版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、在一個不透明的盒子中裝有紅球、白球、黑球共40個,這些球除顏色外無其他差別,在看不見球的條件下,隨機從盒子中摸出一個球記錄顏色后放回.經(jīng)過多次試驗,發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定在30%左右,則盒子中紅球的個數(shù)約為()A.12 B.15 C.18 D.232、如圖,在中,,,,將繞原點O逆時針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點A的對應(yīng)點的坐標是()A. B. C. D.3、把6張大小、厚度、顏色相同的卡片上分別畫上線段、等邊三角形、正方形、長方形、圓、拋物線.在看不見圖形的條件下任意摸出1張,這張卡片上的圖形是中心對稱圖形的概率是()A. B. C. D.4、等邊三角形、等腰三角形、矩形、菱形中既是軸對稱圖形,又是中心對稱圖形的個數(shù)是()A.2個 B.3個 C.4個 D.5個5、往直徑為78cm的圓柱形容器內(nèi)裝入一些水以后,截面如圖所示,若水面寬,則水的最大深度為()A.36cm B.27cm C.24cm D.15cm6、如圖是一個含有3個正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,將它鑲嵌在一個圓形的金屬框上,使A,G,H三點剛好在金屬框上,則該金屬框的半徑是()A. B. C. D.7、如圖,在矩形ABCD中,點E在CD邊上,連接AE,將沿AE翻折,使點D落在BC邊的點F處,連接AF,在AF上取點O,以O(shè)為圓心,線段OF的長為半徑作⊙O,⊙O與AB,AE分別相切于點G,H,連接FG,GH.則下列結(jié)論錯誤的是()A. B.四邊形EFGH是菱形C. D.8、下列圖形中,是中心對稱圖形,但不是軸對稱圖形的是()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,在ABC中,∠C=90°,AB=10,在同一平面內(nèi),點O到點A,B,C的距離均等于a(a為常數(shù)).那么常數(shù)a的值等于________.2、已知一個扇形的半徑是1,圓心角是120°,則這個扇形的面積是___________.3、如圖,在平面直角坐標系內(nèi),∠OA0A1=90°,∠A1OA0=60°,以O(shè)A1為直角邊向外作Rt△OA1A2,使∠A2A1O=90°,∠A2OA1=60°,按此方法進行下去,得到Rt△OA2A3,Rt△OA3A4…,若點A0的坐標是(1,0),則點A2021的橫坐標是___________.4、如圖,在中,,是內(nèi)的一個動點,滿足.若,,則長的最小值為_______.5、《九章算術(shù)》是我國古代的數(shù)學名著,書中有這樣的一個問題:“今有勾八步,股十五步,問勾中容圓徑幾何?”.其意思是:“如圖,現(xiàn)有直角三角形,勾(短直角邊)長為8步,股(長直角邊)長為15步,問該直角三角形所能容納的最大圓的直徑是多少?”答:該直角三角形所能容納的最大圓的直徑是______步.6、已知60°的圓心角所對的弧長是3.14厘米,則它所在圓的周長是______厘米.7、點(2,-3)關(guān)于原點的對稱點的坐標為_____.三、解答題(7小題,每小題0分,共計0分)1、如圖,在平面直角坐標系中,經(jīng)過原點,且與軸交于點,與軸交于點,點在第二象限上,且,則__.2、在平面直角坐標系xOy中,對于點P,O,Q給出如下定義:若OQ<PO<PQ且PO≤2,我們稱點P是線段OQ的“潛力點”已知點O(0,0),Q(1,0)(1)在P1(0,-1),P2(,),P3(-1,1)中是線段OQ的“潛力點”是_____________;(2)若點P在直線y=x上,且為線段OQ的“潛力點”,求點P橫坐標的取值范圍;(3)直線y=2x+b與x軸交于點M,與y軸交于點N,當線段MN上存在線段OQ的“潛力點”時,直接寫出b的取值范圍3、在正方形ABCD中,過點B作直線l,點E在直線l上,連接CE,DE,其中,過點C作于點F,交直線l于點H.