版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
遼寧省鳳城市一中2025-2026學(xué)年數(shù)學(xué)高三上期末質(zhì)量跟蹤監(jiān)視模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.3 C. D.42.函數(shù)的圖象大致為()A. B.C. D.3.我國古代數(shù)學(xué)名著《九章算術(shù)》有一問題:“今有鱉臑(biēnaò),下廣五尺,無袤;上袤四尺,無廣;高七尺.問積幾何?”該幾何體的三視圖如圖所示,則此幾何體外接球的表面積為()A.平方尺 B.平方尺C.平方尺 D.平方尺4.若,,,點C在AB上,且,設(shè),則的值為()A. B. C. D.5.如圖,用一邊長為的正方形硬紙,按各邊中點垂直折起四個小三角形,做成一個蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋中心(球心)與蛋巢底面的距離為()A. B. C. D.6.設(shè)點,,不共線,則“”是“”()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分又不必要條件7.年部分省市將實行“”的新高考模式,即語文、數(shù)學(xué)、英語三科必選,物理、歷史二選一,化學(xué)、生物、政治、地理四選二,若甲同學(xué)選科沒有偏好,且不受其他因素影響,則甲同學(xué)同時選擇歷史和化學(xué)的概率為A. B.C. D.8.《九章算術(shù)》“少廣”算法中有這樣一個數(shù)的序列:列出“全步”(整數(shù)部分)及諸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去約其分子,將所得能通分之分數(shù)進行通分約簡,又用最下面的分母去遍乘諸(未通者)分子和以通之?dāng)?shù),逐個照此同樣方法,直至全部為整數(shù),例如:及時,如圖:記為每個序列中最后一列數(shù)之和,則為()A.147 B.294 C.882 D.17649.正的邊長為2,將它沿邊上的高翻折,使點與點間的距離為,此時四面體的外接球表面積為()A. B. C. D.10.已知等比數(shù)列的前項和為,且滿足,則的值是()A. B. C. D.11.已知三棱錐的外接球半徑為2,且球心為線段的中點,則三棱錐的體積的最大值為()A. B. C. D.12.某幾何體的三視圖如圖所示,三視圖是腰長為1的等腰直角三角形和邊長為1的正方形,則該幾何體中最長的棱長為().A. B. C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.集合,,若是平面上正八邊形的頂點所構(gòu)成的集合,則下列說法正確的為________①的值可以為2;②的值可以為;③的值可以為;14.若函數(shù),則使得不等式成立的的取值范圍為_________.15.過圓的圓心且與直線垂直的直線方程為__________.16.已知橢圓,,若橢圓上存在點使得為等邊三角形(為原點),則橢圓的離心率為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知是拋物線:的焦點,點在上,到軸的距離比小1.(1)求的方程;(2)設(shè)直線與交于另一點,為的中點,點在軸上,.若,求直線的斜率.18.(12分)設(shè)函數(shù).(1)若恒成立,求整數(shù)的最大值;(2)求證:.19.(12分)如圖,在四棱錐中,底面,,,,,點為棱的中點.(1)證明::(2)求直線與平面所成角的正弦值;(3)若為棱上一點,滿足,求二面角的余弦值.20.(12分)已知函數(shù).(1)若在上是減函數(shù),求實數(shù)的最大值;(2)若,求證:.21.(12分)已知均為正實數(shù),函數(shù)的最小值為.證明:(1);(2).22.(10分)已知函數(shù),.(1)當(dāng)時,求函數(shù)的值域;(2),,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
