版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省邳州市中考數(shù)學自我提分評估考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、當0x3,函數(shù)y=﹣x2+4x+5的最大值與最小值分別是()A.9,5 B.8,5 C.9,8 D.8,42、關于的一元二次方程的兩根應為(
)A. B., C. D.3、如圖,在方格紙上建立的平面直角坐標系中,將繞點按順時針方向旋轉90°,得到,則點的坐標為(
).A. B.C. D.4、點A(x,y)在第二象限內,且│x│=2,│y│=3,則點A關于原點對稱的點的坐標為(
)A.(-2,3) B.(2,-3) C.(-3,2) D.(3,-2)5、揚帆中學有一塊長,寬的矩形空地,計劃在這塊空地上劃出四分之一的區(qū)域種花,小禹同學設計方案如圖所示,求花帶的寬度.設花帶的寬度為,則可列方程為()A. B.C. D.二、多選題(5小題,每小題3分,共計15分)1、已知:如圖,△ABC中,∠A=60°,BC為定長,以BC為直徑的⊙O分別交AB、AC于點D、E.連接DE、OE.下列結論中正確的結論是()A.BC=2DE B.D點到OE的距離不變 C.BD+CE=2DE D.AE為外接圓的切線2、對于二次函數(shù),下列說法不正確的是(
)A.圖像開口向下B.圖像的對稱軸是直線C.函數(shù)最大值為0D.隨的增大而增大3、關于拋物線y=(x﹣2)2+1,下列說法不正確的是(
)A.開口向上,頂點坐標(﹣2,1)
B.開口向下,對稱軸是直線x=2C.開口向下,頂點坐標(2,1)
D.當x>2時,函數(shù)值y隨x值的增大而增大4、如圖,二次函數(shù)y=ax2+bx+c的圖象經過點A(﹣4,0),其對稱軸為直線x=﹣1,下列結論正確的是(
)A.a+b+c<0B.abc<0C.2a+b=0D.若P(﹣6,y1),Q(m,y2)是拋物線上兩點,且y1>y2,則﹣6<m<45、二次函數(shù)(,,為常數(shù),)的部分圖象如圖所示,圖象頂點的坐標為,與軸的一個交點在點和點之間,給出的四個結論中正確的有(
)A. B.C. D.時,方程有解第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、已知二次函數(shù)y=x2+bx+c的頂點在x軸上,點A(m﹣1,n)和點B(m+3,n)均在二次函數(shù)圖象上,求n的值為____.2、“降次”是解一元二次方程的基本思想,用這種思想解高次方程x3-x=0,它的解是_____________.3、如圖,,,以為直徑作半圓,圓心為點;以點為圓心,為半徑作,過點作的平行線交兩弧于點、,則陰影部分的面積是________.4、北侖梅山所產的草莓柔嫩多汁,芳香味美,深受消費者喜愛.有一草莓種植大戶,每天草莓的采摘量為300千克,當草莓的零售價為22元/千克時,剛好可以全部售完.經調查發(fā)現(xiàn),零售價每上漲1元,每天的銷量就減少30千克,而剩余的草莓可由批發(fā)商以18元/千克的價格統(tǒng)一收購走,則當草莓零售價為___元時,該種植戶一天的銷售收入最大.5、在平面直角坐標系中,已知和是拋物線上的兩點,將拋物線的圖象向上平移n(n是正整數(shù))個單位,使平移后的圖象與x軸沒有交點,則n的最小值為_____.四、解答題(6小題,每小題10分,共計60分)1、用配方法解方程:.2、(1)計算:(2)解方程:2(x﹣3)2=503、受“新冠”疫情的影響,某銷售商在網上銷售A、B兩種型號的“手寫板”,獲利頗豐.已知A型,B型手寫板進價、售價和每日銷量如表格所示:進價(元/個)售價(元/個)銷量(個/日)A型600900200B型8001200400根據(jù)市場行情,該銷售商對A手寫板降價銷售,同時對B手寫板提高售價,此時發(fā)現(xiàn)A手寫板每降低5就可多賣1,B手寫板每提高5就少賣1,要保持每天銷售總量不變,設其中A手寫板每天多銷售x,每天總獲利的利潤為y(1)求y、x間的函數(shù)關系式并寫出x取值范圍;(2)要使每天的利潤不低于234000元,直接寫出x的取值范圍;(3)該銷售商決定每銷售一個B手寫板,就捐a元給因“新冠疫情”影響的困難家庭,當時,每天的最大利潤為229200元,求a的值.4、如圖,在△ABC中,∠CAB=70°,在同一平面內,將△ABC繞點A旋轉到△AB'C′的位置,使得CC′AB,求∠CC'A的度數(shù).5、若二次函數(shù)圖像經過,兩點,求、的值.6、如圖,矩形ABCD中,AB=6cm,BC=12cm..