版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
青島版8年級數(shù)學下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,在一矩形紙條中,,將紙條沿折疊,點C的對應點為,若,則折痕的長為(
)A.2 B. C. D.42、不等式組的解集是(
)A. B. C. D.3、一個直角三角形的兩直角邊長分別為3,4,則第三邊長是(
)A.3 B.4 C.5 D.5或4、如圖,在平面直角坐標系中,將正方形OABC繞點O逆時針旋轉45°后得到正方形OA1B1C1,依此方式,繞點O連續(xù)旋轉2020次得到正方形OA2020B2020C2020,如果點A的坐標為(1,0),那么點B2020的坐標為()A.(﹣1,1) B.(,0) C.(﹣1,﹣1) D.(0,)5、將一副三角板如圖①的位置擺放,其中30°直角三角板的直角邊與等腰直角三角板的斜邊重合,30°直角三角板直角頂點與等腰直角三角板的銳角頂點重合(為點O).現(xiàn)將30°的直角三角板繞點O順時針旋轉至如圖②的位置,此時,則(
)A.30° B.25° C.20° D.15°6、如圖所示,一次函數(shù)的圖象經(jīng)過點,則方程的解是(
)A. B. C. D.無法確定7、下列圖標中,既是軸對稱圖形,又是中心對稱圖形是()A. B.C. D.8、無理數(shù)的絕對值是(
)A. B. C. D.2第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖①,在△ABC中,∠ACB=90°,∠A=30°,點C沿BE折疊與AB上的點D重合,連接DE,請你探究:______;請在這一結論的基礎上繼續(xù)思考:如圖②,在△OPM中,∠OPM=90°∠M=30°,若OM=2,點G是OM邊上的動點,則的最小值為______.2、D為等腰Rt△ABC斜邊BC上一點(不與B、C重合),DE⊥BC于點D,交直線BA于點E,DF交AC于F,連接EF,BD=nDC,當n=_____時,△DEF為等腰直角三角形.3、不等式組的解集為_____.4、如圖,在直角中,,將繞點O逆時針旋轉得到,則_______°.5、如圖,某自動感應門的正上方A處裝著一個感應器,離地面的高度AB為2.5米,一名學生站在C處時,感應門自動打開了,此時這名學生離感應門的距離BC為1.2米,頭頂離感應器的距離AD為1.5米,則這名學生身高CD為_____米.6、在Rt△ABC中,∠ACB=90°,AC=6,BC=8.(1)如圖1,D、E分別是AB和CB邊上的點,把△BDE沿直線DE折疊,若點B落在AC邊上的點F處,則CE的最小值是_______;(2)如圖2,CG是AB邊上的中線,將△ACG沿CG翻折后得到△HCG,連接BH,則BH的長為______.7、如圖,△OAB1,△B1A1B2,△B2A2B3,…,△BnAnBn+1都是面積為的等邊三角形,邊AO在y軸上,點B1,B2,B3,…,Bn,Bn+1都在直線y=x上,點A1,A2,A3,...,An都在直線y=x的上方,觀察圖形的構成規(guī)律,用你發(fā)現(xiàn)的規(guī)律直接寫出點A2022的坐標為_____.三、解答題(7小題,每小題10分,共計70分)1、某學校為進一步做好疫情防控工作,計劃購進A,B兩種口罩.已知每箱A種口罩比每箱B種口罩多10包,每箱A種口罩和每箱B種口罩的價格分別是630元和600元,而每包A種口罩和每包B種口罩的價格分別是這一批口罩平均每包價格的0.9倍和1.2倍.