首先把三視圖轉(zhuǎn)換為幾何體,該幾何體為由一個三棱柱體,切去一個三棱錐體,由柱體、椎體的體積公式進一步求出幾何體的體積.【詳解】解:根據(jù)幾何體的三視圖轉(zhuǎn)換為幾何體為:該幾何體為由一個三棱柱體,切去一個三棱錐體,如圖所示:故:.故選:C.本題考查了由三視圖求幾何體的體積、需熟記柱體、椎體的體積公式,考查了空間想象能力,屬于基礎(chǔ)題.2.A【解析】
用偶函數(shù)的圖象關(guān)于軸對稱排除,用排除,用排除.故只能選.【詳解】因為,所以函數(shù)為偶函數(shù),圖象關(guān)于軸對稱,故可以排除;因為,故排除,因為由圖象知,排除.故選:A本題考查了根據(jù)函數(shù)的性質(zhì),辨析函數(shù)的圖像,排除法,屬于中檔題.3.A【解析】
根據(jù)三視圖得出原幾何體的立體圖是一個三棱錐,將三棱錐補充成一個長方體,此長方體的外接球就是該三棱錐的外接球,由球的表面積公式計算可得選項.【詳解】由三視圖可得,該幾何體是一個如圖所示的三棱錐,為三棱錐外接球的球心,此三棱錐的外接球也是此三棱錐所在的長方體的外接球,所以為的中點,設(shè)球半徑為,則,所以外接球的表面積,故選:A.本題考查求幾何體的外接球的表面積,關(guān)鍵在于由幾何體的三視圖得出幾何體的立體圖,找出外接球的球心位置和半徑,屬于中檔題.4.B【解析】
利用向量的數(shù)量積運算即可算出.【詳解】解:,,又在上,故選:本題主要考查了向量的基本運算的應(yīng)用,向量的基本定理的應(yīng)用及向量共線定理等知識的綜合應(yīng)用.5.D【解析】
先求出球心到四個支點所在球的小圓的距離,再加上側(cè)面三角形的高,即可求解.【詳解】設(shè)四個支點所在球的小圓的圓心為,球心為,由題意,球的體積為,即可得球的半徑為1,又由邊長為的正方形硬紙,可得圓的半徑為,利用球的性質(zhì)可得,又由到底面的距離即為側(cè)面三角形的高,其中高為,所以球心到底面的距離為.故選:D.本題主要考查了空間幾何體的結(jié)構(gòu)特征,以及球的性質(zhì)的綜合應(yīng)用,著重考查了數(shù)形結(jié)合思想,以及推理與計算能力,屬于基礎(chǔ)題.6.C【解析】
利用向量垂直的表示、向量數(shù)量積的運算,結(jié)合充分必要條件的定義判斷即可.【詳解】由于點,,不共線,則“”;故“”是“”的充分必要條件.故選:C.本小題主要考查充分、必要條件的判斷,考查向量垂直的表示,考查向量數(shù)量積的運算,屬于基礎(chǔ)題.7.B【解析】
甲同學(xué)所有的選擇方案共有種,甲同學(xué)同時選擇歷史和化學(xué)后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計算公式,可得甲同學(xué)同時選擇歷史和化學(xué)的概率,故選B.8.A【解析】
根據(jù)題目所給的步驟進行計算,由此求得的值.【詳解】依題意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故選:A本小題主要考查合情推理,考查中國古代數(shù)學(xué)文化,屬于基礎(chǔ)題.9.D【解析】
如圖所示,設(shè)的中點為,的外接圓的圓心為,四面體的外接球的球心為,連接,利用正弦定理可得,利用球心的性質(zhì)和線面垂直的性質(zhì)可得四邊形為平行四邊形,最后利用勾股定理可求外接球的半徑,從而可得外接球的表面積.【詳解】如圖所示,設(shè)的中點為,外接圓的圓心為,四面體的外接球的球心為,連接,則平面,.因為,故,因為,故.由正弦定理可得,故,又因為,故.因為,故平面,所以,因為平面,平面,故,故,所以四邊形為平行四邊形,所以,所以,故外接球的半徑為,外接球的表面積為.故選:D.本題考查平面圖形的折疊以及三棱錐外接球表面積的計算,還考查正弦定理和余弦定理,折疊問題注意翻折前后的變量與不變量,外接球問題注意先確定外接球的球心的位置,然后把半徑放置在可解的直角三角形中來計算,本題有一定的難度.10.C【解析】
利用先求出,然后計算出結(jié)果.【詳解】根據(jù)題意,當(dāng)時,,,故當(dāng)時,,數(shù)列是等比數(shù)列,則,故,解得,故選.本題主要考查了等比數(shù)列前項和的表達形式,只要求出數(shù)列中的項即可得到結(jié)果,較為基礎(chǔ).11.C【解析】
