考點(diǎn)解析北師大版9年級(jí)數(shù)學(xué)上冊(cè)期中試題及完整答案詳解【奪冠系列】_第1頁
考點(diǎn)解析北師大版9年級(jí)數(shù)學(xué)上冊(cè)期中試題及完整答案詳解【奪冠系列】_第2頁
考點(diǎn)解析北師大版9年級(jí)數(shù)學(xué)上冊(cè)期中試題及完整答案詳解【奪冠系列】_第3頁
考點(diǎn)解析北師大版9年級(jí)數(shù)學(xué)上冊(cè)期中試題及完整答案詳解【奪冠系列】_第4頁
考點(diǎn)解析北師大版9年級(jí)數(shù)學(xué)上冊(cè)期中試題及完整答案詳解【奪冠系列】_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

北師大版9年級(jí)數(shù)學(xué)上冊(cè)期中試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(7小題,每小題2分,共計(jì)14分)1、某種植基地2016年蔬菜產(chǎn)量為80噸,預(yù)計(jì)2018年蔬菜產(chǎn)量達(dá)到100噸,求蔬菜產(chǎn)量的年平均增長率,設(shè)蔬菜產(chǎn)量的年平均增長率為x,則可列方程為()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=1002、《九章算術(shù)》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈.問戶高、廣各幾何.”大意是說:已知長方形門的高比寬多6尺8寸,門的對(duì)角線長1丈,那么門的高和寬各是多少(1丈=10尺,1尺=10寸)?若設(shè)門的寬為x寸,則下列方程中,符合題意的是()A.x2+12=(x+0.68)2 B.x2+(x+0.68)2=12C.x2+1002=(x+68)2 D.x2+(x+68)2=10023、如圖,矩形與矩形完全相同,,現(xiàn)將兩個(gè)矩形按如圖所示的位置擺放,使點(diǎn)恰好落在上,的長為(

)A.1 B.2 C. D.4、某校八年級(jí)組織一次籃球賽,各班均組隊(duì)參賽,賽制為單循環(huán)形式(每兩班之間都賽一場),共需安排15場比賽,則八年級(jí)班級(jí)的個(gè)數(shù)為(

)A.5 B.6 C.7 D.85、如圖,E,F(xiàn)是正方形ABCD的邊BC上兩個(gè)動(dòng)點(diǎn),BE=CF.連接AE,BD交于點(diǎn)G,連接CG,DF交于點(diǎn)M.若正方形的邊長為1,則線段BM的最小值是(

)A. B. C. D.6、如圖,已知菱形ABCD的兩條對(duì)角線分別為6和8,M、N分別是邊BC、CD的中點(diǎn),P是對(duì)角線BD上一點(diǎn),則PM+PN的最小值是()A.5 B.10 C.6 D.87、如圖1,矩形中,點(diǎn)為的中點(diǎn),點(diǎn)沿從點(diǎn)運(yùn)動(dòng)到點(diǎn),設(shè),兩點(diǎn)間的距離為,,圖2是點(diǎn)運(yùn)動(dòng)時(shí)隨變化的關(guān)系圖象,則的長為(

)A. B. C. D.二、多選題(3小題,每小題2分,共計(jì)6分)1、如圖,在矩形中,,,點(diǎn)P在線段上以的速度從點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段上從點(diǎn)C向D點(diǎn)運(yùn)動(dòng).若某一時(shí)刻與全等,則點(diǎn)Q的運(yùn)動(dòng)速度為(