(1)求這一批口罩平均每包的價格是多少元.(2)如果購進A,B兩種口罩共5500包,最多購進3500包A種口罩,為了使總費用最低,應購進A種口罩和B種口罩各多少包?總費用最低是多少元?2、如圖1,在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分線,DE⊥AB于E.(1)發(fā)現(xiàn):如圖1,連接CE,則△BCE的形狀是_______________,∠CDB=____________°;(2)探索:如圖2,點P為線段AC上一個動點,當點P在CD之間運動時,連接BP,作∠BPQ=60°,PQ交射線DE于Q,連接BQ,即△BPQ是等邊三角形;思路:在線段BD上截取點H,使DH=DP,得等邊△DPH,由∠DPQ=∠HPB,PD=PH,∠QDP=∠BHP,易證△PDQ≌△PHB(ASA),得PQ=PB,即△BPQ是等邊三角形.試判斷線段DQ、DP、AD之間的關系,并說明理由;(3)類比:如圖3,當點P在AD之間運動時連接BP,作∠BPQ=60°,PQ交射線DE于Q,連接BQ.①試判斷△BPQ的形狀,并說明理由;②若AD=2,設AP=x,DQ=y,請直接寫出y與x之間的函數(shù)關系式.3、計算:(1);(2).4、如圖,已知Rt△ABC中,∠B=90°,∠A=30°,請用尺規(guī)作圖法,在AC邊上求作一點D,使BD=AC.(保留作圖痕跡,不寫作法)5、如圖,已知△ABC是銳角三角形(AC<AB)(1)①請在圖1中用圓規(guī)和無刻度的直尺作出點O,使O到△ABC三邊距離相等;(不寫作法,保留作圖痕跡)②在①的條件下,若AB=15,AC=13,BC=14,則△ABC中BC邊上的高=______,O到△ABC三邊距離=______.(2)在△ABC中,若點P在△ABC內(nèi)部(含邊界)且滿足PC≤PB≤PA,請在圖2中用圓規(guī)和無刻度的直尺作出所有符合條件的點P組成的區(qū)域(用陰影表示).(不寫作法,保留作圖痕跡)6、計算.7、(﹣1)2021.-參考答案-一、單選題1、B【解析】【分析】設交AD于點H,由四邊形ABCD是矩形,⊥BC得到∠EHF=90°,四邊形ABEH為矩形,得到EH=AB=2,由折疊的性質(zhì)可知∠HEF=∠EFH=∠HEC=45°,得到△HEF為等腰直角三角形,再利用勾股定理得到EF的長.【詳解】解:如圖,設交AD于點H,∵四邊形ABCD是矩形∴AD∥BC
∠A=∠B=90°∵⊥BC∴⊥AD于點H∠HEC=∠HEB=90°∴∠EHF=90°四邊形ABEH為矩形∵AB=2∴EH=AB=2由折疊的性質(zhì)可知∠HEF=∠EFH=∠HEC=45°在Rt△HEF中,∠HFE=180°-∠HEF-∠EHF=45°∴EH=FH∴△HEF為等腰直角三角形在Rt△HEF中,由勾股定理得EF2=HE2+HF2==8∴EF==2故選:B【點睛】本題考查了圖形的折疊問題,抓住折疊前后相關位置和數(shù)量關系的變化是正確解答的關鍵.2、C【解析】【分析】先求出每個不等式的解集,再求出不等式組的解集即可.【詳解】解:x+3>0解不等式①得:,解不等式②得:,不等式組的解集是,故選:C.【點睛】本題考查了解一元一次不等式組,能根據(jù)不等式的解集求出不等式組的解集是解此題的關鍵.3、C【解析】【分析】根據(jù)題意已知兩直角邊長分別為3,4,勾股定理即可求得第三邊即斜邊的長【詳解】解:一個直角三角形的兩直角邊長分別為3,4,第三邊長是故選C【點睛】本題考查了勾股定理,掌握勾股定理是解題的關鍵.4、C【解析】【分析】根據(jù)正方形的性質(zhì)和旋轉性質(zhì)可發(fā)現(xiàn)規(guī)律:點B旋轉后對應的坐標8次一循環(huán),據(jù)此解答即可求解.