由題可推斷出和都是直角三角形,設(shè)球心為,要使三棱錐的體積最大,則需滿足,結(jié)合幾何關(guān)系和圖形即可求解【詳解】先畫出圖形,由球心到各點距離相等可得,,故是直角三角形,設(shè),則有,又,所以,當(dāng)且僅當(dāng)時,取最大值4,要使三棱錐體積最大,則需使高,此時,故選:C本題考查由三棱錐外接球半徑,半徑與球心位置求解錐體體積最值問題,屬于基礎(chǔ)題12.B【解析】
首先由三視圖還原幾何體,進一步求出幾何體的棱長.【詳解】解:根據(jù)三視圖還原幾何體如圖所示,所以,該四棱錐體的最長的棱長為.故選:B.本題主要考查由三視圖還原幾何體,考查運算能力和推理能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.②③【解析】
根據(jù)對稱性,只需研究第一象限的情況,計算:,得到,,得到答案.【詳解】如圖所示:根據(jù)對稱性,只需研究第一象限的情況,集合:,故,即或,集合:,是平面上正八邊形的頂點所構(gòu)成的集合,故所在的直線的傾斜角為,,故:,解得,此時,,此時.故答案為:②③.本題考查了根據(jù)集合的交集求參數(shù),意在考查學(xué)生的計算能力和轉(zhuǎn)化能力,利用對稱性是解題的關(guān)鍵.14.【解析】
分,兩種情況代入討論即可求解.【詳解】,當(dāng)時,,符合;當(dāng)時,,不滿足.故答案為:本題主要考查了分段函數(shù)的計算,考查了分類討論的思想.15.【解析】
根據(jù)與已知直線垂直關(guān)系,設(shè)出所求直線方程,將已知圓圓心坐標(biāo)代入,即可求解.【詳解】圓心為,所求直線與直線垂直,設(shè)為,圓心代入,可得,所以所求的直線方程為.故答案為:.本題考查圓的方程、直線方程求法,注意直線垂直關(guān)系的靈活應(yīng)用,屬于基礎(chǔ)題.16.【解析】
根據(jù)題意求出點N的坐標(biāo),將其代入橢圓的方程,求出參數(shù)m的值,再根據(jù)離心率的定義求值.【詳解】由題意得,將其代入橢圓方程得,所以.故答案為:.本題考查了橢圓的標(biāo)準(zhǔn)方程及幾何性質(zhì),屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(1)由拋物線定義可知,解得,故拋物線的方程為;(2)設(shè)直線:,聯(lián)立,利用韋達定理算出的中點,又,所以直線的方程為,求出,利用求解即可.【詳解】(1)設(shè)的準(zhǔn)線為,過作于,則由拋物線定義,得,因為到的距離比到軸的距離大1,所以,解得,所以的方程為(2)由題意,設(shè)直線方程為,由消去,得,設(shè),,則,所以,又因為為的中點,點的坐標(biāo)為,直線的方程為,令,得,點的坐標(biāo)為,所以,解得,所以直線的斜率為.本題主要考查拋物線的定義,直線與拋物線的位置關(guān)系等基礎(chǔ)知識,考查學(xué)生的運算求解能力.涉及拋物線的弦的中點,斜率問題時,可采用韋達定理或“點差法”求解.18.(1)整數(shù)的最大值為;(2)見解析.【解析】
(1)將不等式變形為,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性并確定其最值,從而得到正整數(shù)的最大值;(2)根據(jù)(1)的結(jié)論得到,利用不等式的基本性質(zhì)可證得結(jié)論.【詳解】(1)由得,令,,令,對恒成立,所以,函數(shù)在上單調(diào)遞增,,,,,故存在使得,即,從而當(dāng)時,有,,所以,函數(shù)在上單調(diào)遞增;當(dāng)時,有,,所以,函數(shù)在上單調(diào)遞減.所以,,,因此,整數(shù)的最大值為;(2)由(1)知恒成立,,令則,,,,,上述等式全部相加得,所以,,因此,本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性、最值中的應(yīng)用,以及放縮法證明不等式的技巧,屬于難題.19.(1)證明見解析(2)(3)【解析】
