(完整版)七年級下冊實數(shù)數(shù)學(xué)試題及答案(一)_第1頁
(完整版)七年級下冊實數(shù)數(shù)學(xué)試題及答案(一)_第2頁
(完整版)七年級下冊實數(shù)數(shù)學(xué)試題及答案(一)_第3頁
(完整版)七年級下冊實數(shù)數(shù)學(xué)試題及答案(一)_第4頁
(完整版)七年級下冊實數(shù)數(shù)學(xué)試題及答案(一)_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

一、選擇題1.已知表示取三個數(shù)中最小的那個數(shù).例如:當時,,當時,則的值為()A. B. C. D.2.對一組數(shù)的一次操作變換記為,定義其變換法則如下:,且規(guī)定(為大于的整數(shù)),如,,,,則().A. B. C. D.3.已知,為兩個連續(xù)的整數(shù),且,則的值等于()A. B. C. D.4.若,則,,的大小關(guān)系正確的是()A. B. C. D.5.有下列說法:①在1和2之間的無理數(shù)有且只有這兩個;②實數(shù)與數(shù)軸上的點一一對應(yīng);③兩個無理數(shù)的積一定是無理數(shù);④是分數(shù).其中正確的為()A.①②③④ B.①②④ C.②④ D.②6.下列說法中:①0是最小的整數(shù);②有理數(shù)不是正數(shù)就是負數(shù);③﹣不僅是有理數(shù),而且是分數(shù);④是無限不循環(huán)小數(shù),所以不是有理數(shù);⑤無限小數(shù)不一定都是有理數(shù);⑥正數(shù)中沒有最小的數(shù),負數(shù)中沒有最大的數(shù);⑦非負數(shù)就是正數(shù);⑧正整數(shù)、負整數(shù)、正分數(shù)、負分數(shù)統(tǒng)稱為有理數(shù);其中錯誤的說法的個數(shù)為()A.7個 B.6個 C.5個 D.4個7.設(shè)n為正整數(shù),且n<<n+1,則n的值為()A.5 B.6 C.7 D.88.現(xiàn)定義一種新運算“*”,規(guī)定a*b=ab+a-b,如1*3=1×3+1-3,則(-2*5)*6等于()A.120 B.125 C.-120 D.-1259.按如圖所示的運算程序,能使輸出y值為1的是()A. B. C. D.10.在求的值時,小林發(fā)現(xiàn):從第二個加數(shù)起每一個加數(shù)都是前一個加數(shù)的6倍,于是她設(shè):……①然后在①式的兩邊都乘以6,得:……②②-①得,即,所以.得出答案后,愛動腦筋的小林想:如果把“6”換成字母“a”(a≠0且a≠1),能否求出的值?你的答案是A. B. C. D.二、填空題11.新定義一種運算,其法則為,則__________12.觀察下列等式:1﹣=,2﹣=,3﹣=,4﹣=,…,根據(jù)你發(fā)現(xiàn)的規(guī)律,則第20個等式為_____.13.規(guī)定:[x]表示不大于x的最大整數(shù),(x)表示不小于x的最小整數(shù),[x)表示最接近x的整數(shù)(x≠n+0.5,n為整數(shù)),例如:[2.3]=2,(2.3)=3,[2.3)=2.當﹣1<x<1時,化簡[x]+(x)+[x)的結(jié)果是_____.14.若我們規(guī)定表示不小于x的最小整數(shù),例如,,則以下結(jié)論:①;②;③的最小值是0;④存在實數(shù)x使成立.其中正確的是______.(填寫所有正確結(jié)論的序號)15.如圖所示,數(shù)軸上點A表示的數(shù)是-1,0是原點以AO為邊作正方形AOBC,以A為圓心、AB線段長為半徑畫半圓交數(shù)軸于兩點,則點表示的數(shù)是___________,點表示的數(shù)是___________.16.