(1)當直線l在如圖①的位置時①請直接寫出與之間的數(shù)量關(guān)系______.②請直接寫出線段BH,EH,CH之間的數(shù)量關(guān)系______.(2)當直線l在如圖②的位置時,請寫出線段BH,EH,CH之間的數(shù)量關(guān)系并證明;(3)已知,在直線l旋轉(zhuǎn)過程中當時,請直接寫出EH的長.4、如圖,在方格紙中,已知頂點在格點處的△ABC,請畫出將△ABC繞點C旋轉(zhuǎn)180°得到的△A'B'C'.(需寫出△A'B'C'各頂點的坐標).5、在直角坐標平面內(nèi),三個頂點的坐標分別為、、(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).(1)將向下平移4個單位長度得到的,則點的坐標是____________;(2)以點B為位似中心,在網(wǎng)格上畫出,使與位似,且位似比為2:1,求點的坐標;(3)若是外接圓,求的半徑.6、元元同學在數(shù)學課上遇到這樣一個問題:如圖1,在平面直角坐標系xOy中,OA經(jīng)過坐標原點O,并與兩坐標軸分別交于B、C兩點,點B的坐標為,點D在上,且,求OA的半徑和圓心A的坐標.元元的做法如下,請你幫忙補全解題過程:解:如圖2,連接BC.作AELOB于E、AF⊥OC于F.∴、(依據(jù)是①)∵,∴(依據(jù)是②).∵,.∴BC是的直徑(依據(jù)是③).∴∵,∴A的坐標為(④)的半徑為⑤7、如圖1,點O為直線AB上一點,將兩個含60°角的三角板MON和三角板OPQ如圖擺放,使三角板的一條直角邊OM、OP在直線AB上,其中.(1)將圖1中的三角板OPQ繞點O按逆時針方向旋轉(zhuǎn)至圖2的位置,使得邊OP在的內(nèi)部且平分,此時三角板OPQ旋轉(zhuǎn)的角度為______度;(2)三角板OPQ在繞點O按逆時針方向旋轉(zhuǎn)時,若OP在的內(nèi)部.試探究與之間滿足什么等量關(guān)系,并說明理由;(3)如圖3,將圖1中的三角板MON繞點O以每秒2°的速度按順時針方向旋轉(zhuǎn),同時將三角板OPQ繞點O以每秒3°的速度按逆時針方向旋轉(zhuǎn),將射線OB繞點O以每秒5°的速度沿逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)后的射線OB記為OE,射線OC平分,射線OD平分,當射線OC、OD重合時,射線OE改為繞點O以原速按順時針方向旋轉(zhuǎn),在OC與OD第二次相遇前,當時,直接寫出旋轉(zhuǎn)時間t的值.-參考答案-一、單選題1、A【分析】由題意可設(shè)盒子中紅球的個數(shù)x,則盒子中球的總個數(shù)x,摸到紅球的頻率穩(wěn)定在30%左右,根據(jù)頻率與概率的關(guān)系可得出摸到紅球的概率為30%,再根據(jù)概率的計算公式計算即可.【詳解】解:設(shè)盒子中紅球的個數(shù)x,根據(jù)題意,得:解得x=12,所以盒子中紅球的個數(shù)是12,故選:A.【點睛】本題主要考查了利用頻率估計概率以及概率求法的運用,利用概率的求法估計總體個數(shù),利用如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=;頻率與概率的關(guān)系生:一般地,在大量的重復(fù)試驗中,隨著試驗次數(shù)的增加,事件A發(fā)生的頻率會穩(wěn)定于某個常數(shù)p,我們稱事件A發(fā)生的概率為p.2、C【分析】過點A作AC⊥x軸于點C,設(shè),則,根據(jù)勾股定理,可得,從而得到,進而得到∴,可得到點,再根據(jù)旋轉(zhuǎn)的性質(zhì),即可求解.