(1)根據(jù)題意以為坐標(biāo)原點,建立空間直角坐標(biāo)系,寫出各個點的坐標(biāo),并表示出,由空間向量數(shù)量積運算即可證明.(2)先求得平面的法向量,即可求得直線與平面法向量夾角的余弦值,即為直線與平面所成角的正弦值;(3)由點在棱上,設(shè),再由,結(jié)合,由空間向量垂直的坐標(biāo)關(guān)系求得的值.即可表示出.求得平面和平面的法向量,由空間向量數(shù)量積的運算求得兩個平面夾角的余弦值,再根據(jù)二面角的平面角為銳角即可確定二面角的余弦值.【詳解】(1)證明:∵底面,,以為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,∵,,點為棱的中點.∴,,,,,,.(2),設(shè)平面的法向量為.則,代入可得,令解得,即,設(shè)直線與平面所成角為,由直線與平面夾角可知所以直線與平面所成角的正弦值為.(3),由點在棱上,設(shè),故,由,得,解得,即,設(shè)平面的法向量為,由,得,令,則取平面的法向量,則二面角的平面角滿足,由圖可知,二面角為銳二面角,故二面角的余弦值為.本題考查了空間向量的綜合應(yīng)用,由空間向量證明線線垂直,求直線與平面夾角及平面與平面形成的二面角大小,計算量較大,屬于中檔題.20.(1)(2)詳見解析【解析】
(1),在上,因為是減函數(shù),所以恒成立,即恒成立,只需.令,,則,因為,所以.所以在上是增函數(shù),所以,所以,解得.所以實數(shù)的最大值為.(2),.令,則,根據(jù)題意知,所以在上是增函數(shù).又因為,當(dāng)從正方向趨近于0時,趨近于,趨近于1,所以,所以存在,使,即,,所以對任意,,即,所以在上是減函數(shù);對任意,,即,所以在上是增函數(shù),所以當(dāng)時,取得最小值,最小值為.由于,,則,當(dāng)且僅當(dāng),即時取等號,所以當(dāng)時,.21.(1)證明見解析(2)證明見解析【解析】
(1)運用絕對值不等式的性質(zhì),注意等號成立的條件,即可求得最小值,再運用柯西不等式,即可得到最小值.(2)利用基本不等式即可得到結(jié)論,注意等號成立的條件.【詳解】(1)由題意,則函數(shù),又函數(shù)的最小值為,即,由柯西不等式得,當(dāng)且僅當(dāng)時取“=”.故.(2)由題意,利用基本不等式可得,,,(以上三式當(dāng)且僅當(dāng)時同時取“=”)由(1)知,,所以,將以上三式相加得即.本題主要考查絕對值不等式、柯西不等式等基
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025河南駐馬店市直公益性崗位招聘16人參考考試試題及答案解析
- 鄭州大學(xué)煉焦煤資源綠色開發(fā)全國重點實驗室面向高校2025屆畢業(yè)生招聘非事業(yè)編制(勞務(wù)派遣)工作人員1人參考考試試題及答案解析
- 2025廣東惠州市第一婦幼保健院招聘第二批員額制衛(wèi)生專業(yè)技術(shù)人員13人備考考試試題及答案解析
- 2026中國金融出版社有限公司校園招聘4人備考筆試試題及答案解析
- 2026年濰坊市教育局所屬學(xué)校急需緊缺人才附部屬公費師范生公開招聘(22名)參考筆試題庫附答案解析
- 2025福建廈門市集美區(qū)實驗幼兒園非在編教輔招聘2人備考筆試試題及答案解析
- 2025年莆田市城廂區(qū)社會治理網(wǎng)格化中心招聘若干人參考考試試題及答案解析
- 網(wǎng)卡代理合同范本
- 網(wǎng)架房安裝協(xié)議書
- 耕地換耕地協(xié)議書
- 生命倫理學(xué):生命醫(yī)學(xué)科技與倫理 知到智慧樹網(wǎng)課答案
- (正式版)JTT 1218.4-2024 城市軌道交通運營設(shè)備維修與更新技術(shù)規(guī)范 第4部分:軌道
- 國測省測四年級勞動質(zhì)量檢測試卷
- 計算機講義-圖靈測試課件
- 保護信息安全守衛(wèi)個人隱私
- 高等數(shù)學(xué)(上)(長春工程學(xué)院)智慧樹知到課后章節(jié)答案2023年下長春工程學(xué)院
- 關(guān)于建立英國常任文官制度的報告
- 2023年考研考博考博英語東北大學(xué)考試歷年高頻考試題專家版答案
- 商場保安隊夜間清場安全檢查制度
- 世界近代史超經(jīng)典課件(北京大學(xué))全版
- 馬克思主義基本原理概論知到章節(jié)答案智慧樹2023年北京師范大學(xué)等跨校共建
評論
0/150
提交評論