°,故選:B.【點睛】本題考查了正多邊形和圓,求出正五邊形的一個內(nèi)角度數(shù)是解決問題的關(guān)鍵.二、填空題1、【分析】已知扇形的圓心角為,半徑為2,代入弧長公式計算.【詳解】解:依題意,n=,r=2,∴扇形的弧長=.故答案為:.【點睛】本題考查了弧長公式的運用.關(guān)鍵是熟悉公式:扇形的弧長=.2、【分析】求出為負(fù)數(shù)的事件個數(shù),進而得出為非負(fù)數(shù)的事件個數(shù),然后求解即可.【詳解】解:兩次取卡片共有種可能的事件;兩次取得卡片數(shù)字乘積為負(fù)數(shù)的事件為等8種可能的事件∴為非負(fù)數(shù)共有種∴為非負(fù)數(shù)的概率為故答案為:.【點睛】本題考查了列舉法求隨機事件的概率.解題的關(guān)鍵在于求出事件的個數(shù).3、【分析】先求出A、B、C坐標(biāo),再證明三角形BOC是等邊三角形,最后根據(jù)扇形面積公式計算即可.【詳解】過C作CD⊥OA于D∵一次函數(shù)的圖象與x軸交于點A,與y軸交于點B,∴當(dāng)時,,B點坐標(biāo)為(0,1)當(dāng)時,,A點坐標(biāo)為∴∵作的外接圓,∴線段AB中點C的坐標(biāo)為,∴三角形BOC是等邊三角形∴∵C的坐標(biāo)為∴∴故答案為:【點睛】本題主要考查了一次函數(shù)的綜合運用,求扇形面積.用已知點的坐標(biāo)表示相應(yīng)的線段是解題的關(guān)鍵.4、【分析】根據(jù)圓心角為的扇形面積是進行解答即可得.【詳解】解:這個扇形的面積.故答案是:.【點睛】本題考查了扇形的面積,解題的關(guān)鍵是掌握扇形的面積公式.5、##【分析】延長AG交CD于M,如圖1,可證△ADG≌△DGC可得∠GCD=∠DAM,再證△ADM≌△DFC可得DF=DM=AE,可證△ABE≌△ADM,可得H是以AB為直徑的圓上一點,取AB中點O,連接OD,OH,根據(jù)三角形的三邊關(guān)系可得不等式,可解得DH長度的最小值.【詳解】解:延長AG交CD于M,如圖1,∵ABCD是正方形,∴AD=CD=AB,∠BAD=∠ADC=90°,∠ADB=∠BDC,∵AD=CD,∠ADB=∠BDC,DG=DG,∴△ADG≌△DGC,∴∠DAM=∠DCF且AD=CD,∠ADC=∠ADC,∴△ADM≌△CDF,∴FD=DM且AE=DF,∴AE=DM且AB=AD,∠ADM=∠BAD=90°,∴△ABE≌△DAM,∴∠DAM=∠ABE,∵∠DAM+∠BAM=90°,∴∠BAM+∠ABE=90°,即∠AHB=90°,∴點H是以AB為直徑的圓上一點.如圖2,取AB中點O,連接OD,OH,∵AB=AD=2,O是AB中點,∴AO=1=OH,在Rt△AOD中,OD=,∵DH≥OD-OH,∴DH≥-1,∴DH的最小值為-1,故答案為:-1.【點睛】本題考查正方形的性質(zhì),全等三角形的判定和性質(zhì),勾股定理,關(guān)鍵是證點H是以AB為直徑的圓上一點.6、##【分析】設(shè)與AC相交于點D,過點D作,垂足為點E,根據(jù)勾股定理逆定理可得為直角三角形,根據(jù)三邊關(guān)系可得,根據(jù)題意及等角對等邊得出,在中,利用正弦函數(shù)可得,結(jié)合圖形,利用扇形面積公式及三角形面積公式求解即可得.【詳解】解:設(shè)與AC相交于點D,過點D作,垂足為點E,∵,,,∴,∴為直角三角形,∴,∵繞點B順時針方向旋轉(zhuǎn)45°得到,∴,∴,∴,在中,,∴,∴,∴,,,,,故答案為:.