【詳解】解:如圖,過點A作AC⊥x軸于點C,設(shè),則,∵,,∴,∵,,∴,解得:,∴,∴,∴點,∴將繞原點O順時針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點A的對應(yīng)點的坐標是,∴將繞原點O逆時針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點A的對應(yīng)點的坐標是.故選:C【點睛】本題考查坐標與圖形變化一旋轉(zhuǎn),解直角三角形等知識,解題的關(guān)鍵是求出點A的坐標,屬于中考常考題型.3、D【分析】根據(jù)題意,判斷出中心對稱圖形的個數(shù),進而即可求得答案【詳解】解:∵線段、等邊三角形、正方形、長方形、圓、拋物線中,中心對稱圖形有:線段、正方形、長方形、圓,共4種,總數(shù)為6種∴在看不見圖形的條件下任意摸出1張,這張卡片上的圖形是中心對稱圖形的概率是故選D【點睛】本題考查了概率公式求概率,中心對稱圖形,掌握線段、等邊三角形、正方形、長方形、圓、拋物線的性質(zhì)是解題的關(guān)鍵.4、A【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念進行判斷.【詳解】解:矩形,菱形既是軸對稱圖形,也是中心對稱圖形,符合題意;等邊三角形、等腰三角形是軸對稱圖形,不是中心對稱圖形,不符合題意;共2個既是軸對稱圖形又是中心對稱圖形.故選:A.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.(1)如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.(2)如果一個圖形繞某一點旋轉(zhuǎn)180°后能夠與自身重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心.5、C【分析】連接,過點作于點,交于點,先由垂徑定理求出的長,再根據(jù)勾股定理求出的長,進而得出的長即可.【詳解】解:連接,過點作于點,交于點,如圖所示:則,的直徑為,,在中,,,即水的最大深度為,故選:C.【點睛】本題考查了垂徑定理、勾股定理等知識,解題的關(guān)鍵是根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.6、A【分析】如圖,記過A,G,H三點的圓為則是,的垂直平分線的交點,記的交點為的交點為延長交于為的垂直平分線,結(jié)合正方形的性質(zhì)可得:再設(shè)利用勾股定理建立方程,再解方程即可得到答案.【詳解】解:如圖,記過A,G,H三點的圓為則是,的垂直平分線的交點,記的交點為的交點為延長交于為的垂直平分線,結(jié)合正方形的性質(zhì)可得:四邊形為正方形,則設(shè)而AB=2,CD=3,EF=5,結(jié)合正方形的性質(zhì)可得:而又而解得:故選A【點睛】本題考查的是正方形的性質(zhì),三角形外接圓圓心的確定,圓的基本性質(zhì),勾股定理的應(yīng)用,二次根式的化簡,確定過A,G,H三點的圓的圓心是解本題的關(guān)鍵.7、C【分析】由折疊可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根據(jù)切線長定理得到AG=AH,∠GAF=∠HAF,進而求出∠GAF=∠HAF=∠DAE=30°,據(jù)此對A作出判斷;接下來延長EF與AB交于點N,得到EF是⊙O的切線,ANE是等邊三角形,證明四邊形EFGH是平行四邊形,再結(jié)合HE=EF可對B作出判斷;在RtEFC中,∠C=90°,∠FEC=60°,則EF=2CE,再結(jié)合AD=DE對C作出判斷;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不難判斷D.