如圖,將面積為3的正方形放在數(shù)軸上,以表示實數(shù)1的點為圓心,正方形的邊長為半徑,作圓交數(shù)軸于點、,則點表示的數(shù)為______.17.我們可以用符號f(a)表示代數(shù)式.當a是正整數(shù)時,我們規(guī)定如果a為偶數(shù),f(a)=0.5a;如果a為奇數(shù),f(a)=5a+1.例如:f(20)=10,f(5)=26.設(shè)a1=6,a2=f(a1),a3=f(a2)…;依此規(guī)律進行下去,得到一列數(shù):a1,a2,a3,a4…(n為正整數(shù)),則2a1﹣a2+a3﹣a4+a5﹣a6+…+a2013﹣a2014+a2015=_____.18.對于數(shù)x,符號[x]表示不大于x的最大整數(shù),例如[3.14]=3,[﹣7.59]=﹣8,則關(guān)于x的方程[]=2的整數(shù)解為_____.19.計算并觀察下列算式的結(jié)果:,,,,…,則=_______.20.已知與互為相反數(shù),則的值是____.三、解答題21.對于有理數(shù)、,定義了一種新運算“※”為:如:,.(1)計算:①______;②______;(2)若是關(guān)于的一元一次方程,且方程的解為,求的值;(3)若,,且,求的值.22.閱讀下面的文字,解答問題:大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部寫出來,而<2于是可用來表示的小數(shù)部分.請解答下列問題:(1)的整數(shù)部分是_______,小數(shù)部分是_________;(2)如果的小數(shù)部分為的整數(shù)部分為求的值;(3)已知:其中是整數(shù),且求的平方根.23.對于實數(shù)a,我們規(guī)定:用符號表示不大于的最大整數(shù),稱為a的根整數(shù),例如:,=3.(1)仿照以上方法計算:=______;=_____.(2)若,寫出滿足題意的x的整數(shù)值______.如果我們對a連續(xù)求根整數(shù),直到結(jié)果為1為止.例如:對10連續(xù)求根整數(shù)2次=1,這時候結(jié)果為1.(3)對100連續(xù)求根整數(shù),____次之后結(jié)果為1.(4)只需進行3次連續(xù)求根整數(shù)運算后結(jié)果為1的所有正整數(shù)中,最大的是____.24.定義:對任意一個兩位數(shù),如果滿足個位數(shù)字與十位數(shù)字互不相同,且都不為零,那么稱這個兩位數(shù)為“奇異數(shù)”.將一個“奇異數(shù)”的個位數(shù)字與十位數(shù)字對調(diào)后得到一個新的兩位數(shù),把這個新兩位數(shù)與原兩位數(shù)的和與的商記為例如:,對調(diào)個位數(shù)字與十位數(shù)字后得到新兩位數(shù)是,新兩位數(shù)與原兩位數(shù)的和為,和與的商為,所以根據(jù)以上定義,完成下列問題:(1)填空:①下列兩位數(shù):,,中,“奇異數(shù)”有.②計算:..(2)如果一個“奇異數(shù)”的十位數(shù)字是,個位數(shù)字是,且請求出這個“奇異數(shù)”(3)如果一個“奇異數(shù)”的十位數(shù)字是,個位數(shù)字是,且滿足,請直接寫出滿足條件的的值.25.a(chǎn)是不為1的有理數(shù),我們把稱為a的差倒數(shù).如:2的差倒數(shù)是,現(xiàn)已知a1=,a2是a1的差倒數(shù),a3是a2的差倒數(shù),a4是a3的差倒數(shù),…(1)求a2,a3,a4的值;(2)根據(jù)(1)的計算結(jié)果,請猜想并寫出a2016?a2017?a2018的值;(3)計算:a33+a66+a99+…+a9999的值.26.