【詳解】解:連接OB,∵四邊形OABC是正方形,A的坐標為(1,0),∴OA=AB=OC=BC=1,∠OAB=90°,∠AOB=45°,∴B(1,1),由勾股定理得:,由旋轉性質(zhì)得:OB=OB1=OB2=OB3=…=,∵將正方形OABC繞點O逆時針連續(xù)旋轉45°,相當于將OB繞點O逆時針連續(xù)旋轉45°,∴依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(0,),B2(-1,1),B2(-,0),B4(-1,-1),B5(0,-),B6(1,-1),B7(,0),
B8(1,1),……,發(fā)現(xiàn)規(guī)律:點B旋轉后對應的坐標8次一循環(huán),∵2020=8×252+4,∴點B2020與點B4重合,∴點B2020的坐標為(-1,-1),故選:C.【點睛】本題考查坐標與旋轉規(guī)律問題、正方形的性質(zhì)、旋轉的性質(zhì)、勾股定理等知識,熟練掌握正方形的性質(zhì)和旋轉性質(zhì),正確得出變化規(guī)律是解答的關鍵.5、B【解析】【分析】根據(jù)旋轉和三角板的特點即可得出,,從而可求出的大小,再結合的大小即可求出的值.【詳解】如圖,根據(jù)三角板的特點和旋轉的性質(zhì),可知,,∴,∴.故選B.【點睛】本題考查旋轉的性質(zhì)以及三角板的特點.利用數(shù)形結合的思想是解答本題的關鍵.6、C【解析】【分析】將點代入直線解析式,然后與方程對比即可得出方程的解.【詳解】解:一次函數(shù)的圖象經(jīng)過點,∴,∴為方程的解,故選:C.【點睛】題目主要考查一次函數(shù)與一元一次方程的聯(lián)系,理解二者聯(lián)系是解題關鍵.7、C【解析】【分析】若一個圖形繞著某點旋轉后能與原來的圖形重合,這個圖形就叫做中心對稱圖形;若一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫軸對稱圖形.同時滿足兩個定義就是所選答案.【詳解】只有C選項同時符合軸對稱圖形和中心對稱圖形的定義,故選:C.【點睛】本題考察了軸對稱圖形和中心對稱圖形的定義,牢記并理解定義是做出本題的關鍵.8、B【解析】【分析】根據(jù)絕對值的定義來求解即可.【詳解】解:無理數(shù)的絕對值是.故選:.【點睛】本題考查了算術平方根,無理數(shù),實數(shù)的性質(zhì),正確理解負數(shù)的絕對值是正數(shù)是解答關鍵.二、填空題1、
【解析】【分析】①根據(jù)直角三角形及折疊的性質(zhì)可得,,,,由等角對等邊及等腰三角形的性質(zhì)可得,,利用線段間的數(shù)量關系進行等量代換即可得;②作射線MB,使得,過點G作,過點P作交于點C,連接PB,利用勾股定理可得,,由含角的直角三角形的性質(zhì)可得,根據(jù)題意得出最小值即為的最小值,即當P、G、B三點共線時,PC的長度,在中,利用勾股定理求解即可得出PC的長度,即為最小值.【詳解】解:①∵,∴,∵點C沿BE折疊與AB上的點D重合,∴,∴,,,∴,∴,,∴,∴,即;②如圖所示:作射線MB,使得,過點G作,過點P作交于點C,連接PB,在中,,,∴,,∵,,∴,∴,即當P、G、B三點共線時,取得最小值,在中,∵,,,∴,∴,,∴的最小值為;故答案為:①;②.