【詳解】解:由折疊可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.∵AB和AE都是⊙O的切線,點G、H分別是切點,∴AG=AH,∠GAF=∠HAF,∴∠GAF=∠HAF=∠DAE=30°,∴∠BAE=2∠DAE,故A正確,不符合題意;延長EF與AB交于點N,如圖:∵OF⊥EF,OF是⊙O的半徑,∴EF是⊙O的切線,∴HE=EF,NF=NG,∴△ANE是等邊三角形,∴FG//HE,F(xiàn)G=HE,∠AEF=60°,∴四邊形EFGH是平行四邊形,∠FEC=60°,又∵HE=EF,∴四邊形EFGH是菱形,故B正確,不符合題意;∵AG=AH,∠GAF=∠HAF,∴GH⊥AO,故D正確,不符合題意;在Rt△EFC中,∠C=90°,∠FEC=60°,∴∠EFC=30°,∴EF=2CE,∴DE=2CE.∵在Rt△ADE中,∠AED=60°,∴AD=DE,∴AD=2CE,故C錯誤,符合題意.故選C.【點睛】本題是一道幾何綜合題,考查了切線長定理及推論,切線的判定,菱形的定義,含30的直角三角形的性質(zhì),等邊三角形的判定和性質(zhì),翻折變換等,正確理解翻折變換及添加輔助線是解決本題的關(guān)鍵.8、B【分析】根據(jù)“把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形”及“如果一個平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形”,由此問題可求解.【詳解】解:A、既不是軸對稱圖形也不是中心對稱圖形,故不符合題意;B、是中心對稱圖形但不是軸對稱圖形,故符合題意;C、既不是軸對稱圖形也不是中心對稱圖形,故不符合題意;D、是軸對稱圖形但不是中心對稱圖形,故不符合題意;故選B.【點睛】本題主要考查中心對稱圖形及軸對稱圖形的識別,熟練掌握中心對稱圖形及軸對稱圖形的定義是解題的關(guān)鍵.二、填空題1、5【分析】直接利用直角三角形斜邊上的中線等于斜邊的一半即可求解.【詳解】解:根據(jù)直角三角形斜邊上的中線等于斜邊的一半,即可知道點到點A,B,C的距離相等,如下圖:,,故答案是:5.【點睛】本題考查了直角三角形的外接圓的外心,解題的關(guān)鍵是掌握直角三角形斜邊上的中線等于斜邊的一半即可求解.2、【分析】根據(jù)圓心角為的扇形面積是進行解答即可得.【詳解】解:這個扇形的面積.故答案是:.【點睛】本題考查了扇形的面積,解題的關(guān)鍵是掌握扇形的面積公式.3、22020【分析】根據(jù),,點的坐標是,得,點的橫坐標是,點的橫坐標是-,同理可得點的橫坐標是,點的橫坐標是,點的橫坐標是,點的橫坐標是,點的橫坐標是,依次進行下去,可得點的橫坐標,進而求得的橫坐標.【詳解】解:∵∠OA0A1=90°,∠A1OA0=60°,點A0的坐標是(1,0),∴OA0=1,∴點A1的橫坐標是1=20,∴OA1=2OA0=2,∵∠A2A1O=90°,∠A2OA1=60°,∴OA2=2OA1=4,∴點A2的橫坐標是-OA2=-2=-21,依次進行下去,Rt△OA2A3,Rt△OA3A4…,同理可得:點A3的橫坐標是﹣2OA2=﹣8=﹣23,點A4的橫坐標是﹣8=﹣23,點A5的橫坐標是OA5=×2OA4=2OA3=4OA2=16=24,點A6的橫坐標是2OA5=2×2OA4=23OA3=64=26,點A7的橫坐標是64=26,…發(fā)現(xiàn)規(guī)律,6次一循環(huán),即,,2021÷6=336……5則點A2021的橫坐標與的坐標規(guī)律一致是22020.故答案為:22020.