基礎(chǔ)強化人教版8年級數(shù)學(xué)下冊《平行四邊形》專題訓(xùn)練試卷(解析版)_第1頁
基礎(chǔ)強化人教版8年級數(shù)學(xué)下冊《平行四邊形》專題訓(xùn)練試卷(解析版)_第2頁
基礎(chǔ)強化人教版8年級數(shù)學(xué)下冊《平行四邊形》專題訓(xùn)練試卷(解析版)_第3頁
基礎(chǔ)強化人教版8年級數(shù)學(xué)下冊《平行四邊形》專題訓(xùn)練試卷(解析版)_第4頁
基礎(chǔ)強化人教版8年級數(shù)學(xué)下冊《平行四邊形》專題訓(xùn)練試卷(解析版)_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)下冊《平行四邊形》專題訓(xùn)練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、在ABCD中,添加以下哪個條件能判斷其為菱形()A.AB⊥BC B.BC⊥CD C.CD⊥AC D.AC⊥BD2、已知直線,點P在直線l上,點,點,若是直角三角形,則點P的個數(shù)有()A.1個 B.2個 C.3個 D.4個3、如圖,在平面直角坐標(biāo)系中,點A是x軸正半軸上的一個動點,點C是y軸正半軸上的點,于點C.已知,.點B到原點的最大距離為()A.22 B.18 C.14 D.104、如圖,已知平行四邊形ABCD的面積為8,E、F分別是BC、CD的中點,則△AEF的面積為()A.2 B.3 C.4 D.55、下列說法中,不正確的是()A.四個角都相等的四邊形是矩形B.對角線互相平分且平分每一組對角的四邊形是菱形C.正方形的對角線所在的直線是它的對稱軸D.一組對邊相等,另一組對邊平行的四邊形是平行四邊形第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、正方形的一條對角線長為4,則這個正方形面積是_________.2、如圖,在正方形ABCD中,點M,N為CD,BC上的點,且DM=CN,AM與DN交于點P,連接AN,點Q為AN中點,連接PQ,若AB=10,DM=4,則PQ的長為__________________.3、如圖,點P是矩形ABCD的對角線AC上一點,過點P作EF∥BC,分別交AB,CD于點E、F,連接PB、PD,若AE=2,PF=9,則圖中陰影面積為______;4、如圖,四邊形ABCD是矩形,延長DA到點E,使AE=DA,連接EB,點F1是CD的中點,連接EF1,BF1,得到△EF1B;點F2是CF1的中點,連接EF2,BF2,得到△EF2B;點F3是CF2的中點,連接EF3,BF3,得到△EF3B;…;按照此規(guī)律繼續(xù)進行下去,若矩形ABCD的面積等于2,則△EFnB的面積為______.(用含正整數(shù)n的式子表示)5、如圖,將長方形ABCD按圖中方式折疊,其中EF、EC為折痕,折疊后、、E在一直線上,已知∠BEC=65°,那么∠AEF的度數(shù)是_____.三、解答題(5小題,每小題10分,共計50分)1、如圖,在四邊形ABCD中,ABDC,AB=AD,對角線AC,BD交于點O,AC平分∠BAD,過點C作CE⊥AB交AB的延長線于點E,連接OE.(1)求證:四邊形ABCD是菱形;(2)若AB=,BD=2,求OE的長.2、已知:在中,點、點、點分別是、、的中點,連接、.(1)如圖1,若,求證:四邊形為菱形;(2)如圖2,過作交延長線于點,連接,,在不添加任何輔助線的情況下,請直接寫出圖中所有與面積相等的平行四邊形.