)A. B. C. D.2、如果關(guān)于的一元二次方程有兩個(gè)相等的實(shí)根,那么對(duì)于以,,為邊的三角形,下面的判斷不正確的是(

)A.以為斜邊的直角三角形 B.以為斜邊的直角三角形C.以為底邊的等腰三角形 D.以為底邊的等腰三角形3、下列命題中的真命題是(

)A.矩形的對(duì)角線相等 B.對(duì)角線相等的四邊形是矩形C.菱形的對(duì)角線互相垂直平分 D.對(duì)角線互相垂直的四邊形是菱形第Ⅱ卷(非選擇題80分)三、填空題(10小題,每小題2分,共計(jì)20分)1、如圖,將邊長為4的正方形ABCD沿對(duì)角線AC剪開,再把△ABC沿著AD方向平移得到△A′B′C′,若兩個(gè)三角形重疊部分的面積為3,則它移動(dòng)的距離AA′等于___;移動(dòng)的距離AA′等于___時(shí),兩個(gè)三角形重疊部分面積最大.2、在四邊形ABCD中,ABCD,ADBC,添加一個(gè)條件________,即可判定該四邊形是菱形.3、如果關(guān)于x的方程x2﹣3x+k=0(k為常數(shù))有兩個(gè)相等的實(shí)數(shù)根,那么k的值是___.4、如圖,矩形紙片ABCD,AD=4,AB=3.如果點(diǎn)E在邊BC上,將紙片沿AE折疊,使點(diǎn)B落在點(diǎn)F處,如果直線EF經(jīng)過點(diǎn)D,那么線段BE的長是____.5、如圖,在矩形紙片ABCD中,AB=12,AD=5,P為DC邊上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)D,C重合),將紙片沿AP折疊(1)當(dāng)四邊形ADPD′是正方形時(shí),CD′的長為___.(2)當(dāng)CD′的長最小時(shí),PC的長為___.6、如圖,在邊長為1的正方形ABCD中,等邊△AEF的頂點(diǎn)E、F分別在邊BC和CD上則下列結(jié)論:①CE=CF:②∠AEB=75°;③S△EFC=1;④,其中正確的有______(用序號(hào)填寫)7、邊長分別為a和2a的兩個(gè)正方形按如圖的樣式擺放,則圖中陰影部分的面積為_____.8、為增強(qiáng)學(xué)生身體素質(zhì),提高學(xué)生足球運(yùn)動(dòng)競技水平,我市開展“市長杯”足球比賽,賽制為單循環(huán)形式(每兩隊(duì)之間賽一場).現(xiàn)計(jì)劃安排21場比賽,應(yīng)邀請(qǐng)多少個(gè)球隊(duì)參賽?設(shè)邀請(qǐng)x個(gè)球隊(duì)參賽,根據(jù)題意,可列方程為_____.9、如圖,在一塊長為22m,寬為14m的矩形空地內(nèi)修建三條寬度相等的小路(陰影部分),其余部分種植花草.若花草的種植面積為240m2,則小路的寬為________m.10、若m,n是關(guān)于x的方程x2-3x-3=0的兩根,則代數(shù)式m2+n2-2mn=_____.四、解答題(6小題,每小題10分,共計(jì)60分)1、如圖,已知在△ABC中AB=AC,AD是BC邊上的中線,E,G分別是AC,DC的中點(diǎn),F(xiàn)為DE延長線上的點(diǎn),∠FCA=∠CEG.(1)求證:AD∥CF;(2)求證:四邊形ADCF是矩形.2、已知關(guān)于的一元二次方程有實(shí)數(shù)根.(1)求的取值范圍.(2)若該方程的兩個(gè)實(shí)數(shù)根為、,且,求的值.3、如圖,BF平行于正方形ADCD的對(duì)角線AC,點(diǎn)E在BF上,且AE=AC,CF∥AE,求∠BCF.4、如圖,在四邊形ABCD中,AD∥BC,AD=12cm,BC=15cm,點(diǎn)P自點(diǎn)A向D以1cm/s的速度運(yùn)動(dòng),到D點(diǎn)即停止.點(diǎn)Q自點(diǎn)C向B以2cm/s的速度運(yùn)動(dòng),到B點(diǎn)即停止,點(diǎn)P,Q同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t(s).(1)用含t的代數(shù)式表示:AP=;DP=;BQ=;CQ=.(2)當(dāng)t為何值時(shí),四邊形APQB是平行四邊形?(3)當(dāng)t為何值時(shí),四邊形PDCQ是平行四邊形?5、用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?1)x2-x-1=0;(2)3x(x-2)=x-2;(3)x2-2x+1=0;(4)(x+8)(x+1)=-12.6、已知關(guān)于x的一元二次方程x2+x=k.