【點睛】本題考查了規(guī)律型——點的坐標,解決本題的關(guān)鍵是理解動點的運動過程,總結(jié)規(guī)律,發(fā)現(xiàn)規(guī)律,點A3n在軸上,且坐標為.4、2【分析】取AC中點O,由勾股定理的逆定理可知∠ADC=90°,則點D在以O(shè)為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長的最小值即為,由此求解即可.【詳解】解:如圖所示,取AC中點O,∵,即,∴∠ADC=90°,∴點D在以O(shè)為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長的最小值即為,∵,,∠ACB=90°,∴,∴,∴,∴,故答案為:2.【點睛】本題主要考查了一點到圓上一點的最短距離,勾股定理的逆定理,勾股定理,解題的關(guān)鍵在于確定點D的運動軌跡.5、6【分析】依題意,直角三角形性質(zhì),結(jié)合題意能夠容納的最大為內(nèi)切圓,結(jié)合內(nèi)切圓半徑,利用等積法求解即可;【詳解】設(shè)直角三角形中能容納最大圓的半徑為:;依據(jù)直角三角形的性質(zhì):可得斜邊長為:依據(jù)直角三角形面積公式:,即為;內(nèi)切圓半徑面積公式:,即為;所以,可得:,所以直徑為:;故填:6;【點睛】本題主要考查直角三角形及其內(nèi)切圓的性質(zhì),重點在理解題意和利用內(nèi)切圓半徑求解面積;6、18.84【分析】先根據(jù)弧長公式求得πr,然后再運用圓的周長公式解答即可.【詳解】解:設(shè)圓弧所在圓的半徑為厘米,則,解得,則它所在圓的周長為(厘米),故答案為:.【點睛】本題主要考查了弧長公式、圓的周長公式等知識點,牢記弧長公式是解答本題的關(guān)鍵.7、(-2,3)【分析】根據(jù)“關(guān)于原點對稱的點的坐標關(guān)系,橫坐標與縱坐標都互為相反數(shù)”,即可求解.【詳解】點(2,-3)關(guān)于原點的對稱點的坐標是(-2,3).故答案為:
(-2,3).【點睛】本題主要考查點關(guān)于原點對稱,解決本題的關(guān)鍵是要熟練掌握關(guān)于原點對稱點的坐標的關(guān)系.三、解答題1、2+【分析】連接AC,CM,AB,過點C作CH⊥OA于H,設(shè)OC=a.利用勾股定理構(gòu)建方程解決問題即可.【詳解】解:連接AC,CM,AB,過點C作CH⊥OA于H,設(shè)OC=a.∵∠AOB=90°,∴AB是直徑,∵A(-4,0),B(0,2),∴,∵∠AMC=2∠AOC=120°,,在Rt△COH中,,,在Rt△ACH中,AC2=AH2+CH2,∴,∴a=2+或2-(因為OC>OB,所以2-舍棄),∴OC=2+,故答案為:2+.【點睛】本題考查圓周角定理,勾股定理,解直角三角形等知識,解題的關(guān)鍵是學會利用參數(shù)構(gòu)建方程解決問題.2、(1);(2);(3)或【分析】(1)分別計算出OQ、PO和PQ的長度,比較即可得出答案;(2)先判斷點P在以O(shè)為圓心,1為半徑的圓外且點P在線段OQ垂直平分線的左側(cè),結(jié)合PO≤2,點P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi),可得點P在如圖所示的線段AB上(不包含點B),過作軸,過作軸,垂足分別為再根據(jù)圖形的性質(zhì)求解從而可得答案;(3)由(2)得:點P在以O(shè)為圓心,1為半徑的圓外且點P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi),而PO<PQ,點P在線段OQ垂直平分線的左側(cè),再分兩種情況討論:當時,當時,分別畫出兩種情況下的臨界直線再根據(jù)臨界直線經(jīng)過的特殊點求解的值,再確定范圍即可.