考點(diǎn)解析-江蘇省東臺市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)訓(xùn)練試題(含答案解析)_第1頁
考點(diǎn)解析-江蘇省東臺市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)訓(xùn)練試題(含答案解析)_第2頁
考點(diǎn)解析-江蘇省東臺市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)訓(xùn)練試題(含答案解析)_第3頁
考點(diǎn)解析-江蘇省東臺市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)訓(xùn)練試題(含答案解析)_第4頁
考點(diǎn)解析-江蘇省東臺市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)訓(xùn)練試題(含答案解析)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

江蘇省東臺市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)訓(xùn)練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,三角形紙片ABC,點(diǎn)D是BC邊上一點(diǎn),連接AD,把△ABD沿著AD翻折,得到△AED,DE與AC交于點(diǎn)G,連接BE交AD于點(diǎn)F.若DG=GE,AF=6,BF=4,△ADG的面積為8,則點(diǎn)F到BC的距離為()A. B. C. D.2、如圖,由6個相同小正方形組成的網(wǎng)格中,A,B,C均在格點(diǎn)上,則∠ABC的度數(shù)為(

)A.45° B.50° C.55° D.60°3、“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲.如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形.設(shè)直角三角形較長直角邊長為a,較短直角邊長為b.若ab=8,大正方形的面積為25,則小正方形的邊長為A.9 B.6 C.4 D.34、如圖,中,,將折疊,使點(diǎn)C與的中點(diǎn)D重合,折痕交于點(diǎn)M,交于點(diǎn)N,則線段的長為(

).A. B. C.3 D.5、在△ABC中,∠A,∠B,∠C的對邊分別記為a,b,c,下列結(jié)論中不正確的是(

)A.如果∠A-∠B=∠C,那么△ABC是直角三角形B.如果a2=b2-c2,那么△ABC是直角三角形,且∠C=90°C.如果∠A︰∠B︰∠C=1︰3︰2,那么△ABC是直角三角形D.如果a2︰b2︰c2=9︰16︰25,那么△ABC是直角三角形6、有一個面積為1的正方形,經(jīng)過一次“生長”后,在他的左右肩上生出兩個小正方形,其中,三個正方形圍成的三角形是直角三角形,再經(jīng)過一次“生長”后,變成了上圖,如果繼續(xù)“生長”下去,它將變得“枝繁葉茂”,請你算出“生長”了2020次后形成的圖形中所有的正方形的面積和是(

)A.1 B.2021 C.2020 D.20197、以下列各組數(shù)的長為邊作三角形,不能構(gòu)成直角三角形的是(

)A.3,4,5 B.4,5,6 C.6,8,10 D.9,12,15第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、如圖,在一次綜合實(shí)踐活動中,小明將一張邊長為10cm的正方形紙片ABCD,沿著BC邊上一點(diǎn)E與點(diǎn)A的連線折疊,點(diǎn)B'是點(diǎn)B的對應(yīng)點(diǎn),延長EB'交DC于點(diǎn)G,B'G=cm,則△ECG的面積為_____cm2.2、如圖,已知,那么數(shù)軸上點(diǎn)所表示的數(shù)是________.3、設(shè),是直角三角形的兩條直角邊長,若該三角形的周長為24,斜邊長為10,則的值為________.4、《九章算術(shù)》是我國古代數(shù)學(xué)名著,書中有下列問題:“今有垣高一丈,倚木于垣,上與垣齊.引木卻行一尺,其木至地,問木長幾何?”