【點睛】題目主要考查折疊的性質(zhì)及等腰三角形的判定和性質(zhì),勾股定理,含角的直角三角形的性質(zhì)等,理解題意,作出相應輔助線,綜合運用這些知識點是解題關鍵.2、或1【解析】【分析】分兩種情況:情況①:當∠DEF=90°時,由題意得出EF∥BC,作FG⊥BC于G,證出△CFG、△BDE是等腰直角三角形,四邊形EFGD是正方形,得出BD=DE=EF=DG=FG=CG,即可得出結果;情況②:當∠EFD=90°時,求出∠DEF=45°,得出E與A重合,D是BC的中點,BD=CD,即可得出結果.【詳解】解:分兩種情況:情況①:當∠DEF=90°時,如圖1所示:∵DE⊥BC,∴∠BDE=90°=∠DEF,∴EF∥BC,作FG⊥BC于G,∴∠EDB=∠FGB=90°,∴ED∥FG,∴四邊形EDGF為矩形,∵△ABC是等腰直角三角形,∴△CFG、△BDE是等腰直角三角形,∴BD=DE,當△DEF為等腰直角三角形時,DE=EF,此時四邊形EFGD是正方形,∴BD=DE=EF=DG=FG=CG,∴BD=DC,∴n=;情況②:當∠EFD=90°時,如圖2所示:∵∠EDF=45°,∴∠DEF=45°,此時E與A重合,D是BC的中點,∴BD=CD,∴n=1.故答案為:或1.【點睛】本題考查了等腰直角三角形的判定與性質(zhì)、平行線的判定、正方形的判定與性質(zhì);熟練掌握等腰直角三角形的性質(zhì),分兩種情況討論是解決問題的關鍵.3、【解析】【分析】分別求出兩個不等式的解集,再確定不等式組的解集即可.【詳解】解:,解不等式①得,;解不等式②得,;不等式組的解集為;故答案為:.【點睛】本題考查了解不等式組,解題關鍵是熟練掌握解不等式組的方法和步驟.4、70【解析】【分析】直接根據(jù)圖形旋轉的性質(zhì)進行解答即可.【詳解】解:∵將繞點O逆時針旋轉100°得到,∴,∵,∴.故答案為:70.【點睛】本題考查的是旋轉的性質(zhì),熟知圖形旋轉前后對應邊、對應角均相等的性質(zhì)是解答此題的關鍵.5、1.6【解析】【分析】過點D作DE⊥AB于E,則CD=BE,DE=BC=1.2米,由勾股定理得出AE=0.9(米),則BE=AB-AE=1.6(米),即可得出答案.【詳解】解:過點D作DE⊥AB于E,如圖所示:則CD=BE,DE=BC=1.2米=米,在Rt△ADE中,AD=1.5米=米,由勾股定理得:AE==0.9(米),∴BE=AB-AE=2.5-0.9=1.6(米),∴CD=BE=1.6米,故答案為:1.6.【點睛】本題考查了勾股定理的應用,正確作出輔助線構造直角三角形是解題的關鍵.6、
【解析】【分析】(1)當點B與點A重合時,CE最小,設CE=x,由勾股定理得,代入數(shù)值求出x值即可;(2)根據(jù)勾股定理求出AB,利用中線的性質(zhì)得到CG=AG,過點G作GD⊥AC于D,由翻折得,求出EH,過點G作GF⊥BH,證明四邊形GEHF是矩形,得到GF=EH,勾股定理求出BF,由BH=2BF求出答案.【詳解】解:(1)當點B與點A重合時,CE最小,如圖,設CE=x,則BE=8-x,由折疊得AE=BE=8-x,∵∠ACB=90°,,∴,解得x=,即CE的最小值是,(2)∵在Rt△ABC中,∠ACB=90°,AC=6,BC=8.∴,∵CG是AB邊上的中線,∴,AG=BG=5,∴CG=AG,過點G作GD⊥AC于D,則,∴DG=4,由翻折得,∴,∴,得,過點G作GF⊥BH,∵GH=AG=BG,∴FH=BF,∠HGF=∠BGF,∵∠AGC=∠HGC,∴∠CGF=90°=∠GEH=∠GFH,∴四邊形GEHF是矩形,∴GF=,∴∴BH=2BF=.故答案為:,.