3、如圖,在中,AE平分,于點E,點F是BC的中點(1)如圖1,BE的延長線與AC邊相交于點D,求證:(2)如圖2,中,,求線段EF的長.4、在平面直角坐標(biāo)系中,過A(0,4)的直線a垂直于y軸,點M(9,4)為直線a上一點,若點P從點M出發(fā),以每秒2cm的速度沿直線a向左移動,點Q從原點同時出發(fā),以每秒1cm的速度沿x軸向右移動,(1)幾秒后PQ平行于y軸?(2)在點P、Q運動的過程中,若線段OQ=2AP,求點P的坐標(biāo).5、在平面直角坐標(biāo)系xOy中,點A(x,﹣m)在第四象限,A,B兩點關(guān)于x軸對稱,x=+n(n為常數(shù)),點C在x軸正半軸上,(1)如圖1,連接AB,直接寫出AB的長為;(2)延長AC至D,使CD=AC,連接BD.①如圖2,若OA=AC,求線段OC與線段BD的關(guān)系;②如圖3,若OC=AC,連接OD.點P為線段OD上一點,且∠PBD=45°,求點P的橫坐標(biāo).-參考答案-一、單選題1、D【解析】【分析】根據(jù)對角線互相垂直的平行四邊形是菱形,結(jié)合選項找到對角線互相垂直即可求解.【詳解】A、∵AB⊥BC,∴∠ABC=90°,又∵四邊形ABCD是平行四邊形,∴四邊形ABCD是矩形;故選項A不符合題意;B、C選項,同A選項一樣,均為鄰邊垂直,ABCD是矩形;故選項B、C不符合題意;D、∵四邊形ABCD是平行四邊形,又∵AC⊥BD,∴四邊形ABCD是菱形;故選項D符合題意故選D【點睛】本題考查了菱形的判定,掌握菱形的判定定理是解題的關(guān)鍵.2、C【解析】【分析】分別討論,,三種情況,求出點坐標(biāo)即可得出答案.【詳解】如圖,當(dāng)時,點與點橫坐標(biāo)相同,代入中得:,,當(dāng)時,點與點橫坐標(biāo)相同,,代入中得:,,當(dāng)時,取中點為點,過點作交于點,設(shè),,,,,,,,,在中,,解得:,,點有3個.故選:C.【點睛】本題考查直角三角形的性質(zhì)與平面直角坐標(biāo)系,掌握分類討論的思想是解題的關(guān)鍵.3、B【解析】【分析】首先取AC的中點E,連接BE,OE,OB,可求得OE與BE的長,然后由三角形三邊關(guān)系,求得點B到原點的最大距離.【詳解】解:取AC的中點E,連接BE,OE,OB,∵∠AOC=90°,AC=16,∴OE=CEAC=8,∵BC⊥AC,BC=6,∴BE10,若點O,E,B不在一條直線上,則OB<OE+BE=18.若點O,E,B在一條直線上,則OB=OE+BE=18,∴當(dāng)O,E,B三點在一條直線上時,OB取得最大值,最大值為18.故選:B【點睛】此題考查了直角三角形斜邊上的中線的性質(zhì)以及三角形三邊關(guān)系.此題難度較大,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.4、B【解析】【分析】連接AC,由平行四邊形的性質(zhì)可得,再由E、F分別是BC,CD的中點,即可得到,,,由此求解即可.【詳解】解:如圖所示,連接AC,∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,AB=CD,AB∥CD,∴∵E、F分別是BC,CD的中點,∴,,,∴,故選B.【點睛】本題主要考查了平行四邊形的性質(zhì),與三角形中線有關(guān)的面積問題,解題的關(guān)鍵在于能夠熟練掌握平行四邊形的性質(zhì).5、D【解析】【分析】根據(jù)矩形的判定,正方形的性質(zhì),菱形和平行四邊形的判定對各選項分析判斷后利用排除法求解.【詳解】解:A、四個角都相等的四邊形是矩形,說法正確;B、正方形的對角線所在的直線是它的對稱軸,說法正確;C、對角線互相平分且平分每一組對角的四邊形是菱形,說法正確;D、一組對邊相等且平行的四邊形是平行四邊形,原說法錯誤;故選:D.