其意思為:今有墻高1丈,倚木桿于墻,使木之上端與墻平齊,牽引木桿下端退行1尺,則木桿(從墻上)滑落至地上.問木桿是多長?(1丈=10尺)設(shè)木桿長為x尺根據(jù)題意,可列方程為______.5、已知a、b、c是一個三角形的三邊長,如果滿足,則這個三角形的形狀是_______.6、我國古代數(shù)學(xué)著作《九章算術(shù)》中的一個問題:一根竹子高1丈(1丈=10尺),折斷后頂端落在離竹子底端3尺處,問折斷處離地面的高度為多少尺?如圖,設(shè)折斷處離地面的高度為x尺,根據(jù)題意,可列出關(guān)于x方程為:__________.7、《九章算術(shù)》中有一道“引葭赴岸”問題:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊.問水深,葭長各幾何?”題意是:有一個池塘,其底面是邊長為10尺的正方形,一棵蘆葦AB生長在它的中央,高出水面部分BC為1尺.如果把該蘆葦沿與水池邊垂直的方向拉向岸邊,那么蘆葦?shù)捻敳緽恰好碰到岸邊的B'(如圖).則蘆葦長_____尺.8、我國古代九章算術(shù)中有數(shù)學(xué)發(fā)展史上著名的“葭生池中”問題:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問:葭長幾何?(1丈=10尺).意思是:有一個長方體池子,底面是邊長為1丈的正方形,中間有蘆葦,把高出水面1尺的蘆葦拉向池邊(蘆葦沒有折斷),剛好貼在池邊上,問:蘆葦長多少尺?答:蘆葦長____________尺.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,某港口位于東西方向的海岸線上.“遠(yuǎn)航”號、“海天”號輪船同時離開港口,各自沿一固定方向航行,“遠(yuǎn)航”號每小時航行16海里,“海天”號每小時航行12海里.它們離開港口一個半小時后分別位于點(diǎn)Q,R處,且相距30海里.如果知道“遠(yuǎn)航”號沿東北方向航行,能知道“海天”號沿哪個方向航行嗎?2、如圖,在△ABC中,∠C=90°,M是BC的中點(diǎn),MD⊥AB于D,求證:.3、如圖,中,,,是邊上一點(diǎn),且,若.求的長.4、已知:整式A=(n2﹣1)2+(2n)2,整式B>0.嘗試化簡整式A.發(fā)現(xiàn)A=B2.求整式B.聯(lián)想:由上可知,B2=(n2﹣1)2+(2n)2,當(dāng)n>1時,n2﹣1,2n,B為直角三角形的三邊長,如圖,填寫下表中B的值;直角三角形三邊n2﹣12nB勾股數(shù)組Ⅰ8勾股數(shù)組Ⅱ355、如圖,某海岸線MN的方向?yàn)楸逼珫|75°,甲,乙兩船分別向海島C運(yùn)送物資,甲船從港口A處沿北偏東45°方向航行,乙船從港口B處沿北偏東30°方向航行,已知港口B到海島C的距離為30海里,求港口A到海島C的距離.6、(1)圖1是由有20個邊長為1的正方形組成的,把它按圖1的分割方法分割成5部分后可拼接成一個大正方形(內(nèi)部的粗實(shí)線表示分割線),請你在圖2的網(wǎng)格中畫出拼接成的大正方形.(2)如果(1)中分割成的直角三角形兩直角邊分別為a,b斜邊為c.請你利用圖2中拼成的大正方形證明勾股定理.(3)應(yīng)用:測量旗桿的高度:校園內(nèi)有一旗桿,小希想知道旗桿的高度,經(jīng)觀察發(fā)現(xiàn)從頂端垂下一根拉繩,于是他測出了下列數(shù)據(jù):①測得拉繩垂到地面后,多出的長度為0.5米;②他在距離旗桿4米的地方拉直繩子,拉繩的下端恰好距離地面0.5米.請你根據(jù)所測得的數(shù)據(jù)設(shè)計(jì)可行性方案,解決這一問題.(畫出示意圖并計(jì)算出這根旗桿的高度).7、如圖,煙臺市正政府決定在相距50km的A、B兩村之間的公路旁E點(diǎn),修建一個大櫻桃批發(fā)市場,且使C、D兩村到E點(diǎn)的距離相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么大櫻桃批發(fā)市場E應(yīng)建什么位置才能符合要求?-參考答案-一、單選題1、C【解析】【分析】先求出△ABD的面積,根據(jù)三角形的面積公式求出DF,設(shè)點(diǎn)F到BD的距離為h,根據(jù)?BD?h=?BF?DF,求出BD即可解決問題.【詳解】解:∵DG=GE,∴S△ADG=S△AEG=8,∴S△ADE=16,由翻折可知,△ADB≌△ADE,BE⊥AD,∴S△ABD=S△ADE=16,∠BFD=90°,∴?