點M從點A開始沿AB邊向點B以1cm/秒的速度向B點移動,點N從點B開始沿BC邊以2cm/秒的速度向點C移動.若M,N分別從A,B點同時出發(fā),設移動時間為t(0<t<6),△DMN的面積為S.(1)求S關于t的函數(shù)關系式,并求出S的最小值;(2)當△DMN為直角三角形時,求△DMN的面積.-參考答案-一、單選題1、A【解析】【分析】利用配方法把原方程化為頂點式,再根據(jù)二次函數(shù)的性質即可解答.【詳解】y=﹣x2+4x+5=﹣x2+4x﹣4+4+5=﹣(x﹣2)2+9,∴當x=2時,最大值是9,∵0≤x≤3,∴x=0時,最小值是5,故選:A.【考點】本題考查二次函數(shù)的最值,掌握二次函數(shù)的性質與利用配方法將一般式改為頂點式是解答本題的關鍵.2、B【解析】【分析】先把方程化為一般式,再計算判別式的值,然后利用求根公式解方程即可.【詳解】x2?3ax+a2=0,△=(?3a)2?4××a2=a2,x=.所以x1=a,x2=a.故答案選B.【考點】本題考查了解一元二次方程,解題的關鍵是根據(jù)公式法解一元二次方程.3、A【解析】【分析】根據(jù)網格結構作出旋轉后的圖形,然后根據(jù)平面直角坐標系寫出點B′的坐標即可.【詳解】△A′B′O如圖所示,點B′(2,1).故選A.【考點】本題考查了坐標與圖形變化,熟練掌握網格結構,作出圖形是解題的關鍵.4、B【解析】【分析】根據(jù)A(x,y)在第二象限內可以判斷x,y的符號,再根據(jù)|x|=2,|y|=3就可以確定點A的坐標,進而確定點A關于原點的對稱點的坐標.【詳解】∵A(x,y)在第二象限內,∴x<0y>0,又∵|x|=2,|y|=3,∴x=-2,y=3,∴點A關于原點的對稱點的坐標是(2,-3).故選:B.【考點】本題考查了關于原點對稱的點的坐標,由點所在的象限能判斷出坐標的符號,同時考查了關于原點對稱的點坐標之間的關系,難度一般.5、D【解析】【分析】根據(jù)空白區(qū)域的面積矩形空地的面積可得.【詳解】設花帶的寬度為,則可列方程為,故選D.【考點】本題主要考查由實際問題抽象出一元二次方程,解題的關鍵是根據(jù)圖形得出面積的相等關系.二、多選題1、AB【解析】【分析】連接OD,可證明△ODE是等邊三角形,所以A,B正確;通過舉反例:當重合,時,可得:<可得C不一定成立,根據(jù)切線的定義,可得D不正確,從而可得答案.【詳解】解:連接OD,∵∠A=60°∴∠B+∠C=120°,的度數(shù)為∵的度數(shù)為∴的度數(shù)為∴∠DOE=60°,又OD=OE,∴△ODE是等邊三角形,即所以A正確,符合題意;則D到OE的長度是等邊△ODE的高,而等邊的邊長等于圓的半徑,則高一定是一個定值,因而B正確,符合題意;如圖:當重合,時,則為的切線,同理可得:此時則為的直徑,>此時<所以C不符合題意;與的外接圓有兩個交點,不是外接圓的切線,所以D不符合題意;故選:AB.【考點】本題考查的是圓的基本性質,圓弧的度數(shù)與其所對的圓周角的度數(shù)之間的關系,切線的概念的理解,等邊三角形的判定與性質,靈活運用以上知識解題是解題的關鍵.2、ACD【解析】【分析】根據(jù)題目中的函數(shù)解析式,可以判斷各個選項中的說法是否正確.【詳解】解:二次函數(shù),a=2>0,∴該函數(shù)的圖象開口向上,故選項A錯誤,圖象的對稱軸是直線x=1,故選項B正確,函數(shù)的最小值是y=0,故選項C錯誤,當x>1時隨的增大而增大,故選項D錯誤,故選:A,C,D.【考點】本題考查二次函數(shù)的性質、二次函數(shù)的最值,解答本題的關鍵是明確題意,利用二次函數(shù)的性質解答.3、ABC【解析】【分析】由拋物線的解析式可求得其對稱軸、開口方向、頂點坐標,進一步可得出其增減性,可得出答案.【詳解】解:∵y=(x﹣2)2+1,∴拋物線開口向上,對稱軸為直線x=2,頂點坐標為(2,1),∴A、B、C不正確;當x>2時,y隨x的增大而增大,∴D正確,故選:ABC.