【點睛】此題考查了翻折的性質(zhì),勾股定理的應用,等腰三角形三線合一的性質(zhì),矩形的判定定理及性質(zhì)定理,直角三角形斜邊中線的性質(zhì),熟記各知識點并應用是解題的關鍵.7、,【解析】【分析】過作軸,垂足為,由條件可求得,利用直角三角形的性質(zhì)可求得,,可求得的坐標,同理可求得、的坐標,則可得出規(guī)律,可求得的坐標.【詳解】如圖,,△,△,都是邊長為2的等邊三角形,,,在軸上,軸,軸,過作軸,垂足為,點在在直線上,設,,是面積為的等邊三角形,都是邊長為的等邊三角形,,,的坐標為,,同理,、,,的坐標為,,故答案為,.【點睛】本題為規(guī)律型題目,利用等邊三角形和直角三角形的性質(zhì)求得的坐標,從而總結出點的坐標的規(guī)律是解題的關鍵.三、解答題1、(1)20元(2)購進A種口罩3500包,B種口罩2000包時,能使總費用最低,總費用最低是111000元.【解析】【分析】(1)設這一批口罩平均每包的價格是x元,根據(jù)“每箱A種口罩比每箱B種口罩多10包,每箱A種口罩和每箱B種口罩的價格分別是630元和600元,而每包A種口罩和每包B種口罩的價格分別是這一批口罩平均每包價格的0.9倍和1.2倍”列分式方程解答即可;(2)設購進A種口罩t包,這批口罩的總費用為w元,根據(jù)題意得出w與t的函數(shù)關系式,再根據(jù)t的取值范圍以及一次函數(shù)的性質(zhì)解答即可.(1)解:設這一批口罩平均每包的價格是x元,根據(jù)題意得:,解得x=20,經(jīng)檢驗,x=20是原方程的解,并符合題意,答:這一批口罩平均每包的價格是20元;(2)解:由(1)可知,A種口罩每包價格為20×0.9=18(元),B種口罩每包價格為20×1.2=24(元),設購進A種口罩t包,這批口罩的總費用為w元,根據(jù)題意得:w=18t+24(5500﹣t)=﹣6t+132000,∵w是t的一次函數(shù),k=﹣6<0,∴w隨t的增大而減小,由∵t≤3500,∴當t=3500時,w最小,此時B種口罩有:5500﹣3500=2000(包),w=﹣6×3500+132000=111000,答:購進A種口罩3500包,B種口罩2000包時,能使總費用最低,總費用最低是111000元.【點睛】此題主要考查了分式方程的應用,一次函數(shù)的應用,正確得出等量關系是解題關鍵.2、(1)等邊三角形,60;(2)AD=DQ+DP,見解析;(3)①△BPQ是等邊三角形,見解析;②y=-x+4【解析】【分析】(1)根據(jù)直角三角形的兩銳角互余求得∠ABC=60°,再根據(jù)角平分線的定義求得∠ABD=∠CBD=∠A=30°,則AD=BD,根據(jù)等腰三角形的性質(zhì)證得AE=BE,再由直角三角形斜邊上的中線性質(zhì)得出CE=BE,根據(jù)等邊三角形的判定即可得出結論;(2)根據(jù)思路和全等三角形的性質(zhì)得出BH=DQ,結合AD=BD,BD=DH+BH即可解答;(3)延長BD至F,使DF=PD,連接PF,可證得△PDF是等邊三角形,則有PF=PD,∠F=∠PDF=∠DPF=60°,進而可得∠F=∠PDQ=60°,證明∠BPF=∠QPD,利用ASA證明△PBF≌△PQD,得出PB=PQ,BF=DQ,結合∠BPQ=60°和AD=BD即可得出①②的結論.