(AF+DF)?BF=16,∴?(6+DF)×4=16,∴DF=2,∴DB=,設(shè)點(diǎn)F到BD的距離為h,則有?BD?h=?BF?DF,∴h=4×2,∴h=,∴點(diǎn)F到BC的距離為.故選:C【考點(diǎn)】此題考查了翻折變換,三角形的面積,勾股定理等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題.2、A【解析】【分析】連接AC,利用勾股定理分別求出AB、AC、BC,根據(jù)勾股定理的逆定理得到△ABC是等腰直角三角形,∠ACB=90°,再根據(jù)三角形內(nèi)角和定理得到答案.【詳解】連接AC,∵,,,∴,AC=BC,∴△ABC是等腰直角三角形,∠ACB=90°,∴∠ABC=(180°-∠ACB)=45°.故選A.【考點(diǎn)】本題考查了等腰三角形,勾股定理的逆定理,解決問題的關(guān)鍵是作輔助線構(gòu)建三角形,熟練掌握等腰三角形的定義和性質(zhì),熟練運(yùn)用勾股定理的逆定理判斷直角三角形.3、D【解析】【分析】由題意可知:中間小正方形的邊長為:,根據(jù)勾股定理以及題目給出的已知數(shù)據(jù)即可求出小正方形的邊長.【詳解】解:由題意可知:中間小正方形的邊長為:,每一個直角三角形的面積為:,,,或(舍去),故選:D.【考點(diǎn)】本題考查勾股定理,解題的關(guān)鍵是熟練運(yùn)用勾股定理以及完全平方公式,本題屬于基礎(chǔ)題型.4、D【解析】【分析】由折疊的性質(zhì)可得DN=CN,根據(jù)勾股定理可求DN的長,即可得出結(jié)果.【詳解】解:∵D是AB中點(diǎn),AB=4,∴AD=BD=2,∵將△ABC折疊,使點(diǎn)C與AB的中點(diǎn)D重合,∴DN=CN,∴BN=BC-CN=6-DN,在Rt△DBN中,DN2=BN2+DB2,∴DN2=(6-DN)2+4,∴DN=,∴CN=DN=,故選:D.【考點(diǎn)】本題考查了翻折變換、折疊的性質(zhì)、勾股定理,熟練運(yùn)用折疊的性質(zhì)是本題的關(guān)鍵.5、B【解析】【分析】根據(jù)勾股定理的逆定理、三角形內(nèi)角和定理、直角三角形定義即可.【詳解】解:A、∵∠A-∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,此選項(xiàng)正確;B、如果a2=b2-c2,∴a2+c2=b2,∴△ABC是直角三角形且∠B=90°,此選項(xiàng)不正確;C、如果∠A:∠B:∠C=1:3:2,設(shè)∠A=x,則∠B=3x,∠C=2x,則x+3x+2x=180°,解得:x=30°,則3x=90°,∴△ABC是直角三角形,此選項(xiàng)正確;D、如果a2:b2:c2=9:16:25,則a2+b2=c2,∴△ABC是直角三角形,此選項(xiàng)正確;故選:B.【考點(diǎn)】本題考查了三角形內(nèi)角和,勾股定理的逆定理,如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.6、B【解析】【分析】根據(jù)勾股定理求出“生長”了1次后形成的圖形中所有的正方形的面積和,結(jié)合圖形總結(jié)規(guī)律,根據(jù)規(guī)律解答即可.【詳解】解:由題意得,正方形A的面積為1,由勾股定理得,正方形B的面積+正方形C的面積=1,∴“生長”了1次后形成的圖形中所有的正方形的面積和為2,同理可得,“生長”了2次后形成的圖形中所有的正方形的面積和為3,∴“生長”了3次后形成的圖形中所有的正方形的面積和為4,……∴“生長”了2020次后形成的圖形中所有的正方形的面積和為2021,故選:B.【考點(diǎn)】本題考查了勾股定理,如果直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2.7、B【解析】【分析】先求出兩小邊的平方和,再求出最長邊的平方,最后看看是否相等即可.【詳解】解:A、32+42=52,故是直角三角形,不符合題意;B、42+52≠62,故不是直角三角形,符合題意;C、62+82=102,故是直角三角形,不符合題意;D、92+122=152,故是直角三角形,不符合題意;故選:B.【考點(diǎn)】此題主要考查了勾股定理逆定理,關(guān)鍵是掌握如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.