【考點】本題主要考查二次函數(shù)的性質,掌握二次函數(shù)的頂點式是解題的關鍵,即在y=中,對稱軸為直線x=h,頂點坐標為(h,k).4、ABD【解析】【分析】根據(jù)題意可得點A(﹣4,0)關于對稱軸的對稱點,從而得到當時,,再由,可得在對稱軸右側隨的增大而增大,從而得到當時,;根據(jù)圖象可得,,可得;再由,可得;然后根據(jù)P(﹣6,y1)關于對稱軸的對稱點,可得當y1>y2時,﹣6<m<4,即可求解.【詳解】解:∵二次函數(shù)y=ax2+bx+c的圖象經過點A(﹣4,0),其對稱軸為直線x=﹣1,∴點A(﹣4,0)關于對稱軸的對稱點,即當時,,∵拋物線開口向上,∴,∴在對稱軸右側隨的增大而增大,∴當時,,故A正確;∵拋物線與交于負半軸,∴,∵對稱軸為直線x=﹣1,,∴,即,∴,故B正確;∵,∴,故C錯誤;∵P(﹣6,y1)關于對稱軸的對稱點,∴當y1>y2時,﹣6<m<4,故D正確.故選:ABD【考點】本題主要考查了二次函數(shù)的圖象和性質,熟練掌握二次函數(shù)的圖象和性質,并利用數(shù)形結合思想解答是解題的關鍵.5、BCD【解析】【分析】根據(jù)拋物線與軸有兩個交點,可知,即可判斷A選項;根據(jù)時,,即可判斷B選項;根據(jù)對稱軸,即可判斷C選項;D.根據(jù)拋物線的頂點坐標為,函數(shù)有最大即可判定D.【詳解】解:由圖象可知,拋物線開口向下,對稱軸在軸的右側,與軸的交點在軸的負半軸,∵拋物線與軸有兩個交點,∴,∴,即,故A錯誤;由圖象可知,時,,∴,故B正確;∵拋物線的頂點坐標為,∴,,∵,∴,即,故C正確;∵拋物線的開口向下,頂點坐標為,∴(為任意實數(shù)),即時,方程有解.故D正確.故選BCD.【考點】本題主要考查了二次函數(shù)的性質、二次函數(shù)圖像等知識點,掌握二次函數(shù)的性質與解析式的關系是解答本題的關鍵.三、填空題1、4【解析】【分析】由A、B坐標可得對稱軸,由頂點在x軸上可得,求得b=﹣2(m+1),c=(m+1)2,即可得出y=x2﹣2(m+1)x+(m+1)2,把A的坐標代入即可求得n的值.【詳解】解:∵點A(m﹣1,n)和點B(m+3,n)均在二次函數(shù)y=x2+bx+c圖象上,∴,∴b=﹣2(m+1),∵二次函數(shù)y=x2+bx+c的頂點在x軸上,∴,∴b2﹣4c=0,∴[﹣2(m+1)]2﹣4c=0,∴c=(m+1)2,∴y=x2﹣2(m+1)x+(m+1)2,把A的坐標代入得,n=(m﹣1)2﹣2(m+1)(m﹣1)+(m+1)2=4,故答案為:4.【考點】本題考查了二次函數(shù)的性質,二次函數(shù)的頂點坐標,表示出b、c的值是解題的關鍵.2、【解析】【分析】先把方程的左邊分解因式,再化為三個一次方程進行降次,再解一次方程即可.【詳解】解:則或或解得:故答案為:【考點】本題考查的是利用因式分解的方法把高次方程轉化為一次方程,掌握“因式分解的方法與應用”是解本題的關鍵.3、【解析】【分析】連接CE,如圖,利用平行線的性質得∠COE=∠EOB=90°,再利用勾股定理計算出OE=,利用余弦的定義得到∠OCE=60°,然后根據(jù)扇形面積公式,利用S陰影部分=S扇形BCE?S△OCE?S扇形BOD進行計算即可.【詳解】解:連接CE,如圖,∵AC⊥BC,∴∠ACB=90°,∵AC∥OE,∴∠COE=∠EOB=90°,∵OC=1,CE=2,∴OE=,cos∠OCE=,∴∠OCE=60°,∴S陰影部分=S扇形BCE?S△OCE?S扇形BOD=,故答案為.【考點】本題考查了扇形面積的計算:求陰影面積的主要思路是將不規(guī)則圖形面積轉化為規(guī)則圖形的面積.4、25【解析】【分析】設草莓的零售價為x元/千克,銷售收入為y元,由題意得y=30x2+1500x11880,再根據(jù)二次函數(shù)的性質解答即可.【詳解】解:設草莓的零售價為x元/千克,銷售收入為y元,由題意得,y=x[30030(x22)]+18×30(x22)=30x2+1500x11880,當時,y最大,∴當草莓的零售價為25元/千克時,種植戶一天的銷售收入最大.故答案為:25.【考點】本題考查二次函數(shù)的實際應用,熟練掌握二次函數(shù)的性質是解題關鍵.5、4【解析】【分析】通過A、B兩點得出對稱軸,再根據(jù)對稱軸公式算出b,由此可得出二次函數(shù)表達式,從而算出最小值即可推出n的最小值.