(1)若方程有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)k的取值范圍;(2)當(dāng)k=6時(shí),求方程的實(shí)數(shù)根.-參考答案-一、單選題1、A【解析】【分析】利用增長后的量=增長前的量×(1+增長率),設(shè)平均每次增長的百分率為x,根據(jù)“從80噸增加到100噸”,即可得出方程.【詳解】由題意知,蔬菜產(chǎn)量的年平均增長率為x,根據(jù)2016年蔬菜產(chǎn)量為80噸,則2017年蔬菜產(chǎn)量為80(1+x)噸,2018年蔬菜產(chǎn)量為80(1+x)(1+x)噸,預(yù)計(jì)2018年蔬菜產(chǎn)量達(dá)到100噸,即:80(1+x)2=100,故選A.【考點(diǎn)】本題考查了一元二次方程的應(yīng)用(增長率問題).解題的關(guān)鍵在于理清題目的含義,找到2017年和2018年的產(chǎn)量的代數(shù)式,根據(jù)條件找準(zhǔn)等量關(guān)系式,列出方程.2、D【解析】【分析】1丈=100寸,6尺8寸=68寸,設(shè)門的寬為x寸,則門的高度為(x+68)寸,利用勾股定理及門的對(duì)角線長1丈(100寸),即可得出關(guān)于x的一元二次方程,此題得解.【詳解】解:1丈=100寸,6尺8寸=68寸.設(shè)門的寬為x寸,則門的高度為(x+68)寸,依題意得:x2+(x+68)2=1002.故選:D.【考點(diǎn)】本題主要考查了勾股定理的應(yīng)用、由實(shí)際問題抽象出一元二次方程,準(zhǔn)確計(jì)算是解題的關(guān)鍵.3、D【解析】【分析】由勾股定理求出,進(jìn)而可得結(jié)論.【詳解】解:∵∴,又∵矩形與矩形完全相同,∴∴,∴故選:D.【考點(diǎn)】此題主要考查了矩形的性質(zhì)以及勾股定理的應(yīng)用,運(yùn)用勾股定理求出是解答此題的關(guān)鍵.4、B【解析】【分析】設(shè)有x個(gè)班級(jí)參加比賽,根據(jù)題目中的比賽規(guī)則,可得一共進(jìn)行了場比賽,即可列出方程,求解即可.【詳解】解:設(shè)有x個(gè)班級(jí)參加比賽,,,解得:(舍),則共有6個(gè)班級(jí)參加比賽,故選:B.【考點(diǎn)】本題考查了一元二次方程的應(yīng)用,解題關(guān)鍵是讀懂題意,得到比賽總數(shù)的等量關(guān)系.5、D【解析】【分析】先證明△ABE≌△DCF(SAS),由全等三角形的性質(zhì)得出∠BAE=∠CDF,證明△ABG≌△CBG(SAS),由全等三角形的性質(zhì)得出∠BAG=∠BCG,取CD的中點(diǎn)O,連接OB、OF,則OF=CO=CD=,由勾股定理求出OB的長,當(dāng)O、M、B三點(diǎn)共線時(shí),BM的長度最小,則可求出答案.【詳解】解:如圖,在正方形ABCD中,AB=AD=CB,∠EBA=∠FCD,∠ABG=∠CBG,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠BAE=∠CDF,在△ABG和△CBG中,,∴△ABG≌△CBG(SAS),∴∠BAG=∠BCG,∴∠CDF=∠BCG,∵∠DCM+∠BCG=∠FCD=90°,∴∠CDF+∠DCM=90°,∴∠DMC=180°﹣90°=90°,取CD的中點(diǎn)O,連接OB、OF,則OF=CO=CD=,在Rt△BOC中,OB===,根據(jù)三角形的三邊關(guān)系,OF+BM>OB,∴當(dāng)O、M、B三點(diǎn)共線時(shí),BM的長度最小,∴BM的最小值=OB﹣OF==.故選:D.【考點(diǎn)】本題主要考查了直角三角形的性質(zhì),勾股定理,正方形的性質(zhì),全等三角形的判定與性質(zhì)等知識(shí),熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.6、A【解析】【分析】作M關(guān)于BD的對(duì)稱點(diǎn)Q,連接NQ,交BD于P,連接MP,此時(shí)MP+NP的值最小,連接AC,求出CP、BP,根據(jù)勾股定理求出BC長,證出MP+NP=QN=BC,即可得出答案.