二、填空題1、【解析】【分析】根據(jù)翻折的性質(zhì)可知△ABE和△AB′E全等,則BE=B′E,連接AG,可證△AB′G≌△ADG,則DG=B′G=cm,CG=10-DG=cm,在Rt△ECG中,設(shè)BE=xcm,根據(jù)勾股定理列出方程,可求出BE的值,從而求出CE,最后由三角形面積公式求出△ECG的面積.【詳解】根據(jù)翻折的性質(zhì)可知△ABE和△AB′E全等,BE=B′E,連接AG,如圖,∵AB′=AD,AG=AG,∴Rt△AB′G≌Rt△ADG,∴DG=B′G=cm,∴CG=10-DG=cm,在Rt△ECG中,設(shè)BE=xcm,則CE=(10-x)cm,EG=B′E+B′G=(x+)cm,根據(jù)勾股定理列出方程,CE2+CG2=EG2,即,解得:x=2,所以BE=2cm,CE=10-2=8(cm),△ECG的面積=(cm2)故答案為:.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,結(jié)合全等的知識找出題中的線段之間的關(guān)系是本題的解題關(guān)鍵.2、【解析】【分析】首先根據(jù)勾股定理得:OB=.即OA=.又點(diǎn)A在數(shù)軸的負(fù)半軸上,則點(diǎn)A對應(yīng)的數(shù)是-.【詳解】解:由圖可知,OC=2,作BC⊥OC,垂足為C,取BC=1,故,∵A在x的負(fù)半軸上,∴數(shù)軸上點(diǎn)A所表示的數(shù)是-.故答案為:-.【考點(diǎn)】此題主要考查了實(shí)數(shù)與數(shù)軸,勾股富士蝗應(yīng)用,熟練運(yùn)用勾股定理,同時注意根據(jù)點(diǎn)的位置以確定數(shù)的符號.3、48【解析】【分析】由該三角形的周長為24,斜邊長為10可知a+b+10=24,再根據(jù)勾股定理和完全平方公式即可求出ab的值.【詳解】解:∵三角形的周長為24,斜邊長為10,∴a+b+10=24,∴a+b=14,∵a、b是直角三角形的兩條直角邊,∴a2+b2=102,則a2+b2=(a+b)2?2ab=102,即142?2ab=102,∴ab=48.故答案為:48.【考點(diǎn)】本題主要考查了勾股定理,掌握利用勾股定理證明線段的平方關(guān)系及完全平方公式的變形求值是解題的關(guān)鍵.4、102+(x-1)2=x2【解析】【分析】當(dāng)木桿的上端與墻頭平齊時,木桿與墻、地面構(gòu)成直角三角形,設(shè)木桿長為x尺,則木桿底端離墻有(x-1)尺,根據(jù)勾股定理可列出方程.【詳解】解:如圖,設(shè)木桿AB長為x尺,則木桿底端B離墻的距離即BC的長有(x-1)尺,在Rt△ABC中,∵AC2+BC2=AB2,∴102+(x-1)2=x2,故答案為:102+(x-1)2=x2.【考點(diǎn)】此題考查了勾股定理的應(yīng)用,解題的關(guān)鍵是由實(shí)際問題抽象出直角三角形,從而運(yùn)用勾股定理解題.5、直角三角形【解析】【分析】根據(jù)絕對值、完全平方數(shù)和算數(shù)平方根的非負(fù)性,可求解出a、b、c的值,再根據(jù)勾股定理的逆定理判斷即可.【詳解】解:由題意得:,解得:,∵,∴三角形為直角三角形.故答案為直角三角形.【考點(diǎn)】本題主要考查了非負(fù)數(shù)的性質(zhì)和勾股定理的逆定理,運(yùn)用非負(fù)數(shù)的性質(zhì)求出a、b、c的值是解題的關(guān)鍵.6、【解析】【分析】設(shè)折斷處離地面的高度為x尺,根據(jù)勾股定理列出方程即可【詳解】解:設(shè)折斷處離地面的高度為x尺,根據(jù)題意可得:故答案為:【考點(diǎn)】本題考查了勾股定理的應(yīng)用,掌握勾股定理是解題的關(guān)鍵.7、13【解析】【分析】將其轉(zhuǎn)化為數(shù)學(xué)幾何圖形,如圖所示,根據(jù)題意,可知B'C=5尺,設(shè)水深A(yù)C=x尺,則蘆葦長(x+1)尺,根據(jù)勾股定理建立方程,求出的方程的解即可得到蘆葦?shù)拈L和水深.【詳解】解:設(shè)水深x尺,則蘆葦長(x+1)尺,在Rt△CAB′中,AC2+B′C2=AB′2,即x2+52=(x+1)2,解得:x=12,∴x+1=13,故蘆葦長13尺,故答案為:13【考點(diǎn)】本題考查勾股定理,和列方程解決實(shí)際問題,能夠在實(shí)際問題中找到直角三角形并應(yīng)用勾股定理是解決本題的關(guān)鍵.8、13【解析】【分析】設(shè)水深OB=x尺,則蘆葦長OA'=(x+1)尺,根據(jù)勾股定理列方程求解即可.