對非負實數(shù)“四舍五入”到各位的值記為.即:當為非負整數(shù)時,如果,則;反之,當為非負整數(shù)時,如果,則.例如:,.(1)計算:;;(2)①求滿足的實數(shù)的取值范圍,②求滿足的所有非負實數(shù)的值;(3)若關(guān)于的方程有正整數(shù)解,求非負實數(shù)的取值范圍.27.據(jù)說,我國著名數(shù)學(xué)家華羅庚在一次訪問途中,看到飛機鄰座的乘客閱讀的雜志上有一道智力題:一個數(shù)32768,它是一個正數(shù)的立方,希望求它的立方根,華羅庚不假思索給出了答案,鄰座乘客非常驚奇,很想得知其中的奧秘,你知道華羅庚是怎樣準確計算出的嗎?請按照下面的問題試一試:(1)由,因為,請確定是______位數(shù);(2)由32768的個位上的數(shù)是8,請確定的個位上的數(shù)是________,劃去32768后面的三位數(shù)768得到32,因為,請確定的十位上的數(shù)是_____________;(3)已知和分別是兩個數(shù)的立方,仿照上面的計算過程,請計算:;.28.閱讀下面文字:對于可以如下計算:原式上面這種方法叫拆項法,你看懂了嗎?仿照上面的方法,計算:(1)(2)29.規(guī)定:求若干個相同的有理數(shù)(均不等于0)的除法運算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,類比有理數(shù)的乘方,我們把2÷2÷2記作2③,讀作“2的圈3次方,”(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)記作(﹣3)④,讀作:“(﹣3)的圈4次方”.一般地,把個記作a?,讀作“a的圈n次方”(初步探究)(1)直接寫出計算結(jié)果:2③,(﹣)③.(深入思考)2④我們知道,有理數(shù)的減法運算可以轉(zhuǎn)化為加法運算,除法運算可以轉(zhuǎn)化為乘法運算,有理數(shù)的除方運算如何轉(zhuǎn)化為乘方運算呢?(2)試一試,仿照上面的算式,將下列運算結(jié)果直接寫成冪的形式.5⑥;(﹣)⑩.(3)猜想:有理數(shù)a(a≠0)的圈n(n≥3)次方寫成冪的形式等于多少.(4)應(yīng)用:求(-3)8×(-3)⑨-(﹣)9×(﹣)⑧30.a(chǎn)是不為1的有理數(shù),我們把稱為a的差倒數(shù).如:2的差倒數(shù)是,現(xiàn)已知a1=,a2是a1的差倒數(shù),a3是a2的差倒數(shù),a4是a3的差倒數(shù),…(1)求a2,a3,a4的值;(2)根據(jù)(1)的計算結(jié)果,請猜想并寫出a2016?a2017?a2018的值;(3)計算:a33+a66+a99+…+a9999的值.【參考答案】***試卷處理標記,請不要刪除一、選擇題1.C解析:C【分析】本題分別計算的x值,找到滿足條件的x值即可.【詳解】解:當時,,,不合題意;當時,,當時,,不合題意;當時,,,符合題意;當時,,,不合題意,故選:C.【點睛】本題主要考查了實數(shù)大小比較,算術(shù)平方根及其最值問題,解決此題時,注意分類思想的運用.2.D解析:D【詳解】因為,,,,,所以,,所以,故選D.3.B解析:B【分析】先估算出的取值范圍,利用“夾逼法”求得a、b的值,然后代入求值即可.【詳解】解:∵16<18<25,∴4<<5.∵a,b為兩個連續(xù)的整數(shù),且a<<b,∴a=4,b=5,∴.故選:B.【點睛】本題考查了估算無理數(shù)的大小,熟知估算無理數(shù)的大小要用逼近法是解答此題的關(guān)鍵.4.C解析:C【分析】可以用取特殊值的方法,因為a>1,所以可設(shè)a=2,然后分別計算|a|,-a,,再比較即可求得它們的關(guān)系.