【點睛】題目主要考查勾股定理逆定理,旋轉(zhuǎn)的性質(zhì),等角對等邊的性質(zhì),正切函數(shù),扇形面積等,理解題意,結(jié)合圖形,綜合運用這些知識點是解題關(guān)鍵.7、105【分析】(1)如圖,作AH⊥BC于H.根據(jù)垂線段最短,求出AH即可解決問題.(2)如圖,在AB上取一點K,使得AK=AC,連接CK,DK.由△PAC≌△DAK(SAS),推出PC=DK,易知KD⊥BC時,KD的值最小,求出KD的最小值即可解決問題.【詳解】解:如圖作AH⊥BC于H,∵AB=AC=20,,∴,∵,∴,根據(jù)垂線段最短可知,當(dāng)AP與AH重合時,PA的值最小,最小值為10.∴AP的最小值是10;(2)如圖,在AB上取一點K,使得AK=AC,連接CK,DK.∵∠ACB=90°,∠B=30°,∴∠CAK=60°,∴∠PAD=∠CAK,∴∠PAC=∠DAK,∵PA=DA,CA=KA,∴△PAC≌△DAK(SAS),∴PC=DK,∵KD⊥BC時,KD的值最小,∵,是等邊三角形,∴,∴PC的最小值為5.【點睛】本題屬于幾何變換綜合題,考查了等腰三角形的性質(zhì),垂線段最短,全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會用轉(zhuǎn)化的思想思考問題.三、解答題1、(1);(2).【分析】(1)列出表格展示所有可能的結(jié)果,根據(jù)表格即可知共有12種可能的情況,再找到兩次取出的小球標(biāo)號和為奇數(shù)的情況數(shù),利用概率公式,即可求解;(2)找出兩次取出的小球標(biāo)號和為偶數(shù)的情況數(shù),再利用概率公式,即可求解.(1)解:根據(jù)題意列出表格,如下表:根據(jù)表格可知:共有12種可能的情況,其中兩次取出的小球標(biāo)號和為奇數(shù)的情況有8種,故兩次取出的小球標(biāo)號和為奇數(shù)的概率為;(2)根據(jù)表格可知:兩次取出的小球標(biāo)號和為偶數(shù)的情況有4種.故兩次取出的小球標(biāo)號和為偶數(shù)的概率為.123411+2=3,奇數(shù)1+3=4,偶數(shù)1+4=5,奇數(shù)22+1=3,奇數(shù)2+3=5,奇數(shù)2+4=6,偶數(shù)33+1=4,偶數(shù)3+2=5,奇數(shù)3+4=7,奇數(shù)44+1=5,奇數(shù)4+2=6,偶數(shù)4+3=7,奇數(shù)【點睛】2、(1);(2)兩次都是紅球的概率為【分析】(1)根據(jù)列舉法將所有可能列出,然后找出符合條件的可能,計算即可得;(2)四個球簡寫為“紅1,紅2,黃,藍”,利用列表法列出所有出現(xiàn)的可能,從中找到符合條件的結(jié)果數(shù),再根據(jù)概率公式計算可.(1)解:攪勻后從中任意摸出1個球,有四種可能:紅球、紅球、黃球、藍球,其中是紅球的可能有兩種,∴,其中是黃球的可能有一種,∴,故答案為:;;(2)四個球簡寫為“紅1,紅2,黃,藍”,列表法為:紅1紅2黃藍紅1(紅1,紅1)(紅1,紅2)(紅1,黃)(紅1,藍)紅2(紅2,紅1)(紅2,紅2)(紅2,黃)(紅2,藍)黃(黃,紅1)(黃,紅2)(黃,黃)(黃,藍)藍(藍,紅1)(藍,紅2)(藍,黃)(藍,藍)共有16種等可能的結(jié)果數(shù),其中兩次都是紅球的有4種結(jié)果,所以兩次都是紅球的概率為:.【點睛】題目主要考查利用列表法或樹狀圖法求概率,理解題意,熟練掌握列表法或樹狀圖法是解題關(guān)鍵.3、(1)(2,-2)(2)圖見解析,(1,0)(3)【分析】(1)根據(jù)平移的性質(zhì)得出平移后的圖從而得到點的坐標(biāo);(2)根據(jù)位似圖形的性質(zhì)得出對應(yīng)點位置,從而得到點的坐標(biāo);(3)證明是直角三角形,根據(jù)直角三角形外切圓半徑公式計算即可.