解析卷人教版8年級數(shù)學下冊《平行四邊形》綜合訓練試題(詳解版)_第1頁
解析卷人教版8年級數(shù)學下冊《平行四邊形》綜合訓練試題(詳解版)_第2頁
解析卷人教版8年級數(shù)學下冊《平行四邊形》綜合訓練試題(詳解版)_第3頁
解析卷人教版8年級數(shù)學下冊《平行四邊形》綜合訓練試題(詳解版)_第4頁
解析卷人教版8年級數(shù)學下冊《平行四邊形》綜合訓練試題(詳解版)_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版8年級數(shù)學下冊《平行四邊形》綜合訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖所示,AB=CD,AD=BC,則圖中的全等三角形共有()A.1對 B.2對 C.3對 D.4對2、如圖,以O(shè)為圓心,長為半徑畫弧別交于A、B兩點,再分別以A、B為圓心,以長為半徑畫弧,兩弧交于點C,分別連接、,則四邊形一定是()A.梯形 B.菱形 C.矩形 D.正方形3、已知直線,點P在直線l上,點,點,若是直角三角形,則點P的個數(shù)有()A.1個 B.2個 C.3個 D.4個4、順次連接對角線互相垂直的四邊形的各邊中點,所形成的新四邊形是()A.菱形 B.矩形 C.正方形 D.三角形5、如圖,矩形ABCD中,AB=3,AD=4,將矩形ABCD折疊后,A點的對應(yīng)點落在CD邊上,EF為折痕,A和EF交于G點,當AG+BG取最小值時,此時EF的值為()A. B.3 C.2 D.5第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、能使平行四邊形ABCD為正方形的條件是___________(填上一個符合題目要求的條件即可).2、菱形的對角線之比為3:4,且面積為24,則它的對角線分別為________.3、如圖,在平行四邊形ABCD中,,E、F分別在CD和BC的延長線上,,,則______.4、如圖,在正方形ABCD中,點M,N為CD,BC上的點,且DM=CN,AM與DN交于點P,連接AN,點Q為AN中點,連接PQ,若AB=10,DM=4,則PQ的長為__________________.5、如圖,在直角三角形ABC中,∠B=90°,點D是AC邊上的一點,連接BD,把△CBD沿著BD翻折,點C落在AB邊上的點E處,得到△EBD,連接CE交BD于點F,BG為△EBD的中線.若BC=4,△EBG的面積為3,則CD的長為____________三、解答題(5小題,每小題10分,共計50分)1、如圖,將矩形紙片ABCD沿對角線BD折疊,使點A落在平面上的F點處,DF交BC于點E,CD=5,DB=13,求BE的長.

2、如圖,平行四邊形ABCD中,點E、F分別在CD、BC的延長線上,.

(1)求證:D是EC中點;(2)若,于點F,直接寫出圖中與CF相等的線段.3、閱讀探究小明遇到這樣一個問題:在中,已知,,的長分別為,,,求的面積.小明是這樣解決問題的:如圖1所示,先畫一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點(即的3個頂點都在小正方形的頂點處),從而借助網(wǎng)格就能計算出的面積.他把這種解決問題的方法稱為構(gòu)圖法,(1)圖1中的面積為________.實踐應(yīng)用參考小明解決問題的方法,回答下列問題:(2)圖2是一個的正方形網(wǎng)格(每個小正方形的邊長為1).①利用構(gòu)圖法在答題卡的圖2中畫出三邊長分別為,,的格點.②的面積為________(寫出計算過程).拓展延伸(3)如圖3,已知,以,為邊向外作正方形和正方形,連接.若,,,則六邊形的面積為________(在圖4中構(gòu)圖并填空).4、如圖,四邊形ABCD是平行四邊形,∠BAC=90°.(1)尺規(guī)作圖:在BC上截取CE,使CE=CD,連接DE與AC交于點F,過點F作線段AD的垂線交AD于點M;(不寫作法,保留作圖痕跡)(2)在(1)的條件下,猜想線段FM和CF的數(shù)量關(guān)系,并證明你的結(jié)論.5、如圖,將長方形ABCD沿著對角線BD折疊,使點C落在C′處,BC′交AD于點E.(1)試判斷△BDE的形狀,并說明理由;(2)若AB=6,BC=18,求△BDE的面積.-參考答案-一、單選題1、D【解析】【分析】根據(jù)平行四邊形的判定與性質(zhì),求解即可.