【詳解】解:根據(jù)題意,設(shè)水深OB=x尺,則蘆葦長OA'=(x+1)尺,根據(jù)題意列方程得:x2+52=(x+1)2,解得:x=12∴OA'=13尺.故答案為:13.【考點(diǎn)】此題考查了勾股定理的實(shí)際應(yīng)用,解題的關(guān)鍵是根據(jù)題意設(shè)出未知數(shù),根據(jù)勾股定理列方程求解.三、解答題1、北偏西45°(或西北)【解析】【分析】直接得出RP=18海里,PQ=24海里,QR=30海里,利用勾股定理逆定理以及方向角即可得到“海

天”號航行方向.【詳解】解:由題意可得:RP=18海里,PQ=24海里,QR=30海里,∵182+242=302,∴△RPQ是直角三角形,∴∠RPQ=90°,∵“遠(yuǎn)航”號沿東北方向航行,即沿北偏東45°方向航行,∴∠RPS=45°,∴“海天”號沿北偏西45°(或西北)方向航行.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,解題的重點(diǎn)主要是能夠根據(jù)勾股定理的逆定理發(fā)現(xiàn)直角三角形,關(guān)鍵是從實(shí)際問題中抽象出直角三角形,難度不大.2、見解析【解析】【分析】連接AM得到三個直角三角形,運(yùn)用勾股定理分別表示出AD2、AM2、BM2進(jìn)行代換就可以最后得到所要證明的結(jié)果.【詳解】證明:連接MA,∵M(jìn)D⊥AB,∴AD2=AM2-MD2,BM2=BD2+MD2,∵∠C=90°,∴AM2=AC2+CM2∵M(jìn)為BC中點(diǎn),∴BM=MC.∴AD2=AC2+BD2【考點(diǎn)】本題考查了勾股定理,三次運(yùn)用勾股定理進(jìn)行代換計(jì)算即可求出結(jié)果,另外準(zhǔn)確作出輔助線也是正確解出的重要因素.3、AC2=CE2+AE2=102+24∴AC=26,26÷5=5.2(s).答:它至少需要5.2s才能趕回巢中.【考點(diǎn)】本題考查了勾股定理的應(yīng)用.關(guān)鍵是構(gòu)造直角三角形,同時注意:時間=路程÷速度.2.2【解析】【分析】過點(diǎn)作于點(diǎn),則,,結(jié)合可得出,進(jìn)而可得出,在中,利用勾股定理可求出的長,即,結(jié)合可求出的長.【詳解】解:過點(diǎn)作于點(diǎn),如圖所示.,,,.,,.在中,∵,,即,,.又,,.【考點(diǎn)】本題考查了勾股定理、等腰三角形的性質(zhì)以及三角形內(nèi)角和定理,在中,利用勾股定理求出的長是解題的關(guān)鍵.4、A=(n2+1)2,B=n2+1,15,17;12,37【解析】【分析】先根據(jù)整式的混合運(yùn)算法則求出A,進(jìn)而求出B,再把n的值代入即可解答.【詳解】A=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2,∵A=B2,B>0,∴B=n2+1,當(dāng)2n=8時,n=4,n2﹣1=42﹣1=15,n2+1=42+1=17;當(dāng)n2﹣1=35時,n=±6(負(fù)值舍去),2n=2×6=12,n2+1=37.直角三角形三邊n2﹣12nB勾股數(shù)組Ⅰ15817勾股數(shù)組Ⅱ351237故答案為:15,17;12,37.【考點(diǎn)】本題考查了勾股數(shù)的定義及勾股定理的逆定理:已知△ABC的三邊滿足a2+b2=c2,則△ABC是直角三角形.5、【解析】【分析】過點(diǎn)C作CD⊥AM垂足為D,設(shè)CD=x,根據(jù)直角三角形的性質(zhì)求可得AC=2x、BD=BC=x,再利用勾股定理可求得x,進(jìn)而求得AC的長.【詳解】解:過點(diǎn)C作CD⊥AM垂足為D,∴∠CAD=75°-45°=30°,∠CBD=75°-30°=30°,設(shè)CD=x∵在Rt△ACD中,∠CAD=75°-45°=30°∴AC=2x∵在Rt△BCD中,∠CBD=45°,BC=30∴BD=BC=x∴,解得x=∴AC=2x=.答:港口A到海

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論