【點睛】本題主要考查特殊平行四邊形的判定與性質(zhì),熟練掌握特殊平行四邊形相關(guān)的判定與性質(zhì)是解答本題的關(guān)鍵.二、填空題1、8【解析】【分析】正方形邊長相等設(shè)為,對角線長已知,利用勾股定理求解邊長的平方,即為正方形的面積.【詳解】解:設(shè)邊長為,對角線為故答案為:.【點睛】本題考察了正方形的性質(zhì)以及勾股定理.解題的關(guān)鍵在于求解正方形的邊長.2、【解析】【分析】由△ADM與△DCN全等,得出∠CDN=∠DAM,從而得到∠DPM=90°,由此∠APN=90°,再由直角三角形斜邊的中線的性質(zhì)求出PQ.【詳解】解:在正方形ABCD中,AD=CD,∠ADC=∠DCN=90°,在△ADM與△DCN中,∵AD=CD,DM=CN,∠ADC=∠DCN,∴△ADM≌△DCN(SAS),∴∠DAM=∠CDN,∴∠DMA=∠CND,在△DPM中,∠PDM+∠PMD=90°,∴∠DPM=90°,∵∠DPM=∠APN,∴△ANP為直角三角形,AN為直角三角形的斜邊,由直角三角形的性質(zhì)得PQ=AN,在△ANB中,AN==2,∴PQ=,故答案為:.【點睛】本題考查正方形的性質(zhì),全等三角形的判定和性質(zhì),直角三角形斜邊上的中線,勾股定理等知識,解題的關(guān)鍵是熟練掌握正方形的性質(zhì).3、【解析】【分析】作PM⊥AD于M,交BC于N,根據(jù)矩形的性質(zhì)可得S△PEB=S△PFD即可求解.【詳解】解:作PM⊥AD于M,交BC于N.則有四邊形AEPM,四邊形DFPM,四邊形CFPN,四邊形BEPN都是矩形,,∴,,∴S陰=9+9=18,故答案為:18.【點睛】本題考查矩形的性質(zhì)、三角形的面積等知識,解題的關(guān)鍵是證明.4、.【解析】【分析】由AE=DA,點F1是CD的中點,矩形ABCD的面積等于2,結(jié)合矩形的性質(zhì)可得△EF1D和△EAB的面積都等于1,結(jié)合三角形中線的性質(zhì)可得△EF1F2的面積等于,同理可得△EFn﹣1Fn的面積為,△BCFn的面積為22,即可得出結(jié)論.【詳解】∵AE=DA,點F1是CD的中點,矩形ABCD的面積等于2,∴△EF1D和△EAB的面積都等于1,∵點F2是CF1的中點,∴△EF1F2的面積等于,同理可得△EFn﹣1Fn的面積為,∵△BCFn的面積為22,∴△EFnB的面積為2+1﹣12﹣(1).故答案為:.【點睛】本題考查了矩形的性質(zhì),三角形中線的性質(zhì),解題的關(guān)鍵是根據(jù)面積找出規(guī)律.5、25°【解析】【分析】利用翻折變換的性質(zhì)即可解決.【詳解】解:由折疊可知,∠EF=∠AEF,∠EC=∠BEC=65°,∵∠EF+∠AEF+∠EC+∠BEC=180°,∴∠EF+∠AEF=50°,∴∠AEF=25°,故答案為:25°.【點睛】本題考查了折疊的性質(zhì),熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.三、解答題1、(1)見解析;(2)2【分析】(1)先判斷出∠OAB=∠DCA,進而判斷出∠DAC=∠DCA,得出CD=AD=AB,即可得出結(jié)論;(2)先判斷出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出結(jié)論.【詳解】(1)證明:∵ABCD,∴∠OAB=∠DCA,∵AC為∠DAB的平分線,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵ABCD,∴四邊形ABCD是平行四邊形,∵AD=AB,∴平行四邊形ABCD是菱形;(2)解:∵四邊形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.【點睛】此題主要考查特殊平行四邊形的判定與性質(zhì),解題的關(guān)鍵是菱形的判定與性質(zhì)、勾股定理的應(yīng)用.2、(1)證明見詳解;(2)與面積相等的平行四邊形有、、、.