【詳解】解:∵AB=CD,AD=BC∴四邊形為平行四邊形∴,,,∴、又∵,∴、∴圖中的全等三角形共有4對故選:D【點睛】此題考查了平行四邊形的判定與性質(zhì),全等三角形的判定與性質(zhì),解題的關(guān)鍵是掌握平行四邊形的判定與性質(zhì).2、B【解析】【分析】根據(jù)題意得到,然后根據(jù)菱形的判定方法求解即可.【詳解】解:由題意可得:,∴四邊形是菱形.故選:B.【點睛】此題考查了菱形的判定,解題的關(guān)鍵是熟練掌握菱形的判定方法.菱形的判定定理:①四條邊都相等四邊形是菱形;②一組鄰邊相等的平行四邊形是菱形;③對角線垂直的平行四邊形是菱形.3、C【解析】【分析】分別討論,,三種情況,求出點坐標即可得出答案.【詳解】如圖,當時,點與點橫坐標相同,代入中得:,,當時,點與點橫坐標相同,,代入中得:,,當時,取中點為點,過點作交于點,設(shè),,,,,,,,,在中,,解得:,,點有3個.故選:C.【點睛】本題考查直角三角形的性質(zhì)與平面直角坐標系,掌握分類討論的思想是解題的關(guān)鍵.4、B【解析】【分析】先畫出圖形,再根據(jù)三角形中位線定理得到所得四邊形的對邊平行且相等,那么其必為平行四邊形,然后根據(jù)鄰邊互相垂直得出四邊形是矩形.【詳解】解:如圖,∵、、、分別是、、、的中點,∴,,,∴四邊形是平行四邊形,∵,∴,∴平行四邊形是矩形,又與不一定相等,與不一定相等,矩形不一定是正方形,故選:B.【點睛】本題考查了三角形中位線定理、矩形的判定等知識點,熟練掌握三角形中位線定理是解題關(guān)鍵.5、A【解析】【分析】過點作于,由翻折的性質(zhì)知點為的中點,則為的中位線,可知在上運動,當取最小值時,此時與重合,利用勾股定理和相似求出的長即可解決問題.【詳解】解:過點作于,將矩形折疊后,點的對應(yīng)點落在邊上,點為的中點,為的中位線,在上運動,在上運動,當取最小值時,此時與重合,,,,,,,,,在和中,,,,,故選:A.【點睛】本題主要考查了矩形的性質(zhì),翻折的性質(zhì),全等三角形的判定與性質(zhì),勾股定理等知識,解題的關(guān)鍵是證明在上運動.二、填空題1、AC=BD且AC⊥BD(答案不唯一)【解析】【分析】根據(jù)正方形的判定定理,即可求解.【詳解】解:當AC=BD時,平行四邊形ABCD為菱形,又由AC⊥BD,可得菱形ABCD為正方形,所以當AC=BD且AC⊥BD時,平行四邊形ABCD為正方形.故答案為:AC=BD且AC⊥BD(答案不唯一)【點睛】本題主要考查了正方形的判定,熟練掌握正方形的判定定理是解題的關(guān)鍵.2、6和8##8和6【解析】【分析】根據(jù)比例設(shè)兩條對角線分別為3x、4x,再根據(jù)菱形的面積等于兩對角線乘積的一半列式求出x的值即可.【詳解】解:設(shè)兩條對角線分別為3x、4x,根據(jù)題意得,×3x?4x=24,解得x=2(負值舍去),∴菱形的兩對角線的長分別為,.故答案為:6和8.【點睛】本題考查了菱形的面積,主要利用了菱形的對角線互相垂直平分的性質(zhì),菱形的面積的求法,需熟記.3、8【解析】【分析】證明四邊形ABDE是平行四邊形,得到DE=CD=,,過點E作EH⊥BF于H,證得CH=EH,利用勾股定理求出EH,再根據(jù)30度角的性質(zhì)求出EF.【詳解】解:∵四邊形ABCD是平行四邊形,∴,AB=CD,∵,∴四邊形ABDE是平行四邊形,∴DE=CD=,,過點E作EH⊥BF于H,∵,∴∠ECH=,∴CH=EH,∵,,∴CH=EH=4,∵∠EHF=90°,,∴EF=2EH=8,故答案為:8.【點睛】此題考查了平行四邊形的判定及性質(zhì),勾股定理,直角三角形30度角的性質(zhì),熟記各知識點并應(yīng)用解決問題是解題的關(guān)鍵.4、【解析】【分析】由△ADM與△DCN全等,得出∠CDN=∠DAM,從而得到∠DPM=90°,由此∠APN=90°,再由直角三角形斜邊的中線的性質(zhì)求出PQ.【詳解】解:在正方形ABCD中,AD=CD,∠ADC=∠DCN=90°,在△ADM與△DCN中,∵AD=CD,DM=CN,∠ADC=∠DCN,∴△ADM≌△DCN(SAS),∴∠DAM=∠CDN,∴∠DMA=∠CND,在△DPM中,∠PDM+∠PMD=90°,∴∠DPM=90°,∵∠DPM=∠APN,∴△ANP為直角三角形,AN為直角三角形的斜邊,由直角三角形的性質(zhì)得PQ=AN,在△ANB中,AN==2,∴PQ=,故答案為:.【點睛】本題考查正方形的性質(zhì),全等三角形的判定和性質(zhì),直角三角形斜邊上的中線,勾股定理等知識,解題的關(guān)鍵是熟練掌握正方形的性質(zhì).5、【解析】【分析】由折疊的性質(zhì)可得,,,,由勾股定理可得,,根據(jù)題意可得,,求得的長度,即可求解.