(1)如圖所示:C1(2,﹣2);故答案為(2,﹣2);(2)如圖所示:C2(1,0);故答案為(1,0);(3)由圖可知:∵,,∴∴是直角三角形,∴能蓋住的最小圓即為外接圓,設(shè)其半徑為R;則【點睛】本題考查作圖—平移變換,作圖—位似變換、三角形外接圓,正確理解位似變換的定義,會進行位似變換的作圖是解題的關(guān)鍵.4、(1)見解析;(2)【分析】(1)如圖所示,連接OA,由圓周角定理可得∠COA=90°,再由平行線的性質(zhì)得到∠OAD+∠COA=180°,則∠OAD=90°,由此即可證明;(2)連接OB,過點O作OE⊥AB,垂足為E,先由等腰三角形的性質(zhì)與三角形內(nèi)角和定理求出∠COB=30°,則∠AOB=120°,可以得到∠OAB=∠OBA=30°,由勾股定理可得,求出,則AB=.【詳解】解:(1)如圖所示,連接OA,∵∠CBA=45°,∴∠COA=90°,∵AD∥OC,∴∠OAD+∠COA=180°,∴∠OAD=90°,又∵點A在圓O上,∴AD是⊙O的切線;(2)連接OB,過點O作OE⊥AB,垂足為E,∵∠OCB=75°,OB=OC,∴∠OCB=∠OBC=75°,∴∠COB=180°-∠OCB-∠OBC=30°,由(1)證可得∠AOC=90°,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,又∵OE⊥AB,∴AE=BE,在Rt△AOE中,AO=2,∠OAE=30°,∴OE=AO=1,由勾股定理可得,,∴AB=.【點睛】本題主要考查了圓周角定理,切線的判定,等腰三角形的性質(zhì)與判定,含30度角的直角三角形的性質(zhì),三角形內(nèi)角和定理,勾股定理,熟知相關(guān)知識是解題的關(guān)鍵.5、(1)見解析;(2)17【分析】(1)由旋轉(zhuǎn)的性質(zhì)可得CD=CE,∠DCE=90°=∠ACB,由“SAS”可證△ACD≌△BCE;(2)由∠ACB=90°,AC=BC,可得∠CAB=∠CBA=45°,再由△ACD≌△BCE,得到BE=AD=5,∠CBE=∠CAD=45°,則∠ABE=∠ABC+∠CBE=90°,然后利用勾股定理求出BD的長即可得到答案.【詳解】解:(1)證明:∵將線段CD繞點C按逆時針方向旋轉(zhuǎn)90°得到線段CE,∴CD=CE,∠DCE=90°=∠ACB,∴∠ACD+∠BCD=∠BCE+∠BCD,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS);(2)∵∠ACB=90°,AC=BC,∴∠CAB=∠CBA=45°,∵△ACD≌△BCE,∴BE=AD=5,∠CBE=∠CAD=45°,∴∠ABE=∠ABC+∠CBE=90°,∴,∴AB=AD+BD=17.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),證明三角形全等是解題的關(guān)鍵.6、(1)135°(2)∠MOP-∠NOQ=30°,理由見解析(3)s或s.【分析】(1)先根據(jù)OP平分得到∠PON,然后求出∠BOP即可;(2)先根據(jù)題意可得∠MOP=90°-∠POQ,∠NOQ=60°-∠POQ,然后作差即可;(3)先求出旋轉(zhuǎn)前OC、OD的夾角,然后再求出OC與OD第一次和第二次相遇所需要的時間,再設(shè)在OC與OD第二次相遇前,當(dāng)時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論