【詳解】解:作M關(guān)于BD的對(duì)稱點(diǎn)Q,連接NQ,交BD于P,連接MP,此時(shí)MP+NP的值最小,連接AC,則P是AC中點(diǎn),∵四邊形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵M(jìn)Q⊥BD,∴AC∥MQ,∵M(jìn)為BC中點(diǎn),∴Q為AB中點(diǎn),∵N為CD中點(diǎn),四邊形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四邊形BQNC是平行四邊形,∴PQ∥AD,而點(diǎn)Q是AB的中點(diǎn),故PQ是△ABD的中位線,即點(diǎn)P是BD的中點(diǎn),同理可得,PM是△ABC的中位線,故點(diǎn)P是AC的中點(diǎn),即點(diǎn)P是菱形ABCD對(duì)角線的交點(diǎn),∵四邊形ABCD是菱形,則△BPC為直角三角形,,在Rt△BPC中,由勾股定理得:BC=5,即NQ=5,∴MP+NP=QP+NP=QN=5,故選:A.【考點(diǎn)】本題考查了軸對(duì)稱-最短路線問題,平行四邊形的性質(zhì)和判定,菱形的性質(zhì),勾股定理的應(yīng)用,解此題的關(guān)鍵是能根據(jù)軸對(duì)稱找出P的位置.7、C【解析】【分析】先利用圖2得出當(dāng)P點(diǎn)位于B點(diǎn)時(shí)和當(dāng)P點(diǎn)位于E點(diǎn)時(shí)的情況,得到AB和BE之間的關(guān)系以及,再利用勾股定理求解即可得到BE的值,最后利用中點(diǎn)定義得到BC的值.【詳解】解:由圖2可知,當(dāng)P點(diǎn)位于B點(diǎn)時(shí),,即,當(dāng)P點(diǎn)位于E點(diǎn)時(shí),,即,則,∵,∴,即,∵∴,∵點(diǎn)為的中點(diǎn),∴,故選:C.【考點(diǎn)】本題考查了學(xué)生對(duì)函數(shù)圖象的理解與應(yīng)用,涉及到了勾股定理、解一元二次方程、中點(diǎn)的定義等內(nèi)容,解決本題的關(guān)鍵是能正確理解題意,能從圖象中提取相關(guān)信息,能利用勾股定理建立方程等,本題蘊(yùn)含了數(shù)形結(jié)合的思想方法.二、多選題1、AD【解析】【分析】設(shè)Q的速度為xcm/s,運(yùn)動(dòng)時(shí)間為ts時(shí),△ABP與△PCQ全等,則,,,由矩形的性質(zhì)可知∠B=∠C=90°,則只有△ABP≌△PCQ和△ABP≌△QCP這兩種情況,然后利用全等三角形的性質(zhì)進(jìn)行求解即可.【詳解】解:設(shè)Q的速度為xcm/s,運(yùn)動(dòng)時(shí)間為ts時(shí),△ABP與△PCQ全等,∴,,,∵四邊形ABCD是矩形,∴∠B=∠C=90°,當(dāng)△ABP≌△PCQ時(shí),AB=CP,BP=CQ,∴,解得;當(dāng)△ABP≌△QCP時(shí),AB=QC,BP=CP,∴,解得∴Q的速度為4cm/或,故選AD..【考點(diǎn)】本題主要考查了矩形的性質(zhì),全等三角形的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識(shí)進(jìn)行求解.2、BCD【解析】【分析】根據(jù)判別式的意義得到,再整理得到,然后根據(jù)勾股定理的逆定理進(jìn)行判斷.【詳解】解:根據(jù)題意得,整理得,所以三角形是以為斜邊的直角三角形.故選:BCD.【考點(diǎn)】本題考查了一元二次方程的根的判別式△、勾股定理的逆定理,解題的關(guān)鍵是掌握當(dāng)△,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△,方程沒有實(shí)數(shù)根.3、AC【解析】【分析】根據(jù)菱形的判定與性質(zhì),矩形的判定和性質(zhì)即可進(jìn)行判斷.【詳解】解:A、矩形的對(duì)角線相等,是真命題,符合題意;B、對(duì)角線相等的平行四邊形是矩形,是假命題,不符合題意;C、菱形的對(duì)角線互相垂直平分,是真命題,符合題意;D、對(duì)角線互相垂直平分的四邊形是菱形,是假命題,不符合題意;故選AC.【考點(diǎn)】本題考查了,矩形的判定,菱形的判定與性質(zhì),解題的關(guān)鍵是掌握所學(xué)的定理.三、填空題1、