【詳解】解:設(shè)a=2,則|a|=2,-a=-2,,∵2>>-2,∴|a|>>-a;故選:C.【點睛】此類問題運用取特殊值的方法做比較簡單.5.D解析:D【分析】根據(jù)無理數(shù)的定義與運算、實數(shù)與數(shù)軸逐個判斷即可得.【詳解】①在1和2之間的無理數(shù)有無限個,此說法錯誤;②實數(shù)與數(shù)軸上的點一一對應(yīng),此說法正確;③兩個無理數(shù)的積不一定是無理數(shù),如,此說法錯誤;④是無理數(shù),不是分數(shù),此說法錯誤;綜上,說法正確的為②,故選:D.【點睛】本題考查了無理數(shù)的定義與運算、實數(shù)與數(shù)軸,熟練掌握運算法則和定義是解題關(guān)鍵.6.B解析:B【分析】根據(jù)有理數(shù)的分類依此作出判斷,即可得出答案.【詳解】解:①沒有最小的整數(shù),所以原說法錯誤;②有理數(shù)包括正數(shù)、0和負數(shù),所以原說法錯誤;③﹣是無理數(shù),所以原說法錯誤;④是無限循環(huán)小數(shù),是分數(shù),所以是有理數(shù),所以原說法錯誤;⑤無限小數(shù)不都是有理數(shù),所以原說法正確;⑥正數(shù)中沒有最小的數(shù),負數(shù)中沒有最大的數(shù),所以原說法正確;⑦非負數(shù)就是正數(shù)和0,所以原說法錯誤;⑧正整數(shù)、負整數(shù)、正分數(shù)、負分數(shù)和0統(tǒng)稱為有理數(shù),所以原說法錯誤;故其中錯誤的說法的個數(shù)為6個.故選:B.【點睛】本題考查了有理數(shù)的分類,認真掌握正數(shù)、負數(shù)、整數(shù)、分數(shù)、正有理數(shù)、負有理數(shù)、非負數(shù)的定義與特點是解題的關(guān)鍵.注意整數(shù)和正數(shù)的區(qū)別,注意0是整數(shù),但不是正數(shù).7.D解析:D【分析】首先得出<<,進而求出的取值范圍,即可得出n的值.【詳解】解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故選;D.【點睛】此題主要考查了估算無理數(shù),得出<<是解題關(guān)鍵.8.D解析:D【詳解】根據(jù)題目中的運算方法a*b=ab+a-b,可得(-2*5)*6=(-2×5-2-5)*6=-17*6=-17×6+(-17)-6=-125.故選D.點睛:本題主要考查了新定義運算,根據(jù)題目所給的規(guī)律(或運算方法),利用有理數(shù)的混合法則計算正確是解題關(guān)鍵.9.D解析:D【分析】逐項代入,尋找正確答案即可.【詳解】解:A選項滿足m≤n,則y=2m+1=3;B選項不滿足m≤n,則y=2n-1=-1;C選項滿足m≤n,則y=2m-1=3;D選項不滿足m≤n,則y=2n-1=1;故答案為D;【點睛】本題考查了根據(jù)條件代數(shù)式求值問題,解答的關(guān)鍵在于根據(jù)條件正確的所代入代數(shù)式及代入得值.10.B解析:B【分析】首先根據(jù)題意,設(shè)M=1+a+a2+a3+a4+…+a2014,求出aM的值是多少,然后求出aM-M的值,即可求出M的值,據(jù)此求出1+a+a2+a3+a4+…+a2019的值是多少即可.【詳解】∵M=1+a+a2+a3+a4+…+a2018①,∴aM=a+a2+a3+a4+…+a2014+a2019②,②-①,可得aM-M=a2019-1,即(a-1)M=a2019-1,∴M=.故選B.【點睛】考查了整式的混合運算的應(yīng)用,主要考查學(xué)生的理解能力和計算能力.二、填空題11.【分析】按照題干定義的運算法則,列出算式,再按照同底冪除法運算法則計算可得.