【詳解】解:(1)O(0,0),Q(1,0),P1(0,-1),P2(,),P3(-1,1)不滿足OQ<PO<PQ且PO≤2,所以不是線段OQ的“潛力點”,同理:所以不滿足OQ<PO<PQ且PO≤2,所以不是線段OQ的“潛力點”,同理:所以滿足:OQ<PO<PQ且PO≤2,所以是線段OQ的“潛力點”,故答案為:P3(2)∵點P為線段OQ的“潛力點”,∴OQ<PO<PQ且PO≤2,∵OQ<PO,∴點P在以O(shè)為圓心,1為半徑的圓外∵PO<PQ,∴點P在線段OQ垂直平分線的左側(cè),而的垂直平分線為:∵PO≤2,∴點P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi)又∵點P在直線y=x上,∴點P在如圖所示的線段AB上(不包含點B)過作軸,過作軸,垂足分別為由題意可知△BOC和△AOD是等腰三角形,∴∴-≤xp<-(3)由(2)得:點P在以O(shè)為圓心,1為半徑的圓外且點P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi),而PO<PQ,點P在線段OQ垂直平分線的左側(cè)當時,過時,即函數(shù)解析式為:此時則當與半徑為2的圓相切于時,則由而當時,如圖,同理可得:點P在以O(shè)為圓心,1為半徑的圓外且點P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi),而PO<PQ,點P在線段OQ垂直平分線的左側(cè),同理:當過則直線為在直線上,此時當過時,則所以此時:綜上:的范圍為:1<b≤或<b<-1【點睛】本題考查的是新定義情境下的知識運用,圓的基本性質(zhì),圓的切線的性質(zhì),一次函數(shù)的綜合應(yīng)用,銳角三角函數(shù)的應(yīng)用,勾股定理的應(yīng)用,數(shù)形結(jié)合是解本題的關(guān)鍵.3、(1)①;②;(2);證明見解析;(3)或.【分析】(1)①,根據(jù)CE=BC,四邊形ABCD為正方形,可得BC=CD=CE,根據(jù)CF⊥DE,得出CF平分∠ECD即可;②,過點C作CG⊥BE于G,根據(jù)BC=EC,得出∠ECG=∠BCG=,根據(jù)∠ECH=∠HCD=,可得CG=HG,根據(jù)勾股定理在Rt△GHC中,,根據(jù)GE=,得出即可;(2),過點C作交BE于點M,得出,先證得出,可證是等腰直角三角形,可得即可;(3)或,根據(jù),分兩種情況,當∠ABE=90°-15°=75°時,BC=CE,先證△CDE為等邊三角形,可求∠FEH=∠DEC=∠CEB=60°-15°=45°,根據(jù)CF⊥DE,得出DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,根據(jù)勾股定理HE=,當∠ABE=90°+15°=105°,可得BC=CE得出∠CBE=∠CEB=15°,可求∠FCE=,∠FEC=180°-∠CFE-∠FCE=30°,根據(jù)30°直角三角形先證得出CF=,根據(jù)勾股定理EF=,再證FH=FE,得出EH=即可.【詳解】解:(1)①∵CE=BC,四邊形ABCD為正方形,∴BC=CD=CE,∵CF⊥DE,∴CF平分∠ECD,∴∠ECH=∠HCD,故答案為:∠ECH=∠HCD;②,過點C作CG⊥BE于G,∵BC=EC,∴∠ECG=∠BCG=,∵∠ECH=∠HCD=,∴∠GCH=∠ECG+∠ECF=+,∴∠GHC=180°-∠HGC+∠GCH=180°-90°-45°=45°,∴CG=HG,在Rt△GHC中,∴,∵GE=,∴GH=GE+EH=,∴,∴,∴,故答案是:;(2),證明:過點C作交BE于點M,則,∴?,∴,∵,,∴,,∴,∴,∴,,∴是等腰直角三角形,∴,∵,∴,(3)或,∵,分兩種情況,當∠ABE=90°-15°=75°時,∵BC=CE,∴∠CBE=∠CEB=15°,∴∠BCE=