1cm或3cm##3cm或1cm

2cm【解析】【分析】如圖,設(shè)交于交于證明四邊形是平行四邊形,證明是等腰直角三角形,也是等腰直角三角形,設(shè)cm,則再利用面積公式建立方程,解方程即可,同時(shí)利用配方法求解面積最大值時(shí)的平移距離.【詳解】解:如圖,設(shè)交于交于由平移的性質(zhì)可得:四邊形是平行四邊形,由正方形可得:是等腰直角三角形,同理:也是等腰直角三角形,設(shè)cm,則解得:cm或cm重疊部分的面積為:當(dāng)時(shí),重疊部分的面積最大,最大面積為4cm2所以當(dāng)cm時(shí),重疊部分的面積最大.故答案為:1cm或3cm;2cm【考點(diǎn)】本題考查的是正方形的性質(zhì),平行四邊形的判定,等腰直角三角形的判定與性質(zhì),一元二次方程的解法,配方法的應(yīng)用,平移的性質(zhì),熟悉以上基礎(chǔ)知識(shí)是解題的關(guān)鍵.2、AB=AD(答案不唯一)【解析】【分析】根據(jù)平行四邊形的判定證出四邊形ABCD是平行四邊形,根據(jù)菱形的判定證出即可.【詳解】解:添加的條件是AB=AD.理由如下:∵ABCD,ADBC,∴四邊形ABCD是平行四邊形,若AB=AD,∴四邊形ABCD是菱形.【考點(diǎn)】本題主要考查了菱形的判定、平行四邊形的判定等,能根據(jù)菱形的判定定理正確地添加條件是解此題的關(guān)鍵.3、【解析】【分析】根據(jù)判別式的意義得到Δ=(-3)2-4k=0,然后解一元一次方程即可.【詳解】解:根據(jù)題意得Δ=(-3)2-4k=0,解得k=.故答案為.【考點(diǎn)】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式Δ=b2-4ac:當(dāng)Δ>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)Δ=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)Δ<0,方程沒有實(shí)數(shù)根.4、【解析】【分析】根據(jù)題意作出圖形,根據(jù)矩形的性質(zhì)與折疊的性質(zhì)證明,進(jìn)而勾股定理求得,即可求得,根據(jù)折疊,即可求解.【詳解】解:如圖∵將紙片沿AE折疊,使點(diǎn)B落在點(diǎn)F處,四邊形ABCD是矩形在中,故答案為:【考點(diǎn)】本題考查了矩形與折疊問題,勾股定理,掌握勾股定理是解題的關(guān)鍵.5、