【詳解】故答案為:【點睛】本題考查定義新運算,解題關(guān)鍵是根據(jù)題干定義的運算規(guī)則,轉(zhuǎn)化為我們熟知的形式進行求解解析:【分析】按照題干定義的運算法則,列出算式,再按照同底冪除法運算法則計算可得.【詳解】故答案為:【點睛】本題考查定義新運算,解題關(guān)鍵是根據(jù)題干定義的運算規(guī)則,轉(zhuǎn)化為我們熟知的形式進行求解.12.20﹣.【分析】觀察已知等式,找出等式左邊和右邊的規(guī)律,再歸納總結(jié)出一般規(guī)律,由此即可得出答案.【詳解】觀察已知等式,等式左邊的第一個數(shù)的規(guī)律為,第二個數(shù)的規(guī)律為:分子為,分母為等式右邊的解析:20﹣.【分析】觀察已知等式,找出等式左邊和右邊的規(guī)律,再歸納總結(jié)出一般規(guī)律,由此即可得出答案.【詳解】觀察已知等式,等式左邊的第一個數(shù)的規(guī)律為,第二個數(shù)的規(guī)律為:分子為,分母為等式右邊的規(guī)律為:分子為,分母為歸納類推得:第n個等式為(n為正整數(shù))當時,這個等式為,即故答案為:.【點睛】本題考查了實數(shù)運算的規(guī)律型問題,從已知等式中歸納類推出一般規(guī)律是解題關(guān)鍵.13.﹣2或﹣1或0或1或2.【分析】有三種情況:①當時,[x]=-1,(x)=0,[x)=-1或0,∴[x]+(x)+[x)=-2或-1;②當時,[x]=0,(x)=0,[x)=0,∴[x]解析:﹣2或﹣1或0或1或2.【分析】有三種情況:①當時,[x]=-1,(x)=0,[x)=-1或0,∴[x]+(x)+[x)=-2或-1;②當時,[x]=0,(x)=0,[x)=0,∴[x]+(x)+[x)=0;③當時,[x]=0,(x)=1,[x)=0或1,∴[x]+(x)+[x)=1或2;綜上所述,化簡[x]+(x)+[x)的結(jié)果是-2或﹣1或0或1或2.故答案為-2或﹣1或0或1或2.點睛:本題是一道閱讀理解題.讀懂題意并進行分類討論是解題的關(guān)鍵.【詳解】請在此輸入詳解!14.③④【分析】根據(jù)的定義逐個判斷即可得.【詳解】①表示不小于的最小整數(shù),則,結(jié)論錯誤②,則,結(jié)論錯誤③表示不小于x的最小整數(shù),則,因此的最小值是0,結(jié)論正確④若,則此時,因此,存在實解析:③④【分析】根據(jù)的定義逐個判斷即可得.【詳解】①表示不小于的最小整數(shù),則,結(jié)論錯誤②,則,結(jié)論錯誤③表示不小于x的最小整數(shù),則,因此的最小值是0,結(jié)論正確④若,則此時,因此,存在實數(shù)x使成立,結(jié)論正確綜上,正確的是③④故答案為:③④.【點睛】本題考查了新定義下的實數(shù)運算,理解新定義是解題關(guān)鍵.15...【分析】首先利用勾股定理計算出的長,再根據(jù)題意可得,然后根據(jù)數(shù)軸上個點的位置計算出表示的數(shù)即可.【詳解】解:點表示的數(shù)是,是原點,,,以為圓心、長為半徑畫弧,,解析:..【分析】首先利用勾股定理計算出的長,再根據(jù)題意可得,然后根據(jù)數(shù)軸上個點的位置計算出表示的數(shù)即可.【詳解】解:點表示的數(shù)是,是原點,,,以為圓心、長為半徑畫弧,,點表示的數(shù)是,點表示的數(shù)是,故答案為:;.【點睛】本題考查了數(shù)軸的性質(zhì),以及應(yīng)用數(shù)形結(jié)合的方法來解決問題.16..【分析】利用正方形的面積公式求出正方形的邊長,再求出原點到點A的距離(即點A的絕對值),然后根據(jù)數(shù)軸上原點左邊的數(shù)為負數(shù)即可求出點A表示的數(shù).【詳解】∵正方形的面積為3,∴正方形的邊長為解析:.【分析】利用正方形的面積公式求出正方形的邊長,再求出原點到點A的距離(即點A的絕對值),然后根據(jù)數(shù)軸上原點左邊的數(shù)為負數(shù)即可求出點A表示的數(shù).