【詳解】∵A、B的縱坐標一樣,∴A、B是對稱的兩點,∴對稱軸,即,∴b=-4.∴拋物線解析式為:.∴拋物線頂點(2,-3).∴滿足題意n的最小值為4,故答案為:4.【考點】本題考查二次函數(shù)對稱軸的性質,頂點式的變形及拋物線的平移,關鍵在于根據(jù)對稱軸的性質從題意中判斷出對稱軸.四、解答題1、x1=+3,x2=﹣3.【解析】【分析】根據(jù)配方法,兩邊配上一次項系數(shù)一半的平方即可得到,然后利用直接開平方法求解.【詳解】解:x2-2x=4,x2-2x+5=4+5,即(x-)2=9,∴x-=±3,∴x1=+3,x2=﹣3.【考點】本題主要考查配方法解一元二次方程,掌握配方法解一元二次方程的方法與步驟是解題關鍵.2、(1)﹣;(2)x=8或﹣2.【解析】【分析】(1)直接利用立方根以及算術平方根的性質化簡得出答案;(2)直接利用平方根的定義計算得出答案.【詳解】(1)原式=2﹣3﹣(﹣1)=﹣1﹣+1=﹣;(2)2(x﹣3)2=50(x﹣3)2=25,則x﹣3=±5,解得:x=8或﹣2.【考點】此題考查實數(shù)的運算,解一元二次方程-配方法,解題關鍵在于掌握運算法則.3、(1)(),且x為整數(shù);(2),且x為整數(shù);(3)a=30【解析】【分析】(1)根據(jù)題意列函數(shù)關系式和不等式組,于是得到結論;(2)根據(jù)題意列方程和不等式,于是得到結論;(3)根據(jù)題意列函數(shù)關系式,然后根據(jù)二次函數(shù)的性質即可得到結論.【詳解】解:(1)由題意得,,解得,故的取值范圍為且為整數(shù);(2)的取值范圍為.理由如下:,當時,,,,解得:或.要使,得;,;(3)設捐款后每天的利潤為元,則,對稱軸為,,,拋物線開口向下,當時,隨的增大而增大,當時,最大,,解得.【考點】本題考查了二次函數(shù)的應用,一元一次不等式的應用,列函數(shù)關系式等等,最大銷售利潤的問題常利用函數(shù)的增減性來解答.4、∠CC'A=70°【解析】【分析】先根據(jù)平行線的性質,由得∠AC′C=∠CAB=70°,再根據(jù)旋轉的性質得AC=AC′,∠BAB′=∠CAC′,于是根據(jù)等腰三角形的性質有∠ACC′=∠AC′C=70°.【詳解】∵,∴∠ACC′=∠CAB=70°,∵△ABC繞點A旋轉到△AB′C′的位置,∴AC=AC′,∠BAB′=∠CAC′,在△ACC′中,∵AC=AC′∴∠ACC′=∠CC'A=70°,【考點】本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.5、b=-3,c=-4.【解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 兒科學考試題+參考答案
- 右手機器絞傷的疼痛評估與護理
- 阿里巴巴校招面筆試題及答案
- 單招五類語文試題及答案
- 城管執(zhí)法基本考試題及答案
- 中共南充市委統(tǒng)戰(zhàn)部關于下屬事業(yè)單位2025年公開選調工作人員的考試備考題庫附答案
- 光谷融媒體中心公開招聘工作人員參考題庫必考題
- 吉水縣司法局2025年面向社會公開招聘10名司法協(xié)理員的參考題庫必考題
- 成都市雙流區(qū)公興幼兒園招聘考試備考題庫附答案
- 浙江國企招聘-2026年溫州樂清市市政公用事業(yè)發(fā)展有限公司公開招聘工作人員20人的參考題庫附答案
- 2023年魯迅美術學院附屬中學(魯美附中)中考招生語文試卷
- 工廠網絡設計方案
- 福建省泉州市2023-2024學年高一上學期期末教學質量監(jiān)測政治試題
- 日文常用漢字表
- JCT947-2014 先張法預應力混凝土管樁用端板
- QC003-三片罐206D鋁蓋檢驗作業(yè)指導書
- 高血壓達標中心標準要點解讀及中心工作進展-課件
- 某經濟技術開發(fā)區(qū)突發(fā)事件風險評估和應急資源調查報告
- 混凝土質量缺陷成因及預防措施1
- GB/T 28288-2012足部防護足趾保護包頭和防刺穿墊
- GB/T 15087-1994汽車牽引車與全掛車機械連接裝置強度試驗
評論
0/150
提交評論