【分析】(1)根據(jù)三角形中位線定理可得:,,,,依據(jù)平行四邊形的判定定理可得四邊形DECF為平行四邊形,再由,可得,依據(jù)菱形的判定定理即可證明;(2)根據(jù)三角形中位線定理及平行四邊形的判定定理可得四邊形DEFB、DECF、ADFE是平行四邊形,根據(jù)平行四邊形的性質(zhì)得出與各平行四邊形面積之間的關(guān)系,再根據(jù)平行四邊形的判定得出四邊形EGCF是平行四邊形,根據(jù)其性質(zhì)得到,根據(jù)等底同高可得,據(jù)此即可得出與面積相等的平行四邊形.【詳解】解:(1)∵D、E、F分別是AB、AC、BC的中點,∴,,,,∴四邊形DECF為平行四邊形,∵,,∴四邊形DECF為菱形;(2)∵D、E、F分別是AB、AC、BC的中點,∴,,,,,,且,,,∴四邊形DEFB、DECF、ADFE是平行四邊形,∴,∵,,∴四邊形EGCF是平行四邊形,∴,∴,∴∴與面積相等的平行四邊形有、、、.【點睛】題目主要考查菱形及平行四邊形的判定定理和性質(zhì),中位線的性質(zhì)等,熟練掌握平行四邊形及菱形的判定定理及性質(zhì)是解題關(guān)鍵.3、(1)見解析;(2)2【分析】(1)利用ASA定理證明△AEB≌△AED,得到BE=ED,AD=AB,根據(jù)三角形中位線定理解答;(2)分別延長BE、AC交于點H,仿照(1)的過程解答.【詳解】解:(1)證明:∵AE平分,,∴∠BAE=∠DAE,∠AEB=∠AED=90°,在△AEB和△AED中,,∴△AEB≌△AED(ASA)∴BE=ED,AD=AB,∵點F是BC的中點,∴BF=FC,∴EF是△BCD的中位線,∴EF=CD=(AC-AD)=(AC-AB);(2)解:分別延長BE、AC交于點H,∵AE平分,,∴∠BAE=∠DAE,∠AEB=∠AED=90°,在△AEB和△AEH中,,∴△AEB≌△AEH(ASA)∴BE=EH,AH=AB=9,∵點F是BC的中點,∴BF=FC,∴EF是△BCD的中位線,∴EF=CH=(AH-AC)=2.【點睛】本題考查的是三角形中位線定理、全等三角形的判定和性質(zhì),掌握三角形的中位線平行于第三邊,且等于第三邊的一半是解題的關(guān)鍵.4、(1)3秒后平行于軸;(2)或.【分析】(1)設(shè)秒后平行于軸,先求出的長,再根據(jù)矩形的判定與性質(zhì)可得,由此建立方程,解方程即可得;(2)分①點在點右側(cè),②點在點左側(cè)兩種情況,分別根據(jù)建立方程,解方程即可得.【詳解】解:(1),,設(shè)秒后平行于軸,,垂直于軸,垂直于軸,平行于軸,四邊形是矩形,,即,解得,即3秒后平行于軸;(2)由題意得:經(jīng)過秒后,,垂直于軸,點在直線上,且點的坐標(biāo)為,點的縱坐標(biāo)為4,①當(dāng)點在點右側(cè)時,,由得:,解得,,此時點的坐標(biāo)為;②當(dāng)點在點左側(cè)時,,由得:,解得,,此時點的坐標(biāo)為;綜上,點的坐標(biāo)為或.【點睛】本題考查了坐標(biāo)與圖形、矩形的判定與性質(zhì)等知識點,較難的是題(2),正確分兩種情況討論是解題關(guān)鍵.5、(1)6;(2)①OC=BD,OC∥BD;②3.【分析】(1)利用二次根式的被開方數(shù)是非負(fù)數(shù),求出m=3,判斷出A,B兩點坐標(biāo),可得結(jié)論;(2)①結(jié)論:OC=BD,OC∥BD.連接AB交x軸于點T.利用等腰三角形的三線合一的性質(zhì)得出OC=2CT,利用三角形中位線定理得出CT∥BD,BD=2CT,由此即可得;②連接AB交OC于點T,過點P作PH⊥OC于H.證明△OTB≌△PHO(AAS),推出BT=OH=3,即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論