180°-∠CBE-∠CEB==180°-15°-15°=150°,∴∠DCE=∠BCE-∠BCD=150°=90°=60°,∵CE=CD,∴△CDE為等邊三角形,∴DE=CD=AB=2,∠DEC=60°,∴∠FEH=∠DEC=∠CEB=60°-15°=45°,∵CF⊥DE,∴DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,∴EF=HF=1,∴HE=,當∠ABE=90°+15°=105°,∵BC=CE,∠CBE=∠CEB=15°,∴∠BCE=180°-∠CBE-∠CEB=150°,∴∠DCE=360°-∠DCB-∠BCE=120°,∵CE=BC=CD,CH⊥DE,∴∠FCE=,∴∠FEC=180°-∠CFE-∠FCE=30°,∴CF=,∴EF=,∵∠HEF=∠CEB+∠CEF=15°+30°=45°,∴∠FHE=180°-∠HFE-∠FEH=45°=∠FEH,∴FH=FE,∴EH=,∴或.【點睛】本題考查正方形性質(zhì),圖形旋轉(zhuǎn)性質(zhì),勾股定理,等邊三角形,等腰直角三角形性質(zhì),角平分線,線段和差,掌握正方形性質(zhì),圖形旋轉(zhuǎn)性質(zhì),勾股定理,等邊三角形,等腰直角三角形性質(zhì),角平分線,線段和差是解題關(guān)鍵.4、A'(-1,-3),B'(1,-1),C'(-2,0),畫圖見解析.【分析】先畫出點A,B關(guān)于點C中心對稱的點A',B',再連接A',B',C即可解題.【詳解】解:A關(guān)于點C中心對稱的點A'(-1,-3),B關(guān)于點C中心對稱的點B'(1,-1),C關(guān)于點C中心對稱的點C'(-2,0),如圖,△A'B'C'即為所求作圖形.【點睛】本題考查中心對稱圖形,是基礎(chǔ)考點,掌握相關(guān)知識是解題關(guān)鍵.5、(1)(2,-2)(2)圖見解析,(1,0)(3)【分析】(1)根據(jù)平移的性質(zhì)得出平移后的圖從而得到點的坐標;(2)根據(jù)位似圖形的性質(zhì)得出對應(yīng)點位置,從而得到點的坐標;(3)證明是直角三角形,根據(jù)直角三角形外切圓半徑公式計算即可.(1)如圖所示:C1(2,﹣2);故答案為(2,﹣2);(2)如圖所示:C2(1,0);故答案為(1,0);(3)由圖可知:∵,,∴∴是直角三角形,∴能蓋住的最小圓即為外接圓,設(shè)其半徑為R;則【點睛】本題考查作圖—平移變換,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年大學(環(huán)境設(shè)計)室內(nèi)家具搭配技術(shù)實操測試試題及答案
- 太原中醫(yī)養(yǎng)生師考試題及答案
- 護士解剖學考試題及答案
- 2025年園林規(guī)劃設(shè)計專升本試題
- 公司消防安全實施步驟
- 軟件工程與人工智能
- 中醫(yī)藥就業(yè)前景分析
- 歷年護師考試題庫及答案
- 衛(wèi)生法規(guī)考試題及答案
- 2025幼兒園保健醫(yī)考核流程試題及答案
- 安徽省蕪湖市鳩江區(qū)2024-2025學年高一上學期期末考試生物試卷
- 2025年對中國汽車行業(yè)深度變革的觀察與思考報告
- 福建省泉州市晉江市2024-2025學年八年級上學期1月期末考試英語試題(含答案無聽力音頻及原文)
- 心血管疾病風險評估
- 慢性肝病患者營養(yǎng)支持護理培訓
- 汽車租賃業(yè)應(yīng)急預(yù)案(3篇)
- 基層高血壓管理流程
- 2026年咨詢工程師咨詢實務(wù)考前沖刺重點知識考點總結(jié)記憶筆記
- 2025年內(nèi)蒙古自治區(qū)呼和浩特市評審專家考試題庫(一)
- 電化學儲能電站安全檢查要點表
- 空軍招飛心理測試題及答案解析
評論
0/150
提交評論