【詳解】∵正方形的面積為3,∴正方形的邊長為,∴A點距離0的距離為∴點A表示的數(shù)為.【點睛】本題考查實數(shù)與數(shù)軸,解決本題時需注意圓的半徑即是點A到1的距離,而求A點表示的數(shù)時,需求出A點到原點的距離即A點的絕對值,再根據(jù)絕對值的性質(zhì)和數(shù)軸上點的特征求解.17.7【分析】本題可以根據(jù)代數(shù)式f(a)的運算求出a1,a2,a3,a4,a5,a6,a7的值,根據(jù)規(guī)律找出部分an的值,進而發(fā)現(xiàn)數(shù)列每7個數(shù)一循環(huán),根據(jù)數(shù)的變化找出變化規(guī)律,依照規(guī)律即可得出結(jié)論解析:7【分析】本題可以根據(jù)代數(shù)式f(a)的運算求出a1,a2,a3,a4,a5,a6,a7的值,根據(jù)規(guī)律找出部分an的值,進而發(fā)現(xiàn)數(shù)列每7個數(shù)一循環(huán),根據(jù)數(shù)的變化找出變化規(guī)律,依照規(guī)律即可得出結(jié)論.【詳解】解:觀察,發(fā)現(xiàn)規(guī)律:a1=6,a2=f(a1)=3,a3=f(a2)=16,a4=f(a3)=8,a5=f(a4)=4,a6=f(a5)=2,a7=f(a6)=1,a8=f(a7)=6,…,∴數(shù)列a1,a2,a3,a4…(n為正整數(shù))每7個數(shù)一循環(huán),∴a1-a2+a3-a4+…+a13-a14=0,∵2015=2016-1=144×14-1,∴2a1-a2+a3-a4+a5-a6+…+a2013-a2014+a2015=a1+a2016+(a1-a2+a3-a4+a5-a6+…+a2015-a2016)=a1+a7=6+1=7.故答案為7.【點睛】本題考查了規(guī)律型中的數(shù)字的變化類以及代數(shù)式求值,解題的關(guān)鍵是根據(jù)數(shù)的變化找出變換規(guī)律,并且巧妙的借助了a1-a2+a3-a4+…+a13-a14=0來解決問題.18.6,7,8【解析】【分析】根據(jù)已知可得,解不等式組,并求整數(shù)解可得.【詳解】因為,,所以,依題意得,所以,,解得,所以,x的正數(shù)值為6,7,8.故答案為:6,7,8.【點睛】此題解析:6,7,8【解析】【分析】根據(jù)已知可得,解不等式組,并求整數(shù)解可得.【詳解】因為,,所以,依題意得,所以,,解得,所以,x的正數(shù)值為6,7,8.故答案為:6,7,8.【點睛】此題屬于特殊定義運算題,解題關(guān)鍵在于正確理解題意,列出不等式組,求出解集,并確定整數(shù)解.19.5050【分析】通過對被開方數(shù)的計算和分析,發(fā)現(xiàn)數(shù)字間的規(guī)律,然后利用二次根式的性質(zhì)進行化簡計算求解.【詳解】解:第1個算式:,第2個算式:,第3個算式:,第4個算式:,...,第解析:5050【分析】通過對被開方數(shù)的計算和分析,發(fā)現(xiàn)數(shù)字間的規(guī)律,然后利用二次根式的性質(zhì)進行化簡計算求解.【詳解】解:第1個算式:,第2個算式:,第3個算式:,第4個算式:,...,第n個算式:,∴當n=100時,,故答案為:5050.【點睛】本題考查了有理數(shù)的運算,二次根式的化簡,通過探索發(fā)現(xiàn)數(shù)字間的規(guī)律是解題關(guān)鍵.20.【分析】首先根據(jù)與互為相反數(shù),可得+=0,進而得出,然后用含的代數(shù)式表示,再代入求值即可.【詳解】解:∵與互為相反數(shù),∴+=0,∴∴∴.故答案為:.