【詳解】解:由折疊的性質(zhì)可得,,,,∴為等腰直角三角形,為的中點,∴由勾股定理可得,∴∵BG為△EBD的中線,△EBG的面積為3∴,解得∴由勾股定理得:故答案為:【點睛】此題考查了折疊的性質(zhì),勾股定理以及直角三角形的性質(zhì),解題的關(guān)鍵是靈活利用相關(guān)性質(zhì)進行求解.三、解答題1、【分析】由矩形的性質(zhì)可知AB=DC,∠A=∠C=90°,由翻折的性質(zhì)可知∠AB=BF,∠A=∠F=90°,于是可得到∠F=∠C,BF=DC,然后依據(jù)AAS可證明△DCE≌△BFE,依據(jù)勾股定理求得BC的長,由全等三角形的性質(zhì)可知BE=DE,最后再△EDC中依據(jù)勾股定理可求得ED的長,從而得到BE的長.【詳解】解:∵四邊形ABCD為矩形,∴AB=CD,∠A=∠C=90°∵由翻折的性質(zhì)可知∠F=∠A,BF=AB,∴BF=DC,∠F=∠C.在△DCE與△BEF中,∴△DCE≌△BFE.在Rt△BDC中,由勾股定理得:BC=.∵△DCE≌△BFE,∴BE=DE.設(shè)BE=DE=x,則EC=12?x.在Rt△CDE中,CE2+CD2=DE2,即(12?x)2+52=x2.解得:x=.∴BE=.【點睛】本題主要考查的是翻折的性質(zhì)、勾股定理的應(yīng)用、矩形的性質(zhì),依據(jù)勾股定理列出關(guān)于x的方程是解題的關(guān)鍵.2、(1)見祥解;(2)AB=DC=DE=DF=CF,證明見詳解.【分析】(1)根據(jù)四邊形ABCD是平行四邊形,得出AB∥CD即(AB∥ED),AB=CD,根據(jù),可證四邊形ABDE為平行四邊形,得出AB=DE即可;(2)根據(jù)EF⊥BF,CD=ED,根據(jù)直角三角形斜邊中線可得DF=CD=ED,再證△DCF為等邊三角形即可.【詳解】證明:(1)∵四邊形ABCD是平行四邊形,∴AB∥CD即(AB∥ED),AB=CD,∵,∴四邊形ABDE為平行四邊形,∴AB=DE,∴CD=ED,∴點D為CE中點;(2)結(jié)論為:AB=DC=DE=DF=CF,∵EF⊥BF,CD=ED,∴DF=CD=ED,∵AB∥CD,∠ABC=60°,∴∠DCF=∠ABC=60°,∴△DCF為等邊三角形,∴CF=CD=DF=AB=ED.【點睛】本題考查平行四邊形的判定與性質(zhì),線段中點判定,直角三角形斜邊中線性質(zhì),等邊三角形判定與性質(zhì),掌握平行四邊形的判定與性質(zhì),線段中點判定,直角三角形斜邊中線性質(zhì),等邊三角形判定與性質(zhì)是解題關(guān)鍵.3、(1);(2)①作圖見詳解;②8;(3)在網(wǎng)格中作圖見詳解;31.【分析】(1)根據(jù)網(wǎng)格可直接用割補法求解三角形的面積;(2)①利用勾股定理畫出三邊長分別為、、,然后依次連接即可;②根據(jù)①中圖形,可直接利用割補法進行求解三角形的面積;(3)根據(jù)題意在網(wǎng)格中畫出圖形,然后在網(wǎng)格中作出,,進而可得,得出,進而利用割補法在網(wǎng)格中求解六邊形的面積即可.【詳解】解:(1)△ABC的面積為:,故答案為:;(2)①作圖如下(答案不唯一):②的面積為:,故答案為:8;(3)在網(wǎng)格中作出,,在與中,,∴,∴,,六邊形AQRDEF的面積=正方形PQAF的面積+正方形PRDE的面積+的面積,故答案為:31.【點睛】本題主要考查勾股定理、正方形的性質(zhì)、割補法求解面積及二次根式的運算,熟練掌握勾股定理、正方形的性質(zhì)、割補法求解面積及二次根式的運算是解題的關(guān)鍵.4、(1)圖形見解析;(2),證明見解析【分析】(1)以C為圓心CD長為半徑畫弧于BC交點即為E;連DE與AC交點即為F;過F作AD的垂直平分線與AD交點即為M;(2)證明DF平分,再利用角平分線的性質(zhì)判定即可.【詳解】(1)圖形如下:(2),證明如下:由(1)可得:,CE=CD∴∵四邊形ABCD是平行四邊形∴AD∥BC,AB∥CD∴,∴即DF平分∵∠BAC=90°∴∴【點睛】本題考查了作圖-復雜作圖:解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復雜作圖拆解成基本作圖,逐步操作.也考查了平行四邊形的判定與性質(zhì).5、(1)見解析;(2)30【分析】(1)根據(jù)折疊的性質(zhì)以及矩形的性質(zhì)可得結(jié)果;(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論