【解析】【分析】(1)根據(jù)四邊形是正方形,得到從而得到再利用勾股定理求解即可得到答案;(2)如圖:連接,運(yùn)用矩形的性質(zhì)和折疊的性質(zhì)求出的最小值,再設(shè),則,最后在中運(yùn)用勾股定理解答即可【詳解】解:(1)如圖所示,∵四邊形是正方形∴∵∴∵四邊形ABCD是矩形∴,∠B=90°∴(2)如圖:連接,當(dāng)點(diǎn)在上時(shí),有最小值.∵四邊形是矩形,,,∴,,∴.由折疊性質(zhì),得,,∴的最小值.設(shè),則.在中,,即,解得,∴的長為.故答案為:.【考點(diǎn)】本題主要考查矩形的性質(zhì)和折疊的性質(zhì),正方形的性質(zhì),勾股定理,根據(jù)矩形的性質(zhì)和折疊的性質(zhì)確定的最小值成為解答本題的關(guān)鍵.6、①②④【解析】【分析】根據(jù)三角形的全等的知識(shí)可以判斷①的正誤;根據(jù)角角之間的數(shù)量關(guān)系,以及三角形內(nèi)角和為180°判斷②的正誤;根據(jù)等邊三角形的邊長求得直角三角形的邊長,從而求得面積③的正誤,根據(jù)勾股定理列方程可以判斷④的正誤.【詳解】解:∵四邊形ABCD是正方形,∴AB=AD,∵△AEF是等邊三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC-BE=CD-DF,∴CE=CF,∴①說法正確;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②說法正確;∵正方形ABCD的邊長為1,③說法錯(cuò)誤,∵∠AEB=75°,∠AEF=60°,∴∠CEF=45°,∴△CEF是等腰直角三角形,設(shè)BE=DF=x,∴CE=CF=1-x,(不合題意,舍去),∴EF=;④說法正確;∴正確的有①②④.故答案為①②④.【考點(diǎn)】本題主要考查正方形的性質(zhì)的知識(shí)點(diǎn),解答本題的關(guān)鍵是熟練掌握全等三角形的證明以及輔助線的正確作法,此題難度不大.7、2a2【解析】【分析】結(jié)合圖形,發(fā)現(xiàn):陰影部分的面積=大正方形的面積的+小正方形的面積﹣直角三角形的面積.【詳解】解:陰影部分的面積=大正方形的面積+小正方形的面積﹣直角三角形的面積=(2a)2+a2﹣?2a?3a=4a2+a2﹣3a2=2a2.故答案為:2a2.【考點(diǎn)】本題考查正方形中不規(guī)則圖形面積的求法,解題的關(guān)鍵是利用正方形的性質(zhì),通過規(guī)則圖形進(jìn)行求解.8、x(x﹣1)=21【解析】【分析】賽制為單循環(huán)形式(每兩隊(duì)之間都賽一場),x個(gè)球隊(duì)比賽總場數(shù)為x(x﹣1),即可列方程.【詳解】有x個(gè)隊(duì),每個(gè)隊(duì)都要賽(x﹣1)場,但兩隊(duì)之間只有一場比賽,由題意得:x(x﹣1)=21,故答案為x(x﹣1)=21.【考點(diǎn)】本題考查了一元二次方程的應(yīng)用,弄清題意,找準(zhǔn)等量關(guān)系列出方程是解題的關(guān)鍵.9、2【解析】【分析】設(shè)小路寬為xm,則種植花草部分的面積等同于長(22-x)m,寬(14-x)m的矩形的面積,根據(jù)花草的種植面積為240m2,即可得出關(guān)于x的一元二次方程,解之取其符合題意的值即可得出結(jié)論.【詳解】解:設(shè)小路寬為xm,則種植花草部分的面積等同于長(22-x)m,寬(14-x)m的矩形的面積,依題意得:(22-x)(14-x)=240,整理得:x2-36x+68=0,解得:x1=2,x2=34(不合題意,舍去).故答案為:2.【考點(diǎn)】本題考查了一元二次方程的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出一元二次方程是解題的關(guān)鍵.10、21【解析】【分析】先根據(jù)根與系數(shù)的關(guān)系得到m+n=3,mn=﹣3,再根據(jù)完全平方公式變形得到m2+n2﹣2mn=(m+n)2﹣4mn,然后利用整體代入的方法計(jì)算.【詳解】解:∵m,n是關(guān)于x的方程x2-3x-3=0的兩根,∴m+n=3,mn=﹣3,∴m2+n2﹣2mn=(m+n)2﹣4mn=32﹣4×(﹣3)=21.