【點睛】本題主要考查了實數(shù)解析:【分析】首先根據(jù)與互為相反數(shù),可得+=0,進而得出,然后用含的代數(shù)式表示,再代入求值即可.【詳解】解:∵與互為相反數(shù),∴+=0,∴∴∴.故答案為:.【點睛】本題主要考查了實數(shù)的運算以及相反數(shù),根據(jù)相反數(shù)的概念求得與之間的關(guān)系是解題關(guān)鍵.三、解答題21.(1)①5;②;(2)1;(3)16.【分析】(1)根據(jù)題中定義代入即可得出;(2)根據(jù),討論3和的兩種大小關(guān)系,進行計算;(3)先判定A、B的大小關(guān)系,再進行求解.【詳解】(1)根據(jù)題意:∵,∴,∵,∴.(2)∵,∴,①若,則,解得,②若,則,解得(不符合題意),∴.(3)∵,∴,∴,得,∴.【點睛】本題考查了一種新運算,讀懂題意掌握新運算并能正確化簡是解題的關(guān)鍵.22.(1)4,-4;(2)1;(2)±12.【分析】(1)先估算出的范圍,即可得出答案;(2)先估算出、的范圍,求出a、b的值,再代入求出即可;(3)先估算出的范圍,求出x、y的值,再代入求出即可.【詳解】解:(1)∵4<<5,∴的整數(shù)部分是4,小數(shù)部分是-4,故答案為4,-4;(2)∵2<<3,∴a=-2,∵3<<4,∴b=3,∴a+b-=-2+3-=1;(3)∵100<110<121,∴10<<11,∴110<100+<111,∵100+=x+y,其中x是整數(shù),且0<y<1,∴x=110,y=100+-110=-10,∴x++24-y=110++24-+10=144,x++24-y的平方根是±12.【點睛】本題考查了估算無理數(shù)的大小,能估算出、、、的范圍是解此題的關(guān)鍵.23.(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1)先估算和的大小,再由并新定義可得結(jié)果;(2)根據(jù)定義可知x<4,可得滿足題意的x的整數(shù)值;(3)根據(jù)定義對120進行連續(xù)求根整數(shù),可得3次之后結(jié)果為1;(4)最大的正整數(shù)是255,根據(jù)操作過程分別求出255和256進行幾次操作,即可得出答案.【詳解】解:(1)∵22=4,62=36,52=25,∴5<<6,∴[]=[2]=2,[]=5,故答案為2,5;(2)∵12=1,22=4,且[]=1,∴x=1,2,3,故答案為1,2,3;(3)第一次:[]=10,第二次:[]=3,第三次:[]=1,故答案為3;(4)最大的正整數(shù)是255,理由是:∵[]=15,[]=3,[]=1,∴對255只需進行3次操作后變?yōu)?,∵[]=16,[]=4,[]=2,[]=1,∴對256只需進行4次操作后變?yōu)?,∴只需進行3次操作后變?yōu)?的所有正整數(shù)中,最大的是255,故答案為255.【點睛】本題考查了估算無理數(shù)的大小的應(yīng)用,主要考查學(xué)生的閱讀能力和猜想能力,同時也考查了一個數(shù)的平方數(shù)的計算能力.24.(1)①,②,;(2);(3)【分析】(1)①由“奇異數(shù)”的定義可得;②根據(jù)定義計算可得;(2)由f(10m+n)=m+n,可求k的值,即可求b;(3)根據(jù)題意可列出等式,可求出x、y的值,即可求的值.【詳解】解:(1)①∵對任意一個兩位數(shù)a,如果a滿足個位數(shù)字與十位數(shù)字互不相同,且都不為零,那么稱這個兩位數(shù)為“奇異數(shù)”.∴“奇異數(shù)”為21;②f(15)=(15+51)÷11=6,f(10m+n)=(10m+n+10n+m)÷11=m+n;(2)∵f(10m+n)=m+n,且f(b)=8∴k+2k-1=8∴k=3∴b=10×3+2×3-1=35;(3)根據(jù)題意有∵∴∴∵x、y為正數(shù),且x≠y∴x=6,y=5∴a=6×10+5=65故答案為:(1)①,②,;(2);(3)【點睛】本題考查了新定義下的實數(shù)運算,能理解“奇異數(shù)”定義是本題的關(guān)鍵.25.