(1)解:如圖1,∵在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BD是△ABC的角平分線,∴∠ABD=∠CBD=∠ABC=30°,∴∠ABD=∠A,∠CDB=90°-∠CBD=60°,∴AD=BD,又DE⊥AB,∴AE=BE=AB,又∠ACB=90°,∴CE=AB=BE,又∠ABC=60°,∴△BCE是等邊三角形,故答案為:等邊三角形,60;(2)解:AD=DQ+DP,理由為:在線段BD上截取點H,使DH=DP,如圖2,∵∠CDB=60°,∴△DPH為等邊三角形,∴DP=PH,∠DPH=∠DHP=60°,又∠BPQ=60°,∴∠DPQ+∠QPH=∠HPB+∠QPH=60°,∠BHP=120°,∴∠DPQ=∠HPB,∵∠A=30°,DE⊥AB,∴∠QDP=∠A+∠AED=30°+90°=120°,∴∠QDP=∠BHP,在△PDQ≌△PHB中,∴△PDQ≌△PHB(ASA),∴DQ=BH,PQ=PB,∵AD=BD,∠BPQ=60°,∴△BPQ為等邊三角形,AD=BD=BH+DH=DQ+DP,即AD=DQ+DP;(3)解:①△BPQ為等邊三角形,理由為:延長BD至F,使DF=DP,連接PF,設DQ和BP相交于O,如圖3,∵∠PDF=∠CDB=60°,∴△PDF為等邊三角形,∴PF=DP,∠F=∠PDF=∠DPF=60°,∵∠A=30°,DE⊥AB,
∴∠PDQ=90°-∠A=60°,∴∠F=∠PDQ=60°,∵∠DPF+∠DPB=∠BPQ+∠DPB,又∠BPQ=60°,∴∠BPF=∠QPD,在△PBF和△PQD中,,∴△PBF≌△PQD(ASA),∴PB=PQ,BF=DQ,又∠BPQ=60°,∴△BPQ為等邊三角形;②∵DF=DP,BF=DQ,AD=BD,∴DQ=BF=BD+DF=AD+DP,∵AD=2,AP=x,DQ=y,∴y=2+2-x,即y=-x+4.【點睛】本題考查含30°角的直角三角形的性質(zhì)、直角三角形斜邊上的中線性質(zhì)、角平分線的定義、等腰三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 消毒柜操作規(guī)程
- 2025~2026學年濟南市“市中區(qū)”八年級第一學期英語期末考試試題以及答案
- 食品安全質(zhì)量控制流程
- 2026年劇本殺運營公司整車服務專屬規(guī)范制度
- 2026年劇本殺運營公司投訴處理結果反饋管理制度
- 護理基礎理論課件模板
- 環(huán)保包裝材料2025年研發(fā)創(chuàng)新:中心建設可行性市場評估報告
- 2025年醫(yī)療健康產(chǎn)業(yè)創(chuàng)新與增長報告
- 2026年農(nóng)業(yè)灌溉解決方案行業(yè)創(chuàng)新報告
- 2026年5G通信技術在工業(yè)互聯(lián)網(wǎng)中的創(chuàng)新報告
- 2026江蘇鹽城市阜寧縣科技成果轉化服務中心選調(diào)10人考試參考題庫及答案解析
- 托管機構客戶投訴處理流程規(guī)范
- 2026年及未來5年中國建筑用腳手架行業(yè)發(fā)展?jié)摿Ψ治黾巴顿Y方向研究報告
- 銀行客戶信息安全課件
- 2026年四川單招單招考前沖刺測試題卷及答案
- 2026年全國公務員考試行測真題解析及答案
- 2025新疆華夏航空招聘筆試歷年難易錯考點試卷帶答案解析
- (2025)70周歲以上老年人換長久駕照三力測試題庫(附答案)
- 金太陽山西省名校三晉聯(lián)盟2025-2026學年高三上學期12月聯(lián)合考試語文(26-177C)(含答案)
- 2026年泌尿護理知識培訓課件
- 2026云南省產(chǎn)品質(zhì)量監(jiān)督檢驗研究院招聘編制外人員2人考試參考試題及答案解析
評論
0/150
提交評論