故答案為:21.【考點(diǎn)】本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時(shí),x1+x2,x1x2.四、解答題1、(1)證明見解析;(2)證明見解析.【解析】【分析】(1)先證EG是△ACD的中位線,得EG∥AD,再由∠FCA=∠CEG證出EG∥CF,即可得出結(jié)論;(2)先證△ADE≌△CFE(AAS),得AD=CF,則四邊形ADCF是平行四邊形,再由等腰三角形的在得∠ADC=90°,即可得出結(jié)論.【詳解】解:(1)證明:∵E,G分別是AC,DC的中點(diǎn),∴EG是△ACD的中位線,∴EG∥AD,∵∠FCA=∠CEG,∴EG∥CF,∴AD∥CF;(2)證明:由(1)得:AD∥CF,∴∠DAE=∠FCE,∠ADE=∠CFE,∵E是AC的中點(diǎn),∴AE=CE,∴△ADE≌△CFE(AAS),∴AD=CF,∴四邊形ADCF是平行四邊形,又∵AB=AC,AD是BC邊上的中線,∴AD⊥BC,∴∠ADC=90°,∴平行四邊形ADCF是矩形.【考點(diǎn)】本題考查了矩形的判定、平行四邊形的判定與性質(zhì)、等腰三角形的性質(zhì)、全等三角形的判定與性質(zhì)、三角形中位線定理等知識(shí);熟練掌握矩形的判定和平行四邊形的判定與性質(zhì)是解題的關(guān)鍵.2、(1).(2).【解析】【分析】(1)根據(jù)方程的系數(shù)結(jié)合根的判別式△≥0,即可得出關(guān)于m的一元一次不等式,解之即可得出m的取值范圍;(2)由根與系數(shù)的關(guān)系可得出x1+x2=6,x1x2=4m+1,結(jié)合|x1-x2|=4可得出關(guān)于m的一元一次方程,解之即可得出m的值.【詳解】(1)∵關(guān)于x的一元二次方程x2-6x+(4m+1)=0有實(shí)數(shù)根,∴△=(-6)2-4×1×(4m+1)≥0,解得:m≤2;(2)∵方程x2-6x+(4m+1)=0的兩個(gè)實(shí)數(shù)根為x1、x2,∴x1+x2=6,x1x2=4m+1,∴(x1-x2)2=(x1+x2)2-4x1x2=42,即32-16m=16,解得:m=1.【考點(diǎn)】本題考查了根與系數(shù)的關(guān)系以及根的判別式,解題的關(guān)鍵是:(1)牢記“當(dāng)△≥0時(shí),方程有實(shí)數(shù)根”;(2)利用根與系數(shù)的關(guān)系結(jié)合|x1-x2|=4,找出關(guān)于m的一元一次方程.3、105°【解析】【分析】首先過點(diǎn)A作AO⊥FB的延長線于點(diǎn)O,連接BD,交AC于點(diǎn)Q,易得四邊形AOBQ是正方形,四邊形ACFE是菱形,Rt△AOE中,AE=2AO,即可求得∠AEO=30°,繼而求得答案.【詳解】作AO⊥FB的延長線,BQ⊥AC∵BF∥AC,∴AO∥BQ且∠QAB=∠QBA=45°∴AO=BQ=AQ=AC∵AE=AC

∴AO=AE∴∠AEO=30°∵BF∥AC

∴∠CAE∠AEO=30°∵BF∥AC,CF∥AE

∴∠CFE∠CAE=30°∵BF∥AC

∴∠CBF∠BCA=45°∠BCF=180°-∠CBF-∠CFE=180°-45°-30°=105°【考點(diǎn)】本題考了正方形的性質(zhì)、平行四邊形的判定與性質(zhì)以及含30°的直角三角形的性質(zhì),解題關(guān)鍵是注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.4、(1)t,12﹣t,15﹣2t,2t(2)t=5s時(shí)四邊形APQB是平行四邊形(3)當(dāng)t=4s時(shí),四邊形PDCQ是平行四邊形【解析】【分析】(1)根據(jù)速度、路程以及時(shí)間的關(guān)系和線段之間的數(shù)量關(guān)系,即可求出AP,DP,BQ,CQ的長;(2)當(dāng)AP=BQ時(shí),四邊形APQB是平行四邊形,建立關(guān)于t的一元一次方程方程,解方程求出符合題意的t值即可;(3)當(dāng)PD=CQ時(shí),四邊形PDCQ是平行四邊形;建立關(guān)于t的一元一次方程方程,解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論