(1)a2=2,a3=-1,a4=(2)a2016?a2017?a2018=-1(3)a33+a66+a99+…+a9999=-1【分析】(1)將a1=代入中即可求出a2,再將a2代入求出a3,同樣求出a4即可.(2)從(1)的計算結(jié)果可以看出,從a1開始,每三個數(shù)一循環(huán),而2016÷3=672,則a2016=-1,a2017=,a2018=2然后計算a2016?a2017?a2018的值;(3)觀察可得a3、a6、a9、…a99,都等于-1,將-1代入,即可求出結(jié)果.【詳解】(1)將a1=,代入,得;將a2=2,代入,得;將a3=-1,代入,得.(2)根據(jù)(1)的計算結(jié)果,從a1開始,每三個數(shù)一循環(huán),而2016÷3=672,則a2016=-1,a2017=,a2018=2所以,a2016?a2017?a2018=(-1)××2=-1(3)觀察可得a3、a6、a9、…a99,都等于-1,將-1代入,a33+a66+a99+…+a9999=(-1)3+(-1)6+(-1)9+…+(-1)99=(-1)+1+(-1)+…(-1)=-1【點睛】此類問題考查了數(shù)字類的變化規(guī)律,解題的關(guān)鍵是要嚴格根據(jù)定義進行解答,同時注意分析循環(huán)的規(guī)律.26.(1)2,3(2)①②(3)【分析】(1)根據(jù)新定義的運算規(guī)則進行計算即可;(2)①根據(jù)新定義的運算規(guī)則即可求出實數(shù)的取值范圍;②根據(jù)新定義的運算規(guī)則和為整數(shù),即可求出所有非負實數(shù)的值;(3)先解方程求得,再根據(jù)方程的解是正整數(shù)解,即可求出非負實數(shù)的取值范圍.【詳解】(1)2;3;(2)①∵∴解得;②∵∴解得∵為整數(shù)∴故所有非負實數(shù)的值有;(3)∵方程的解為正整數(shù)∴或2①當時,是方程的增根,舍去②當時,.【點睛】本題考查了新定義下的運算問題,掌握新定義下的運算規(guī)則是解題的關(guān)鍵.27.(1)兩;(2)2,3;(3)24,﹣48;【分析】(1)由題意可得,進而可得答案;(2)由只有個位數(shù)是2的數(shù)的立方的個位數(shù)是8,可確定的個位上的數(shù),由可得27<32<64,進而可確定,于是可確定的十位上的數(shù),進而可得答案;(3)仿照(1)(2)兩小題中的方法解答即可.【詳解】解:(1)因為,所以,所以是一個兩位數(shù);故答案為:兩;(2)因為只有個位數(shù)是2的數(shù)的立方的個位數(shù)是8,所以的個位上的數(shù)是2,劃去32768后面的三位數(shù)768得到32,因為,27<32<64,所以,所以的十位上的數(shù)是3;故答案為:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10<<100,∴是兩位數(shù);∵只有個位數(shù)是4的數(shù)的立方的個位數(shù)是4,∴的個位上的數(shù)是4,劃去13824后面的三位數(shù)824得到13,∵8<13<27,∴20<<30.∴=24;由103=1000,1003=1000000,1000<110592<1000000,∴10<<100,∴是兩位數(shù);∵只有個位數(shù)是8的數(shù)的立方的個位數(shù)是2,∴的個位上的數(shù)是8,劃去110592后面的三位數(shù)592得到110

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論